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Abstract

Traditional operating systems follow a monolithic design, executing all kernel subsystems in a shared
address space, thereby achieving good performance at the cost of isolation and security. Microkernels have
improved on this design by separating operating system components into individual address spaces, but
historically have been prohibitively expensive due to the high cost of switching address spaces. RedLeaf
is a new operating system which relies on the safety of the Rust programming language as opposed to
hardware mechanisms for isolation. RedLeaf runs all operating system kernel subsystems in the same
hardware address space, and instead achieves isolation through the combination of language safety and
special communication primitives. The result is that communication overhead is on the order of dozens of
cycles, comparable to a regular function call. However, even in a safe kernel, cross-domain communication
requires careful design choices to maintain isolation in the case that domains crash. This thesis describes
these design choices, and introduces the consequent concepts of the shared heap and remote references (RRef ),
which build on Rust’s safety model to provide zero-copy communication that ensures safety and isolation
even in the face of crashing subsystems.



1 Introduction

Background Most modern operating systems are implemented as monolithic kernels. Monolithic kernels
are rich in features and include device drivers, with user-level programs living in individual virtual address
spaces. Although they have good performance, monolithic kernels have poor fault tolerance, with a single
panicking device driver having the potential to bring down the entire system. Even worse, a vulnerability
in any part of a monolithic kernel can result in a full take over of the machine. Microkernels are a response
to monolithic kernels with better security and fault isolation, achieved by shifting as much of the operating
system functionality out of the kernel as possible. This modularity greatly increases fault tolerance and
security, but comes at the cost of expensive address space crossings of isolated subsystems. Modern mi-
crokernels such as the L4 family have improved the inter-process communication (IPC) performance, and
are widely adopted in production, but still suffer a significant overhead. The state of the art seL4 micro-
kernel introduces a minimum overhead of 1260 cycles on a 3.4GHz x86 CPU [1], which is still prohibitive
for modern I/O intensive workloads that require millions of domain switches per second. With the recent
emergence of low-cost memory-safe programming languages there is now room to improve performance
of domain switches by relying on memory safety guarantees instead of hardware isolation mechanisms.

Rust Rust is a new systems programming language with a focus on compile-time memory safety achieved
through a sub-structural type system [?]. This means that regular Rust pointers have a statically defined life-
time, which prevents a whole suite of memory bugs such as use-after-free, dangling pointers, and double-
free. Further, in safe Rust (a strict subset of the language) pointer casts and raw-pointer dereferencing are
prohibited at compile time. By enforcing safe Rust guarantees, it is possible to statically ensure that a bad
actor’s program will not manipulate external memory, eliminating the need for virtual address spaces.

Redleaf RedLeaf [?] is a novel microkernel written from scratch in Rust. RedLeaf relies on Rust’s mem-
ory safety instead of hardware mechanisms for memory isolation. Programs are organized into domains,
which share a single address space but are otherwise isolated. This design eliminates the expensive ad-
dress space crossings plaguing microkernels, achieving incredible cross-domain communication perfor-
mance than without sacrificing safety or isolation.

Isolation While Rust enforces memory safety on a per-domain basis, it is not enough to ensure total iso-
lation during cross-domain communication. When a domain panics, the kernel unloads it from memory to
free up resources. If this happens in the middle of a cross-domain call, Rust’s memory safety guarantees
are violated, as any external pointers into the dead domain are now dangling. In order to achieve total
domain isolation, we introduce the following invariants: domains do not share heaps, and domains do not
expose pointers from their respective heaps. With these guarantees, a domain can be safely unloaded from
memory without any external dangling pointers. For cross-domain communication, domains are to ex-
change pointers from a single shared heap. To enforce this, we introduce the mechanism of remote references
(RRef s), references to shared memory. RRef s enable domains to create and exchange shared heap objects in
a zero-copy manner, while preserving safety in the face of domain crashes.

This thesis describes the implementation of remote references and the shared heap, the mechanisms
behind RedLeaf’s zero-copy and fault-tolerant IPC.

2 RedLeaf Architecture

Domains The RedLeaf microkernel handles a narrow set of tasks and delegates the rest to user-level
domains (Figure 1). The microkernel performs scheduling and domain loading, and provides an interface for
allocating shared memory and handling interrupts. Device drivers, the file system, and all other programs
are implemented as user-level domains running atop the kernel.
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Figure 1: RedLeaf architecture [?]

Virtual Memory Safe Rust enforces several aspects of memory safety
that are relevant to RedLeaf. Notably, raw pointers, roughly equiva-
lent to regular C pointers, cannot be dereferenced or converted into safe
pointers. Consequently, safe Rust programs can only access memory
pointing to the result of an allocation or a system call — they cannot
make pointers from scratch. RedLeaf enforces safe Rust in untrusted do-
mains and isolates each domain’s heap, which guarantees that a domain
will not access external memory. This alleviates the need for hardware
virtual address spaces for isolation, and so all domains can run in the
same address space.

Inter-Process Communication We define inter-process communication
(IPC) to be communication between any two domains. As opposed to
a message-passing architecture (typical for microkernels) or privileged
system calls (typical for monolithic kernels), the RedLeaf IPC interface is
exposed as a set of capabilities [?] implemented as Rust trait objects. Be-
cause all domains live in the same address space, communication can be
zero-copy. Arguments in IPC calls can either be small values on the stack,
passed by value, or larger objects which are passed by reference. Without
careful design, passing objects by reference can be an attack vector.

Attack Model RedLeaf relies on the safety of Rust for enforcing isola-
tion across domains. IPC can invalidate Rust safety, breaking isolation
which allows for attacks. With the invariant that each domain has its
own heap, sharing objects by reference allows for external pointers into a domain’s heap. If a domain is un-
loaded from memory while another domain references its heap, that reference becomes a dangling pointer,
breaking Rust’s memory safety model. This can be weaponized: a domain can purposefully panic in the
middle of an IPC call to bring down another domain with it, breaking isolation. Rather than restricting IPC,
our solution revolves around a shared heap, which ensures that memory shared by domains is always valid.

Shared Heap The shared heap is a special region of memory which keeps track of ownership. When
a domain requests memory from the shared heap, it marks itself as the owner of the pointer. When the
domain shares this pointer with another domain, the pointer’s owner changes, which is recorded by the
shared heap. This way, each domain is totally isolated, and the RedLeaf kernel can safely unload a domain
and free any shared heap memory owned by the domain.

Remote References The shared heap provides memory that is safe to use for IPC. In order to enforce
proper use of the shared heap, we introduce remote references (RRef s). RRef s allocate memory on the
shared heap and keep track of domain ownership. RRef s are statically guaranteed to point to valid mem-
ory on the shared heap, enforcing the memory safety guarantees of Rust. This allows domains to safely
communicate via IPC with RRef ’s as arguments, even in the case that one of the domains panics.

Proxies In order to handle faults and track RRef domain ownership, we introduce proxies. Proxies are
transparent domains that interpose communication between each pair of domains. For each cross-domain
call, proxies record RRef ownership and call-stack information. In the case that a domain panics in the
middle of an IPC call, execution winds back to the proxy using the call-stack information, isolating the
fault. The proxy is generated by the RedLeaf IDL [?], and introduces a small overhead to ensure total
domain isolation.
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3 Implementation

Remote references (RRef s) are implemented in a trusted crate, exposing the types RRef<T>, RRefArray<T>,
and RRefDeque<T>. Further data structures can be built on top of these types in the future. This section
covers the implementation details of the RRef crate, along with the shared heap component powering it.

3.1 Shared Heap

RRef ’s are special pointers to the shared heap. They reference shared memory safe to use for IPC, and
update ownership of the memory based on what domain they are in. The shared heap exposes methods
to allocate and deallocate raw pointers to memory. Dereferencing raw pointers requires unsafe code [?],
limiting their use to trusted RedLeaf components. The RRef crate is one of these trusted components and is
built on top of the shared heap capability.

Listing 1 shows the interface for the shared heap capability. The alloc(layout:drop_fn:) method returns
three pointers for managing state of the shared heap memory. This state is abstracted by the RRef<T> type,
which in turn is managed by the proxy domain during domain crossings.

The shared heap maintains a registry containing information about every allocation, along with its de-
structor method. Records are inserted or deleted from the registry upon allocation or deallocation, and
serve as a source of truth for the kernel for cleaning up shared memory when a domain panics.

1 pub struct SharedHeapAllocation {
2 pub domain_id_pointer: ∗mut u64,
3 pub borrow_count_pointer: ∗mut u64,
4 pub value_pointer: ∗mut u8
5 }
6
7 pub trait Heap {
8 unsafe fn alloc(
9 &self,

10 layout: Layout, // size and alignment
11 drop_fn: extern fn(∗mut u8) −> () // kernel−invoked cleanup method
12 ) −> SharedHeapAllocation;
13 unsafe fn dealloc(&self, value_pointer: ∗mut u8);
14 }

Listing 1: Shared Heap capability interface.

3.2 RRef

3.2.1 Rust pointer types

1 // Manipulating a regular heap pointer
2 let mut box_ptr: Box<u64> = Box::new(10u64);
3 ∗box_ptr = 50;
4 // Manipulating a remote reference
5 let mut rref_ptr: RRef<u64> = RRef::new(10u64);
6 ∗rref_ptr = 50;

Listing 3: Working with RRef .

The RRef<T> pointer type was designed to be as Rust-native as possible, and is modeled after existing
types in the standard library. Unlike C, pointer types in Rust are distinct at the type level. In C, a pointer
can reference the heap, the stack, a memory mapped value, or nothing at all (null). In Rust, each of those
cases are represented by different types.
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1 pub trait BDev: Send + Sync {
2 fn read(&self, block: u32, data: &mut [u8; BSIZE]) −> RpcResult<()>;
3 fn write(&self, block: u32, data: &[u8; BSIZE]) −> RpcResult<()>;
4 }

(a) Interface with regular references.

1 pub trait BDev: Send + Sync {
2 fn read(&self, block: u32, data: RRef<[u8; BSIZE]>) −> RpcResult<RRef<[u8; BSIZE]>>;
3 fn write(&self, block: u32, data: &RRef<[u8; BSIZE]>) −> RpcResult<()>;
4 }

(b) Interface with remote references.

Listing 2: Comparison of block device driver interface with and without RRef .

Rust’s most primitive pointer type is Box<T>, which points to a value on the heap. Box::new(10u64) cre-
ates a pointer to a 64-bit unsigned integer on the heap. More complex pointer types are built on top of
Box<T>. With this in mind, the base RRef<T> type is modeled after Box<T>. RRef::new(10u64) is semanti-
cally very similar to Box::new(10u64). However, rather than allocating on the domain’s heap, RRef::new(10u64)
allocates on the shared heap. Just like for Box<T>, more complex types like RRefArray<T> and RRefDeque<T>

are built on top of this base RRef<T> type.
Working with a RRef<T> is very similar to working with standard library pointers. Compare the block

device driver interfaces shown in Listing 2a (regular Rust references) and Listing 2b (remote references).
The data argument, passed by reference, is wrapped in a RRef<T> to enforce use of the shared heap. The mu-
table borrow (&mut) is converted to move-in-move-out semantics, for reasons covered in Section 3.2.6. On
the call site, the syntax for dereferencing and manipulating RRef<T> is essentially identical to the Box<T>

type (Listing 3).
3.2.2 Structure

1 pub struct RRef<T> where T: 'static + RRefable {
2 value_pointer: ∗mut T,
3 domain_id_pointer: ∗mut u64,
4 borrow_count_pointer: ∗mut u64
5 }

Listing 4: RRef struct definition

An RRef is a combination of three pointers to values on the shared heap. The syntax used for these
pointers, ∗mut, is a raw pointer [?]. Raw pointers are part of the unsafe subset of Rust, and offer very few
memory guarantees. With RRef<T>, these pointers always come directly from the trusted shared heap, so
we can assume them to be valid.

The value_pointer contains the actual object. The type T is generic and constrained to RRefable (more in
Section 3.2.5), which means the actual type, layout, and size is resolved at compile time. RRef::new([1usize,2,3])
will request memory to store an array of three integers, and copy the array over to the shared heap (this is
the only copy in RRef s life cycle).

The domain_id_pointer keeps track of the current owner of the domain. RRef s have a single owner, and,
except in the case of read-only borrows (Section 3.2.6) are deallocated automatically if their current owner
dies. When a RRef is passed from one domain to another, its owner gets changed in the trusted proxy
guarding each domain.

Finally, the borrow_count_pointer counts how many domains are borrowing this object. This information
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is used to allow immutable borrows without leaking memory; Section 3.2.6 goes into more detail.
3.2.3 Initialization

By far the most intricate and unsafe portion of the RRef crate is the RRef::new initialization method. RRef::new
requests memory from the shared heap and performs a bytewise copy of the RRefable object (more on this
in Section 3.2.5). This method is crucial to get right because it performs raw memory manipulation which
can undermine Rust’s memory guarantees.

1 impl<T: RRefable> RRef<T> {
2 fn new(value: T) −> RRef<T> {
3 // compile−time size and alignment info
4 let layout = Layout::new::<T>();
5 // clean up function in case owner domain panics
6 let drop_fn = unsafe {
7 transmute::<extern fn(∗mut u8) −> ()>(drop_t::<T>)
8 };
9 // request memory (as seen in Listing 1)

10 let allocation = unsafe {
11 HEAP.alloc(layout, drop_fn)
12 };
13 // reinterpret these bytes as T
14 let value_pointer = allocation.value_pointer as ∗mut T;
15 unsafe {
16 // initialize ownership and value
17 ∗allocation.domain_id_pointer = CRATE_DOMAIN_ID;
18 ∗allocation.borrow_count_pointer = 0;
19 core::ptr::write(value_pointer, value);
20 }
21 RRef {
22 domain_id_pointer,
23 borrow_count_pointer,
24 value_pointer
25 }
26 }
27 }

Listing 5: RRef::new initialization method

Listing 5 shows the full initialization code. On line 11, we request memory from the shared heap and get
three raw pointers. RedLeaf control the initialization of the HEAP global for each domain, so we consider it
trusted. Therefore, we can assume that any pointers it returns are going to be valid and have the expected
layout. Rust is able to compute the layout (size and alignment) of a generic type at compile time, seen on
line 4. <T: RRefable> ensures that the generic type contains no references, so it is safe to simply allocate
bytes and cast them to T (line 14).

The remainder of the RRef<T> implementation wraps operations on the three raw pointers to simplify
working with shared heap memory.

3.2.4 Dereferencing

Rust has builtin traits for dereferencing, Deref [?] and DerefMut [?]. These traits enable several levels of syn-
tactic sugar which are particularly useful for smart pointers. First, they allow for the asterisk dereferencing
operator (∗ptr), which extracts a mutable or immutable reference from the smart pointer. Second, the com-
piler implicitly implements the methods of type T for any type which implements Deref<Target=T>. This
means that, for example, RRef::new(10u64).checked_add(1) is valid code which automatically dereferences
RRef<u64> to &u64 and invokes its respective checked_add method.
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Listing 6 shows the implementation of the DerefMut traits for RRef<T>. The code is deceptively simple,
dereferencing the raw pointer and creating a regular mutable reference to the pointer’s value. Behind the
scenes, Rust also inserts lifetimes [?] linking &mut T to &mut self. This ensures that a dereferenced &mut T

will not outlive the RRef<T> container. Further, this allows the compiler to enforce the Rust model of "one
mutable reference or many immutable references" [?] for RRef<T>.

1 impl<T: RRefable> DerefMut for RRef<T> {
2 fn deref_mut(&mut self) −> &mut T {
3 unsafe { &mut ∗self.value_pointer }
4 }
5 }

Listing 6: RRef DerefMut implementation

3.2.5 RRefable

RRef<T> ensures that the memory for T lies on the shared heap. However, what if T is a data structure with
another reference to memory outside the shared heap? This reference could become a dangling pointer
during IPC if it points to memory on a dead domain’s heap. Pointers in safe Rust are guaranteed to be
valid, so this would break Rust safety and as such be an attack vector. For this reason we restrict RRef<T>
to contain exclusively "copy" types or other references to memory on the shared heap. Following these rules,
RRef<usize>, RRef<[1,2,3]>, and RRef<RRef<usize>> are all valid, while RRef<&str> should fail to compile.

We could enforce this in the RedLeaf IDL. However, with Rust’s rich trait type system we can do most
of this validation at compile time 1. To this extent, the T in RRef<T> is restricted by the RRefable trait.

The RRefable trait definition is shown in Listing 7. As an auto trait [?], RRefable is implemented implic-
itly for every type that fits the definition. Rather than enumerate all the possible types that RRef<T> can
contain, RRefable instead provides negative implementations for all reference types. The Rust compiler recur-
sively checks auto trait definitions, so even though Box<T> does not directly match ∗mut T, ∗const T, &T, or
&mut T, it is still not RRefable because it contains a reference somewhere in its tree of definitions (specifically,
Box<T> is backed by Unique<T>, which itself is backed by ∗const T).

1 #![feature(optin_builtin_traits)]
2 #![feature(negative_impls)]
3 pub unsafe auto trait RRefable {}
4 impl<T> !RRefable for ∗mut T {}
5 impl<T> !RRefable for ∗const T {}
6 impl<T> !RRefable for &T {}
7 impl<T> !RRefable for &mut T {}

Listing 7: RRefable trait definition

3.2.6 Borrowing

Earlier, Listing 2b showed the interface for a typical block device driver. Compared to non-RRef code
(Listing 2a), the primary difference is the read(block:data:) method which takes and returns the data buffer
(move-in-move-out) instead of mutably borrowing it. Move-in-move-out is more cumbersome, but unfor-
tunately, mutable borrows cannot be supported in IPC. Consider the scenario where the block device driver
domain partially writes to the buffer, and then panics. The buffer is left in a corrupted state and should not
be returned to the caller domain. This alone prevents their use in IPC. On the other hand, immutable borrows
pose no such threat.

1The RRefable trait does not account for function pointers. For this reason, we further validate RRef types with the RedLeaf IDL.
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Figure 2: RRef immutably borrowed across 3
domains.

The motivation for supporting immutable borrows for
RRef s is twofold. First, immutable borrows elegantly express
that a value is only read, whereas move-in-move-out values
change ownership and as such can be modified. Further, and
more importantly, in the case that a domain moves a remote
reference to another domain, which happens to panic, that
RRef is permanently gone. In the case of an immutable bor-
row, that reference should still be valid since it was never
modified.

We keep track of ownership during an immutable borrow
with a simple counter. The purpose of the borrow counter is to
clean up a remote reference in the case that a domain panics. A
proxy lies in between each domain crossing and manages the
borrow counter. It increments the counter when descending
into another domain, and decrements it upon return (success-
ful or unsuccessful). The RRef is only deallocated when the
borrow counter hits zero and its owner domain is dead.

Consider the scenario in Figure 2. When R is borrowed by
domain B, the counter increments to one. If at this point do-
main A panics, the kernel will check the shared heap registry
and find that the owner of R panicked, but it has a non-zero
borrow count and as such is still in use. Once R returns back to
domain B’s proxy, its borrow counter is reduced back to zero.
Since the owner domain (A) is now dead, and the borrow counter is zero, this reference is deallocated.

In the case that domains B or C panic before R returns to domain A, the intermediate proxies handle
the unwinding and safely return the reference back to domain A. Because the reference was immutably
borrowed, Rust guarantees that it was never modified, and as such remains valid for further use.

3.3 RRefArray

RRefArray is the first data structure built on top of the base RRef type. While it is possible to represent an
array of remote references with just RRef<[T; N]>, it quickly becomes unwieldy. To move an element out
of the array, it has to be wrapped in an Option to represent the empty slot. Further, the element must also
be wrapped in its own RRef, since its owner can change when it is removed from the array. To manage this
ownership, proper accessors have to be generated by the RedLeaf IDL [?]. RRefArray simplifies this use case,
and serves as the base for further data structures like RRefDeque (Section 3.4).

Listing 8 shows that an RRefArray is mostly a wrapper around RRef<[Option<RRef<T>>; N]>. Elements
can be pulled out and reinserted, and their ownership is tracked. When an element is inserted into the array,
its owner changes to 0 to represent that it is owned by another RRef (this avoids double-free). Because this
code lives in the trusted RRef crate, it is allowed to use privileged methods to update ownership which
would otherwise have to be generated by the IDL.

3.4 RRefDeque

RRefDeque builds on RRefArray in order to provide a deque (double ended queue) data structure. The deque
data structure supports push and pop operations on both the head and tail of the queue, and is included in
Rust’s standard library as VecDeque [?]. RRefDeque aims to be a drop-in replacement for VecDeque.

RRefDeque’s primary discrepancy is its fallible insertion operation. This stems from the fact that all
shared heap allocations need to be of a fixed size, because the shared heap relies on compile time layout in-
formation of types. In the future, the shared heap could also support dynamically-sized data structures, but
is currently limited by Rust language support [?]. As a result RRefDeque is backed by a fixed-size RRefArray
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1 #![feature(const_generics)]
2 pub struct RRefArray<T: RRefable, const N: usize> where T: 'static {
3 arr: RRef<[Option<RRef<T>>; N]>
4 }
5 impl<T: RRefable, const N: usize> RRefArray<T, N> {
6 pub fn get(&mut self, index: usize) −> Option<RRef<T>> {
7 let value = self.arr[index].take();
8 if let Some(rref) = value.as_ref() {
9 unsafe { rref.move_to_current() }; // mark as owned by this domain

10 }
11 value
12 }
13 pub fn set(&mut self, index: usize, value: RRef<T>) {
14 unsafe { value.move_to(0); } // mark as child of another RRef
15 self.arr[index].replace(value);
16 }
17 // ...
18 }

Listing 8: RRefArray struct definition

and can run out of memory during insertion and return an error. VecDeque, on the other hand, requests
more memory when it nears capacity, allowing for infallible insertion operations.

Listing 9 covers the source code behind RRefDeque. RRefDeque builds on RRef and RRefArray, making its
implementation trivial, without any manipulation with regards to domain ownership. This demonstrates
that RRef is a scalable abstraction that can support most IPC needs.

1 #![feature(const_generics)]
2 pub struct RRefDeque<T: RRefable, const N: usize> where T: 'static {
3 arr: RRefArray<T, N>,
4 head: usize, // index of the next element that can be written
5 tail: usize, // index of the �rst element that can be read
6 }
7 impl<T: RRefable, const N: usize> RRefDeque<T, N> {
8 // ...
9 pub fn push_back(&mut self, value: RRef<T>) −> Option<RRef<T>> {

10 if self.arr.has(self.head) {
11 return Some(value); // give the element back if full
12 }
13 self.arr.set(self.head, value);
14 self.head = (self.head + 1) % N;
15 return None;
16 }
17 pub fn pop_front(&mut self) −> Option<RRef<T>> {
18 let value = self.arr.get(self.tail);
19 if value.is_some() {
20 self.tail = (self.tail + 1) % N;
21 }
22 return value;
23 }
24 // ...
25 }

Listing 9: RRefDeque struct definition

The primary use case for RRefDeque in RedLeaf was the submit_and_poll operation in the ixgbe network
driver (Listing 10). submit_and_poll sends a packet queue to the network driver, which processes the packets
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and moves them to the "collected" queue. As covered in Section 3.2.6, a mutable borrow of the packet
queues would be cleaner, but is prohibited.

1 fn submit_and_poll(
2 &self,
3 mut packets: RRefDeque<[u8; 1514], 32>,
4 mut collect: RRefDeque<[u8; 1514], 32>,
5 tx: bool,
6 pkt_len: usize
7 ) −> RpcResult<Result<(
8 usize,
9 RRefDeque<[u8; 1514], 32>,

10 RRefDeque<[u8; 1514], 32>
11 )>>;

Listing 10: Ixgbe network driver submit_and_poll interface using RRefDeque

4 Performance

Operation Cycles

seL4 [1] 1260
RedLeaf 42
RedLeaf (passing an RRef ) 59

Table 1: Language-based cross-domain invocation vs hardware isolation mechanisms.

We ran benchmarks comparing RedLeaf’s IPC to the state of the art on openly-available CloudLab [?]
c220g2 servers configured with two Intel E5-2660 v3 10-core Haswell CPUs running at 2.60 GHz. Table 1
shows the results of these benchmarks, where RedLeaf is an order of magnitude faster than seL4. RedLeaf
IPC performance is comparable to that of several regular function calls. The only overhead is keeping
track of ownership at domain boundaries, which is relatively cheap. This is the result of relying almost
exclusively on the programming language for safety and isolation.

5 Conclusions

Replacing hardware methods for isolation with language safety proves to improve performance signifi-
cantly without sacrificing flexibility for cross domain communication. Rust’s support for designing smart
pointer types allows for remote references to behave like regular pointers (as seen in Listing 3) with the
added benefit of isolation. Relying on the RedLeaf IDL to generate glue code in proxies makes this a scal-
able approach to ensuring isolation. Rust allows for a new wave of microkernel development that can
achieve fine-grained isolation without suffering from hardware overhead.
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