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Abstract
Code-reuse attacks are notoriously hard to defeat, and most
current solutions to the problem focus on automated soft-
ware diversity. This is a promising area of research, as diver-
sity attacks the common denominator enabling code-reuse
attacks—the software monoculture. Recent research in this
area provides security, but at an unfortunate price: perfor-
mance overhead.

Leveraging previously collected profiling information,
compilers can substantially improve subsequent code gen-
eration. Traditionally, profile-guided optimization focuses
on hot program code, where a program spends most of its
execution time. Optimizing rarely executed code does not
significantly impact performance, so few optimizations fo-
cus on this code.

We use profile-guided optimization to reduce the perfor-
mance overhead of software diversity. The primary insight is
that we are free to diversify cold code, but restrict our diver-
sification efforts in hot code.

Our work investigates the impact of profiling on an ex-
pensive diversification technique: NOP insertion. By differ-
entiating between hot cold and cold code, we optimize NOP
insertion overheads from a maximum of 25% down to a neg-
ligible 1%, while preserving the security properties of the
original defense. Consequently, using our profile-guided di-
versification technique, even randomization techniques hav-
ing a high performance overhead become practical.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Code Generation, Optimization
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1. Motivation
Borrowing a term from biology, we refer to the prevalent
practice of shipping identical binaries to all customers as
the software monoculture. Dating back to 1993, Cohen [6]
identified that this practice has detrimental effects for com-
puter security—which Forrest reinforced in 1997 [9]. Due to
a particularly malign class of attacks—known as code reuse
attacks—community interest surged around protections us-
ing automated software diversity [12, 13, 17, 27].

While all of the proposed techniques successfully protect
against code-reuse attacks, they suffer from performance im-
pacts ranging from 1% to 13%. Interestingly, this spectrum
blends well with the security guarantees of the approaches,
i.e., the slower ones have the strongest security properties.
Taking a closer look at the implementations of automated
software diversity, we notice that all of them use a “one-off”
design: they take an input program and diversify it in one
pass. This resembles the state-of-the-art in compiler con-
struction before the advent of profile guided optimizations
triggered by Pettis and Hansen’s profile guided code posi-
tioning of 1990 [30].

Feedback directed, or profile-guided, approaches have
been a major line of research in compilation, in particular for
generating and optimizing native machine code. A profiling
run separates frequently executed—or hot—parts of code
from infrequently executed—or cold—parts. Subsequently,
a second compilation run uses these information to optimize
the generated code, e.g., by co-locating frequently executed
basic blocks.

Previous research focuses almost exclusively on optimiz-
ing the hot code parts. Our idea is to combine profiling in-
formation with automated software diversity. By doing so,
we substantially reduce the costs of even expensive diversi-



fying transformations. One such transformation inserts NOP
instructions in between intentionally emitted native machine
instructions, a technique known as NOP insertion. To add
software diversity to an input program, we have to insert
NOPs probabilistically, i.e., depending on some random in-
formation, we decide whether to insert a NOP instruction or
not. While blind insertion has a positive impact on security,
it also affects performance. This is not surprising, because
the random NOP insertion trial has no information about the
whereabouts of frequently executed code. Profiling informa-
tion gives us these clues: it tells us that we can diversify as
much as we want to in cold code, and reduce diversification
overhead in hot code. A similar insight led to successful re-
search in the areas of code compression [8] and hardware
error detection [18].

We present the design and implementation of profile-
guided automated software diversity using the LLVM 3.1
compiler and its profiling infrastructure. Specifically, our
contributions are:

• We introduce a technique that uses profiling information
to optimize away overhead introduced by automated soft-
ware diversity.

• We describe a heuristic formula controlling randomiza-
tion based on basic block execution frequencies.

• We present the results of a thorough evaluation of our
implementation. Our results indicate:

Performance We are able to reduce overhead of proba-
bilistic NOP insertion for SPEC CPU 2006 down to
a negligible 1% performance overhead. This is an im-
portant result allowing us to use stronger diversifying
transformations without sacrificing performance.

Security We briefly describe a way to objectively mea-
sure the success of diversifying a binary. Our profiling-
driven optimization preserves the security properties
of code layout randomization. In addition, we show
that our transformation thwarts concrete attacks.

2. Background
2.1 Code Reuse Attacks
For performance and practical reasons, a large part of the
modern software stack is written in low-level systems pro-
gramming languages. Since the programmer is assumed not
to make any mistakes, little error checking happens at run-
time. Consequently, even simple programming mistakes can
lead to security vulnerabilities for attackers to exploit.

Originally, attackers would perform arbitrary code exe-
cution by injecting a binary payload (for example, x86 code)
into a vulnerable application running on the target, then use
some other vulnerability in the application to force it to ex-
ecute the payload. This requires that the application be able
to write data to a buffer, then execute code from that same
buffer. In other words, the processor has to be able to (or
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Figure 1. Return-oriented programming attack example.

be allowed to) execute instructions from an area of memory
that the application can directly write to. However, modern
processors allow for a page to be marked as non-writable or
non-executable.

Modern operating systems use this feature to prevent
code injection attacks. A page cannot be both executable and
writable at the same time, unless specifically requested by
the application. This restriction is known as W⊕X (imple-
mented by the PaX [28] kernel patch on Linux). In practice,
W⊕X renders most code injection attacks ineffective. Since
the payload is stored in a writable but non-executable buffer,
the processor cannot execute its contents. In addition, some
operating systems refuse to execute code that was not digi-
tally signed by a central authority.

A recent class of attacks, known as code reuse attacks,
circumvents these restrictions by using code from the ap-
plication itself to perform the attack. Instead of injecting
new code into the application, the attacker reuses fragments
or entire functions from within the program. Return-into-
lib(c) [24] attacks, for example, redirect the program’s exe-
cution to a function (usually system) in libc or some other
library, after manipulating the stack so the attacker controls
the function parameters. Later work [36] proved that return-
into-lib(c) is Turing-complete, and therefore able to perform
arbitrary computations, by implementing a Turing machine
using libc functions.

The later borrowed code chunks [20] and return-oriented
programming (ROP) [33] techniques use code snippets
(called gadgets in the ROP paper) from the executable sec-
tion of the program as the attack payload itself. These code
snippets are much shorter than functions, but still have one
common trait: they all end in a RET 1 instruction. The at-
tacker chains pointers to gadgets on the stack consecutively,
then redirects execution to the first gadget. Each gadget, at
the end of its execution, returns into the following gadget.
Figure 1 shows a high-level example of this process. A later
version of ROP, called jump-oriented programming [3], lifts
the requirement that gadgets end in a return, using a jump-
based dispatcher gadget instead.

ROP uses gadgets to implement the instructions of a vir-
tual machine (VM). The attacker writes their payload as a
program written in this virtual machine, then converts each
VM operation into the address of the equivalent gadget. The
ROP VM usually offers a significant number of useful op-

1 The encoding for RET on x86 is the C3 byte.



erations, like simple arithmetic, memory loads and stores,
and conditional jumps. In the original ROP design, the op-
erations formed a Turing-complete set; these provide an at-
tacker with a simple and effective way to perform arbitrary
computations inside the target. However, it is possible to suc-
cessfully launch an attack with even a restricted subset of
operations, without providing Turing-completeness. Often,
the attacker only needs to call some system function (like
mmap), store a payload into a memory area and then redirect
control flow to that memory region.

2.2 Software Diversity
All code reuse attacks have one trait in common: the attacker
must have knowledge of the program code itself. At present,
there are no known “blind” code reuse attacks, where the
attacker does not rely on any kind of assumptions about
program code. One practical restriction is that an attacker
can only use code from the executable sections of the pro-
gram, due to W⊕X. Therefore, one way to defend against
code reuse attacks is to prevent the attacker from gaining
any useful information about the program itself, such as the
addresses of known gadgets inside the program.

Cohen [6] proposes the following strategy to defend
against attacks:

The ultimate defense is to drive the complexity of the
ultimate attack up so high that the cost of attack is too
high to be worth performing.

Cohen proposes program evolution as a defense strategy,
where programs “evolve” into different, but semantically
equivalent versions, of the original program. He then demon-
strates several different evolution techniques, such as equiv-
alent instruction replacement, instruction reordering and
garbage insertion. As these techniques all change the pro-
gram code in different ways, by either adding new instruc-
tion or shifting the existing ones around, they have a po-
tentially large impact on both the locations and order of
instructions in the program. Since code reuse attacks require
the attacker to have exact knowledge of the contents of the
binary, performing such attacks becomes much more diffi-
cult.

Many arbitrary code execution attacks require the at-
tacker to redirect the execution of the program from its reg-
ular path to some malicious behavior under the attacker’s
control. Often, the attacker does this by overwriting some
function pointer or jump target in memory. In return-oriented
programming, for example, the attacker overwrites the re-
turn address of the current function and all following stack
locations. Often, attackers use a buffer overflow vulnerabil-
ity to overwrite these locations, by writing past the end of
a buffer stored in a function frame. Stack frame randomiza-
tion [9] is an implementation of software diversity targeted
at stack-based attacks, using variable reordering and stack
frame padding to diversify the binaries. A performance and

security analysis showed that this approach successfully pre-
vents buffer overflow attacks at negligible performance cost.

With the growing popularity of code reuse attacks, the
need arises to introduce diversity into the program’s binary
code. By preventing the attacker from having a-priori infor-
mation about the code layout of a program, we significantly
raise the cost of a code reuse attack. Recent work looks at
implementations of code layout randomization. This can be
done in several places: in the compiler (by randomizing the
code inside the compiler [12, 17]), in the operating system
loader (disassembling the program and applying diversify-
ing transformations to it; also, it can be done by replacing the
loader) [13] or in between, as a separate step [27]. These im-
plementations use techniques similar to the ones described
by Cohen and show that code layout randomization is very
effective at preventing code reuse attacks, preventing many
ROP attacks currently at large.

Modern operating systems also implement a form of code
layout randomization, called Address Space Layout Ran-
domization (ASLR). This works by randomizing the base
addresses of objects in the program, like the stack, heap,
program code and dynamic libraries. However, as this ran-
domization changes the location of most program objects,
the operating system loader must now perform a significant
number of relocations. An alternative implementation, cur-
rently used in Linux, changes the program so that it does
not require fixed locations for any of its objects; instead, the
program determines its own randomized base address at run
time, then accesses all its objects by offsets from the base
address. This approach has a performance penalty on 32-bit
x86 systems [29], so it is currently disabled for most appli-
cations. Consequently, the code section of a program is al-
ways loaded at the same address (0x8048000 on Linux),
and only libraries are loaded at random addresses.

Another weakness of ASLR is that it only diversifies the
base addresses of large program objects, such as code and
data sections. There is no diversity inside the sections. If an
attacker were to gain this base address by some information
leak, they would have all the code layout information for
a code reuse attack (assuming the attacker also possesses
their own copy of the binary). On 32-bit systems, ASLR also
suffers from lack of entropy; recent work [31, 34] shows that
ASLR can be defeated in a matter of minutes.

3. Our Approach
A NOP 2 is an instruction that the processor fetches and ex-
ecutes without any effect on the processor register or ma-
chine memory. Compilers insert NOPs in programs for var-
ious purposes: (i) to enforce aligment of basic blocks, func-
tions or other code blocks (for performance and security);
(ii) to add timing delays to code fragments (for contention
mitigation) [35]; (iii) to compensate for microarchitectural
limitations, such as those in the branch predictor [15].

2 NOP is the x86 architecture mnemonic for a “no-operation” instruction.



Data: The list IList of instructions. The probability of
insertion pNOP. NOPTable, the list of
candidate NOPs.

Result: The list IList with NOPs inserted.
begin

numNOPs← |NOPTable|
for i ∈ IList do

roll← random (0.0, 1.0)

if roll < pNOP then
nopIndex← random (0, numNOPs)

insert(i,NOPTable [nopIndex])

end
end

end
Algorithm 1: NOP insertion algorithm.

In this paper, we use randomized NOP insertion to ran-
domize the code layout of a program. At each program in-
struction, we insert a randomly chosen number of NOPs
(zero or one in our current implementation), so that all fol-
lowing instructions are displaced by a random number of
bytes. As the algorithm inserts NOPs through the program,
the displacements accumulate, so that later instructions are
pushed forward by increasingly larger amounts (Figure 2).

For every assembly instruction in the program, we decide
whether to prepend a NOP before the instruction, with prob-
ability pNOP of success. In case a NOP is inserted, we then
pick one of the NOP candidates at random. Consequently,
there are two sources of randomness in this transformation:
whether to insert and what to insert. Algorithm 1 shows the
algorithm in pseudocode.

Table 1 shows a list of eligible NOP instructions. We
picked only instruction candidates that preserve the proces-
sor state at all times (as opposed to a weaker version of NOPs
which change some minor part of processor state, e.g., an op-
eration that adds zero to a register, not affecting registers or
memory but changing the CPU flags). Second, we selected
candidates with return-oriented programming in mind, care-
fully picking those that minimize the likelihood of creating
new gadgets. In the case of the two-byte instructions, the sec-
ond byte decodes to an operand or opcode that the attacker
cannot use for nefarious purposes. For example, the IN in-
struction causes the processor to read from an input/output
port. However, IN requires the processor to be in privileged
mode to work correctly, causing unprivileged software to
fault.

Table 1 shows seven NOP instructions that can be inserted
as padding, but our implementation only uses five of them.
The two XCHG-based NOPs, while perfectly suited to our
goals, have a larger performance impact than the others. This
is because, on current implementations of the x86 architec-
ture, the XCHG instruction locks the memory bus [16]. None
of the other NOPs require this, so we use them in our inser-

Second Byte
Instruction Encoding Decoding
NOP 90 –
MOV ESP, ESP 89 E4 IN
MOV EBP, EBP 89 ED IN
LEA ESI, [ESI] 8D 36 SS:
LEA EDI, [EDI] 8D 3F AAS

XCHG ESP, ESP 87 E4 IN
XCHG EBP, EBP 87 ED IN

Table 1. NOP insertion candidate instructions.

tion pass. The two extra NOPs provide some extra diversity
in the generated code, so they can be enabled at compile-
time.

While our goal is to displace the original program instruc-
tions by random amounts, these NOPs also have another
useful side effect. The x86 architecture is highly irregular,
with instructions as short as 1 byte and as long as 20 bytes.
Therefore, inserting one or two extra bytes inside an x86
instruction can change its decoding significantly, in many
cases even changing the instruction’s length. This effect is
even more pronounced on ROP gadgets, where changing the
decoding of one instruction can cause the next one to start
at a different location. This offset propagates to the return
instruction (encoded as the C3 byte) so that the gadget no
longer ends in this instruction. This effectively removes that
gadget from the binary. Figure 2 illustrates this. NOP inser-
tion not only meets our original design goal of displacing
instructions by a random offset, but also has the added ben-
efit of removing some gadgets entirely.

3.1 Profile-Guided Diversification
The approach to NOP insertion described in Section 3 uses
the same probability for all instructions. The technique in-
serts the same expected number of NOPs inside loops and
other frequently executed parts of code as in the rest of the
program. In practice, most of a program’s execution time is
spent in a very small part of the code, usually a loop. There-
fore, it makes much sense to alter the NOP insertion strategy
for these regions, to minimize the performance impact of the
extra instructions. To change the probability of NOP inser-
tion according to the execution frequency of the current code
region, we need a source of information for that frequency.

Run-time profiling is one source of execution counts.
When optimizing using this approach, the compiler gener-
ates a special, instrumented version of the input program.
The developer then runs this instrumented version on a train-
ing set of inputs. The purpose of this run is to collect execu-
tion statistics from the training run. These statistics include
values such as execution counts for control flow edges and
histograms for variable values. The compiler later uses this
information for optimizations during a second compilation.

Most modern compilers support some form of run-time
profiling and profile-guided optimization. In every case, the
profile contains per-basic-block execution counts, or similar



Displacement of instruction 33

89 11 01

NOP 2-byte NOP NOP 89 NOP 01

Displacement of instruction 35

Program code

32 33 34 35
Before NOP

Insertion

After NOP
Insertion

32 33 34 35 56 57 58 59

C3

11 C3

MOV [ECX], EDX ADD EBX, EAX

Gadget: ADC [ECX], EAX ; RET

Gadget: Removed
60 61

Figure 2. Effect of NOP insertion on program code.

information. LLVM, for example, only inserts counters for
the minimal required subset of edges on the control flow
graph [25]. The compiler derives all basic block execution
counts from that minimal set of per-edge counters.

This approach provides accurate information on which
parts of the code are executed most frequently, assuming that
the training set is a proper sample of real-world usage of the
input program. Note that per-basic-block execution counts
are sufficient for our purpose; all instructions in a basic
block are executed the same number of times. Therefore, we
propagate basic-block execution counts to all instructions,
and use the same probability of inserting a NOP for all
instructions inside a basic block. More frequently executed
blocks will correspond to lower NOP insertion probabilities.

To achieve this, we replace the singular NOP insertion
probability with a range of probabilities. The hottest basic
blocks get the lowest value in this range, while the coldest
blocks get the highest probability. Blocks between these ex-
tremes need some probability linked to their execution fre-
quency. The simplest way to model this is a linear function:

pNOP (x) = pmax − (pmax − pmin)
x

xmax

where x is the execution count of the current basic block,
xmax is the maximum execution count in the program and
[pmin, pmax] is the probability range. The compiler uses this
function to compute the NOP insertion percentage of each
basic block.

This is a simple and effective heuristic that improves
our NOP insertion strategy. However, in practice, execution
counts of basic blocks are not distributed linearly. Not only
do loops often have large number of iterations, but inner
loops are occasionally contained in one or more outer loops.
In the latter case, the total number of iterations is the product
of the iterations of the inner and outer loops. This means that
the counts grow exponentially in the number of loops, while
the base itself can be a large number. A linear function would
simply polarize the probabilities toward either the maximum
or the minimum, since the maximum execution count has
a very large value. For example, our measurements on a
profiled run of SPEC CPU 2006 show that the maximum
execution count ranges from 14 million (for 403.gcc) to 4

billion (for 456.hmmer). Also, for many applications, the
execution counts are spread out between the minimum and
maximum count. The 473.astar benchmark is one example
of this: the median of all basic block execution counts is
117, 635, well under the maximum of 2 billion.

This means that a linear function is not an appropriate fit;
a logarithm-based function would serve our purpose much
better. The updated function for our profile-guided NOP
insertion is:

pNOP (x) = pmax − (pmax − pmin)
log (1 + x)

log (1 + xmax)

Using this function, the numerator and denominator of the
fraction become much smaller. For an xmax of 4 billion and
a logarithm base of 10, the denominator is approximately
10. Therefore, intermediate values get much smaller log-
arithms as well (in our case, logarithms range between 0
and 10). This also guarantees that counts that are smaller
than the maximum by several orders of magnitude are still
placed well inside the probability interval, not toward the
minimum. The median from 473.astar, for a probability
range of [10, 50], now gets an approximate probability of
pNOP ≈ 50− 40 ∗ 5

10 = 30% instead of pNOP ≈ 50− 40 ∗
105

1010 ≈ 50%. Therefore, using logarithms offers us a much
better distribution of probabilities inside the interval, given
the particular distribution of the execution counts gathered
from profiling.

4. Implementation
One major design choice in the implementation of NOP in-
sertion is the stage of the compilation process at which to
insert the extra instructions. Figure 3 shows the stages a
program goes through, from source code to final image in
process memory. Most modern compilers take a program as
source code, parse it into an abstract syntax tree, then flatten
that tree into an intermediate representation (IR). One such
IR is the LLVM IR used by the LLVM compilation frame-
work [21]. The compiler performs a suite of optimizations
on this IR, then lowers the IR into a lower-level represen-
tation (LR), such as the Register Transfer Language from
GCC [10]. After performing even more optimizations (such
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Figure 3. Life of a program, from source code to execution, along with possible stages where we can insert NOPs.

as register allocation), the compiler generates native code di-
rectly from the LR, into an object file. A linker later links one
or more object files together into the final program binary.
The operating system loader loads the program into memory
and executes it.

It is theoretically possible to perform NOP insertion dur-
ing any of these steps. However, each choice comes with its
particular set of disadvantages. Inserting NOPs inside native
code, either in object files or in the final program binary,
requires complete information about the locations of all pro-
gram instructions. As modern processors allow for read-only
data to be mixed with code in the same stream, accurate dis-
assembly has been proven impossible in the general case [6].
Another option is to use debug information, but that requires
the program to be compiled with such information present.
Inserting NOPs too early also presents a similar challenge:
some IR operations might be lowered to more than one na-
tive instruction, while some other operations might disap-
pear completely. Fortunately, most LR operations in a com-
piler have a one-to-one correspondence to the native code in-
structions in the object files. Therefore, our strategy is to in-
sert NOPs into the lower-level representation, after the com-
piler performs all optimizations and just before it emits na-
tive code.

Our profiling-based randomization uses execution counts
for basic blocks to tune the probability that a NOP is in-
serted. We derive the per-basic-block information from edge
execution counts generated through instrumentation. For-
tunately, LLVM currently implements a profiling frame-
work which provides instrumentation for profiling [25]. At
present, LLVM does not perform any optimizations that use
the profiling information, but such optimizations can be eas-
ily added. The profiler adds a counter to each control-flow
graph edge, and the counter is incremented at run-time each
time that path is taken during program execution. Using this
profiling framework, we implemented NOP insertion as a
new backend pass in LLVM 3.1.

5. Evaluation
We performed all our tests on a 2.66 GHz Intel Xeon 5150
with 4GiB of memory. We used Ubuntu 12.04 as the host
operating system, running Linux kernel version 3.2.0.

5.1 Performance Evaluation
To evaluate the performance impact of our technique, we
built and ran the SPEC CPU 2006 benchmark suite with
our diversifying compiler. We used the test system described
above to run the benchmarks. We compiled all tests using
the -O2 optimization level. For the profile-guided diver-
sification tests, we collected profiling information by run-
ning SPEC on the train input set.These inputs were designed
specifically to provide an accurate profile for each program.

As the NOP insertion process uses a random number gen-
erator, there is some potential noise in the measurement due
to the performance differences between different random-
ized versions. To account for this, we evaluated five different
versions of each individual benchmark. We ran each version
three times and averaged the results.

Figure 4 shows the performance impact of NOP insertion,
with and without using profiling information and for a few
combinations of probability parameters. First, we evaluated
pNOP = 50%, as this is the parameter that offers the max-
imum diversity; the number of possible versions of a pro-
gram is maximized at this value. However, smaller values of
pNOP can also provide sufficient diversity, while also less-
ening the performance impact. For this reason, we also ran
our tests with pNOP = 30%. To measure the impact of pro-
filing, we evaluated three sets of probability ranges for the
profile-guided version of NOP-insertion: pNOP = 25−50%,
pNOP = 10 − 50% and pNOP = 0 − 30%. In each range,
the first parameter is the minimum probability that a NOP is
inserted, while the second parameter is the maximum prob-
ability. We used the logarithm-based function to derive the
per-basic block probability from the execution count.

Our results confirm that profiling has a significant impact
on the performance overhead of NOP insertion. The perfor-
mance overhead is around 8% for pNOP = 50% and a little
less than 5% for pNOP = 30%, but profile-guided random-
ization reduces that to 2.5% for pNOP = 10 − 50% and
1% for pNOP = 0 − 30% (a reduction factor of 5x com-
pared to naive NOP insertion). For the benchmarks where
the NOP insertion overhead is highest (400.perlbench and
482.sphinx3), profiling also has the highest impact. For the
latter, the impact is reduced from 25% to 5% (for pNOP =
10 − 50%) or as low as 1% (for pNOP = 0 − 30%). The



470.lbm benchmark has the smallest overhead from NOP
insertion; our measurements actually showed a very small
performance gain from NOP insertion (under 0.5%), which
we attribute to measurement noise. As LLVM does not cur-
rently perform any profile-guided optimizations, the perfor-
mance gains come solely from inserting fewer NOPs in fre-
quently executed code.

Our results also show that both ends of the probability
range have an equally significant impact on the performance
overhead of NOP insertion. A side-by-side comparison of
pNOP = 10−50% and pNOP = 25−50% shows that reduc-
ing the minimum probability from 25% to 10% decreased
the average overhead by half, as Figure 4 shows.

5.2 Security Impact
We evaluated the security impact of our diversifying com-
piler by examining how it affects gadgets in diversified exe-
cutables. We measured this by counting how many function-
ally equivalent gadgets remain at the same location in the bi-
nary after diversification. Our comparison algorithm (called
Survivor) extracts the .text sections from executables af-
ter diversification and compares them to the .text sections
in unmodified original executables. Survivor scans through
the sections, looking for common instruction sequences—
candidate matches—ending in free branches such as returns,
indirect calls, or jumps. A candidate match is a pair of in-
struction sequences with identical offsets; one from the orig-
inal binary and one from the diversified one. For each can-
didate, we ensure that both sequences decompile to valid
x86 code having no control-flow instructions except a free
branch at the end. The algorithm then compensates for the
effects of our diversifying transformations by removing all
potentially inserted NOP instructions from both instruction
sequences. Since this step potentially makes the two instruc-
tion sequences more similar, our algorithm conservatively
overestimates the number of gadgets surviving diversifica-
tion. If the normalized instruction sequences are equivalent,
then the algorithm has identified the candidate as a surviving
gadget.

Using this strategy, we determined how many function-
ally equivalent gadgets exist at the same location in a pair
of executables. These two properties are a requirement for
a code reuse attack like ROP to work on multiple executa-
bles without modification. Because we used .text section
offsets and not absolute addresses, we were able to perform
our analysis in an environment where protections such as
address space layout randomization (ASLR) [28] do not in-
terfere with results.

We ran our surviving gadgets algorithm on 25 differ-
ent versions of each SPEC CPU benchmark. Table 2 shows
the results of our scans. The benchmarks are sorted by
total number of gadgets in the original binary (the Gad-
gets Baseline column). Our scans show that, as the binary
gets larger and contains more gadgets, the effectiveness of
randomization also increases. On the largest benchmark,

483.xalancbmk, which contains over half a million gad-
gets, only 0.05% of the original gadgets survive (a reduc-
tion in gadgets of around 2000×). The impact of profiling
on surviving gadgets is small, with the percentage of extra
gadgets between 1% and 30% (473.astar is an outlier, as
pNOP = 0 − 30% gains a massive 254% extra gadgets; this
is due to the large difference between pNOP = 50% and
pNOP = 30%, not from the profiling optimization itself).
However, the increase in surviving gadgets is 30% out of
0.05% of the gadgets available in the original undiversified
binary. Finally, we note that 407.lbm is very small; the un-
diversified C library assembly code is comparatively large
to the program itself, increasing the relative percentage of
surviving gadgets. This could be easily fixed in practice by
also diversifying the C library code. Overall, the absolute
impact of profiling on the number of surviving gadgets is
negligible.

In practice, it is possible that the attacker is satisfied with
successfully attacking some subset of targets. To that end,
they will try to find the largest subset of gadgets common
to as many binaries as possible, ignoring the undiversified
program. To determine how much diversity there is in the
binaries, we measured how many gadgets survive at the same
location in at least 2 (10% of the population), 5 (20%) and
12 (50%) of the 25 versions. Table 3 shows the results of our
scans.

The data provide several interesting insights. First, there
are more gadgets in total in at least two binaries than there
are in the original, undiversified binary. This is because a
gadget at offset O in the original binary can be displaced
to offset O1 in some subset of binaries and to offset O2

in another subset. Therefore, the same baseline gadget is
counted several times in the diversified population, once for
each offset. Second, adjusting pNOPhas a significant impact
on gadgets surviving in at least two binaries (for example,
for 400.perlbench, going from pNOP = 50% to pNOP =
0 − 30% increases the number of gadgets from 6, 827 to
11, 117, an increase of 62%). However, this is less significant
when looking at a larger subset of the population; although
471.omnetpp shows an increase from 113 to 390 gadgets (a
large percentual increase) surviving in at least five versions,
this is a very small increase compared to the initial number
of gadgets in the binary. Third, we observe that the number
of gadgets surviving in at least half the binaries is essentially
constant, regardless of the program size or diversification
parameters. The remaining gadgets (around 40 in total) come
from the small C library object files that the linker adds to
the binary (which we can also diversify, given their source
code).

To verify that profile-guided NOP insertion is effective
against a concrete attack, we tested our diversification on a
vulnerable application. We picked a popular network-facing
application (PHP version 5.3.16) and ran two separate ROP
gadget scanners to build ROP attacks against the undiver-
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Figure 4. SPEC CPU 2006 performance overhead of NOP insertion.

Gadgets pNOP Gadgets
Benchmark Baseline 50% 25− 50% 10− 50% 30% 0− 30% Extra% Surviving%
470.lbm 344 61.60 61.92 61.80 62.88 62.92 2% 18.29%
429.mcf 579 55.60 56.92 56.84 55.88 56.68 1% 9.79%
462.libquantum 709 52.32 52.28 52.28 52.28 52.92 1% 7.46%
401.bzip2 1191 16.00 16.24 16.24 16.36 17.40 8% 1.46%
473.astar 1362 16.64 18.56 22.24 46.20 59.04 254% 4.33%
433.milc 3149 17.16 16.92 17.28 17.16 17.44 1% 0.55%
458.sjeng 3317 15.08 16.00 16.04 17.24 17.44 15% 0.53%
456.hmmer 4535 15.56 15.60 15.84 15.84 16.20 4% 0.36%
444.namd 5322 38.48 39.12 39.60 42.72 43.24 12% 0.81%
482.sphinx3 6599 15.76 16.28 16.64 16.32 16.56 5% 0.25%
464.h264ref 16233 16.32 16.44 15.68 16.76 18.76 14% 0.12%
450.soplex 23885 23.32 23.88 24.84 25.96 24.48 4% 0.10%
447.dealII 24654 21.20 22.52 22.80 24.92 26.28 23% 0.11%
453.povray 41954 21.56 22.68 22.36 24.40 26.08 20% 0.06%
400.perlbench 43065 24.68 25.32 24.20 24.08 25.68 4% 0.06%
445.gobmk 56032 37.60 39.92 39.52 42.84 43.72 16% 0.08%
471.omnetpp 75246 45.28 47.20 48.08 49.56 59.16 30% 0.08%
403.gcc 105039 38.08 37.24 40.40 42.24 48.28 26% 0.05%
483.xalancbmk 566342 246.80 254.36 253.68 271.24 274.16 11% 0.05%

Table 2. Surviving gadgets on SPEC CPU 2006 binaries, showing the average number of surviving gadgets for each benchmark
and NOP insertion strategy. Gadgets Baseline is the number of gadgets in the undiversified binary, Extra% is the extra number
of gadgets in pNOP = 0− 30% compared to pNOP = 50% (best-to-worst comparison) and Surviving% is the ratio of gadgets
surviving diversification in pNOP = 0− 30%.

sified PHP binary. We used two publicly documented ROP
attack frameworks: ROPgadget [32] and microgadgets [14].

As a preliminary step, we verified that the undiversified
PHP binary is indeed vulnerable to both these attacks; with
both scanners, the program contained enough gadgets to
allow the attacker to execute arbitrary code. Next, we built
25 diversified versions of the PHP interpreter, using the
highest-performance, lowest-security setting: pNOP = 0 −
30%. We ran Survivor on each diversified version, then re-
ran both ROPgadget and the microgadgets scanner on the
surviving gadgets to verify the feasibility of an attack. On
all diversified versions of PHP, a ROP-based attack was no
longer possible, as the remaining gadgets did not provide the
required operations for the attack.

Since there exists no standard profiler-friendly training
input for PHP, we profiled several different PHP programs,

then built 25 diversified versions for each profile. We used
several benchmarks from the Computer Language Bench-
marks Game [11]: binarytrees, fannkuchredux, mandel-
brot, nbody, pidigits, spectralnorm and fasta. Each bench-
mark stresses different parts of the PHP interpreter (function
calls, arrays, loop operations). None of the profiles produced
any binary that we could successfully attack, using either
ROPgadget or microgadgets.

6. Discussion and Future Work
Both the naive and the profile-guided NOP insertion are
driven by probability parameters. At compile-time, the user
of the diversifying compiler chooses the parameter. This
choice presents several trade-offs. First, for software diver-
sity to be effective, a sufficient number of versions must be
available; the probability where a maximum number of ver-



pNOP%
At least 2 versions At least 5 versions At least 12 versions

Benchmark 50 25− 50 10− 50 30 0− 30 50 25− 50 10− 50 30 0− 30 50 25− 50 10− 50 30 0− 30

470.lbm 586 608 614 602 723 140 173 56 175 180 50 50 46 50 50
429.mcf 1614 1722 1563 1663 1850 79 166 155 212 196 45 45 45 45 45
462.libquantum 871 819 849 1082 1229 137 47 50 152 62 41 41 41 43 41
401.bzip2 913 1085 1195 1145 1910 46 49 43 53 150 44 42 42 42 44
473.astar 1335 1373 1551 1580 2165 48 54 62 56 100 45 44 44 41 48
433.milc 2022 2014 2358 2496 3443 44 51 48 54 65 44 42 42 44 41
458.sjeng 1502 2110 2008 2927 3593 47 48 45 55 78 41 44 44 42 42
456.hmmer 1721 1829 1898 2427 2779 44 44 45 49 50 44 44 44 44 44
444.namd 2189 2449 2524 3509 4225 77 76 71 81 87 54 64 63 64 67
482.sphinx3 2315 2521 2426 5277 4589 42 45 45 51 55 42 44 44 44 44
464.h264ref 3639 4343 5163 7138 7216 46 42 47 46 56 44 41 42 43 49
450.soplex 6652 7300 6952 10314 11013 110 138 104 142 157 44 48 42 50 49
447.dealII 5764 7647 7723 8759 10550 48 53 55 65 66 44 44 44 44 47
453.povray 9878 9658 11002 12702 13425 70 66 67 63 77 44 44 44 41 49
400.perlbench 6827 10380 7935 8361 11117 47 55 46 52 68 44 48 44 42 40
445.gobmk 10896 11974 11898 14574 17739 58 53 63 81 108 42 44 43 44 42
471.omnetpp 17156 17523 17914 60388 29870 113 106 154 419 390 48 47 47 44 48
403.gcc 16825 16572 20443 19243 25343 90 161 160 113 104 16 16 43 16 16
483.xalancbmk 76765 79688 82053 102370 109543 77 108 103 181 186 42 42 16 16 44

Table 3. Surviving gadgets on SPEC CPU 2006 binaries, on a sample of 25 different binaries. The columns show the number
of gadgets surviving in at least 2, 5 and 12 out of the 25 versions for each combination of benchmark and randomization
parameter.

sions are available is pNOP = 50%. The number of versions
decreases for both larger and smaller values of pNOP. Sec-
ond, the performance overhead is directly proportional to the
probability of NOP insertion. While profiling reduces that
overhead significantly, the developer must still choose an ap-
propriate probability range.

We implemented and evaluated NOP insertion for 32-bit
x86 microprocessors, using the available NOPs on this archi-
tecture. Essentially all instruction sets provide some flavor
of NOP instruction, so our approach could easily be ported
to other architectures. Many RISC architectures use fixed-
lengths instructions together with aligned jumps, so that it is
not possible to resume execution at arbitrary function offsets.
This restricts the set of gadgets an attacker can use, making
ROP-based attacks more complicated. However, recent work
has showed that practical ROP attacks are feasible on RISC
machines [4, 7, 19].

Compilers may implement other techniques, such as in-
struction, basic block and function reordering, basic block
shifting, register randomization and equivalent instruction
substitution. A compiler may use all these available tech-
niques to improve security, as most of them are orthogonal
and operate at different granularities. In addition, profile-
guided optimization can be used to reduce the performance
impact, by taking into account the heat of the code when
randomizing registers or reordering instructions. Also, some
techniques can be used in code sections where other tech-
niques provide less security. For example, NOP insertion
adds much less diversity at the beginning of the program
than its later parts, due to the way displacements from NOPs
accumulate over consecutive instructions. To offset this, a
compiler can also perform basic block shifting, which in-
serts a dummy basic block of random size at the beginning
of each function, or adjust its NOP insertion to add more

NOPs at the beginning. If the function jumps over the initial
basic block of NOPs, its performance impact should be min-
imal. However, its presence should prevent the attacker from
exploiting the low diversity at the beginning of the binary.

7. Related Work
Most compilers use profiling information to optimize fre-
quently used sections of code. This has the goal and effect
of increasing program performance and, in some cases, re-
ducing program size. However, there are other applications
of profiling where the interest lies in infrequently executed
code. One such application is code compression. Debray and
Evans [8] analyze the use of profiling in tandem with binary
code compression, using basic block execution frequency to
decide whether to compress particular regions of code. They
showed that focusing compression on cold code produces
significant reductions in program size.

Another use case for identifying cold code is intentional
code duplication. Recent research uses this technique to
identify computational errors due to transient faults in pro-
cessors [18]. The work by Khudia et al. duplicates values and
instructions in a program, to account for transient processor
errors. The duplicates perform the same computations as the
originals, so their results should match. At specific points in
the program, the duplicates are checked against the originals
to detect errors. The compiler uses edge profiling to reduce
number of duplicated instructions, minimizing the perfor-
mance impact of this approach. When only duplicating cold
instructions, they show a reduction of 41% in overhead from
previous techniques.

Software diversity is one strategy to defend against code
reuse attacks. Other strategies rely on detection or prevention
of such attacks during the execution of the targeted program,



or using static compile-time techniques. Detection software
runs alongside the program and attempts to detect whenever
a ROP or other code reuse attack is in progress. DROP [5]
dynamically instruments a running program to analyze the
frequency of taken returns; whenever the number of returns
taken in a short amount of time exceeds a threshold, DROP
considers a ROP attack is in progress and takes measures
against it.

DieHard [2] is an implementation of software diversity
targeted at memory errors. By randomizing the layout of the
application heap, DieHard provides probabilistic protection
against attacks like heap buffer overflows and double frees.
As memory randomization focuses on a different stage of an
attack from code randomization, the two techniques comple-
ment each other.

“Return-less kernels” [22] target ROP attacks specifically
during compilation, by reordering program instructions and
re-allocating registers so that free branch instructions (a pre-
requisite for return-oriented programming and similar code
reuse attacks) never appear inside a binary. G-Free [26],
control-flow locking [3], control-flow integrity [1] and soft-
ware fault isolation (SFI) [23, 37] take a combined compile-
and run-time approach to security. The compiler adds code
to the program that restricts the control flow to the program’s
original control flow edges, by instrumenting all branch in-
structions. While these techniques have proven effective at
defending against ROP, any inherent weakness they have can
be exploited by attackers. Also, some are specifically tar-
geted at return-oriented programming, so are unable to de-
fend against newer code reuse attacks. This incurs a mainte-
nance cost on whoever implements these techniques, as each
implementation must be updated for any new code reuse at-
tack, if at all possible.

Some of these techniques incur much larger overhead
than our profile-guided NOP insertion technique. However,
many of them rely on code insertion at specific places, just
like our approach. Therefore, it is possible that they too
might benefit from profile-guided optimization, by inserting
checks and guards selectively.

8. Conclusion
Software diversity, in the form of code layout randomiza-
tion, has a significant impact on the outcome of code reuse
attacks. Attacks against a sufficiently diverse program have
a high chance of failure. NOP insertion in particular is an ef-
fective form of code layout randomization. However, a naive
implementation suffers from a moderate performance over-
head. Selective insertion of NOPs using profiling data re-
duces this overhead by as much as 5×. NOP insertion is par-
ticularly efficient against return-oriented programming at-
tacks, reducing the number of available gadgets by a factor
as high as 2000×. The remaining gadgets are, in practice,
not sufficient for an attack. This holds true even when using
profile-guided NOP insertion. Profile-guided software diver-

sification has a minimal impact on performance, while hard-
ening programs against a code reuse attacks.
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