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ABSTRACT

The track-oriented multiple hypothesis tracker is currently the
preferred method for tracking multiple targets in clutter with
medium to high computational resources. This method main-
tains a structured representation of the track posterior distri-
bution, which it repeatedly extends and optimizes over. This
representation of the posterior admits probabilistic inference
tasks beyond MAP estimation that have yet to be explored. To
this end we formulate the posterior as a graphical model and
show that belief propagation can be used to approximate the
track marginals. These approximate marginals enable an on-
line parameter estimation scheme that improves tracker per-
formance in the presence of parameter misspecification.

Index Terms— multi-target tracking, multiple hypothesis
tracker, track-oriented, graphical model, parameter estimation

1. INTRODUCTION

Multitarget tracking is an important problem with applica-
tions spanning national defense, robotics, and consumer elec-
tronics. The general case is NP-hard, so a number of algo-
rithms have been proposed over the years, each making a dif-
ferent set of approximations to achieve tractability. The cur-
rently favored algorithm for tracking in difficult environments
with high computational resources is the track-oriented multi-
ple hypothesis tracker (TOMHT) [1]. The TOMHT operates
by maintaining a pruned set of potential tracks using a data
structure called a track tree. Each subset of these tracks corre-
sponds to a different data association hypothesis (explanation
of the observed data), and at each time step the tracker solves
a constrained optimization problem to pick out the hypothesis
that best explains the data seen thus far.

Track trees and the constraints between them define
the posterior probability distribution over tracks, and the
aforementioned optimization problem amounts to maximum
a posteriori (MAP) estimation. While trackers based solely
on MAP estimation have proven effective in a number of
real-world deployments, e.g. [2], they do not fully exploit
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the TOMHT’s representation of the posterior distribution.
Specifically, the structured representation of the posterior
admits efficient algorithms for estimating quantities such as
track marginal probabilities and the partition function, which
may be used to improve tracker performance.

The primary contributions of this paper are:

1. A formulation of the TOMHT’s track posterior distri-
bution as a factor graph.

2. Experimental results demonstrating that approximate
track marginals derived from this factor graph enable
online parameter estimation and can improve tracker
performance.

2. PROBLEM FORMULATION

Let Z ⊂ Rdz denote the region of surveillance and X ⊂ Rdx
the target state space. Targets are modeled as points x ∈ X ,
evolving in discrete time according to a dynamics function
fd(x

k+1 | xk). At each time step a target is detected with
probability pD, yielding an observation z ∈ Z distributed
according to the observation model fo(z | x). Observations
generated at a given time step k are grouped together into
a set called a scan, denoted zk, and passed as input to the
tracking algorithm. At each time step, the goal of the tracking
algorithm is to return a set of trajectories, each representing a
unique target and its motion through X , that best explains the
scans received thus far.

Birth and death events for tracks correspond to targets en-
tering or leaving the surveillance region and may occur at any
time. The number of track births at a given time step is mod-
eled as a Poisson random variable with rate λν , and initial
target states are distributed uniformly over X . Existing tracks
may die with probability pγ .

Each scan may also include observations not generated
from any target (false alarms). The number of false alarms in
each scan is modeled as being Poisson with rate λφ, and they
are assumed to be uniformly distributed throughout Z .

We assume the availability of an efficient single-target
tracking subroutine. This permits the common reduction of
multitarget tracking to the data association problem: if we



Time →

0

1

2

3

4

Z
z1,1

z1,2 z2,1

z3,1

z3,2

Scan 1 Scan 2 Scan 3

Fig. 1. A small example problem three scans of data.

can split z1:k into groups, each corresponding to a single tar-
get, then we can delegate state estimation responsibilities to
the single-target tracking module.

Figure 1 illustrates a small example that will serve to in-
troduce some terminology. The notation zk,j represents the
jth observation of scan k. Note that while the first index
(scan number) provides a meaningful temporal ordering of
the observations, the second (within-scan index) is arbitrary –
it does not contain any information regarding the identity of
the target that generated it.

Define a track to be a set of observation indices, e.g.
{(1, 2), (2, 1), (3, 2)} in the example in Figure 1. A hypothe-
sis is a set of tracks, each representing a unique target. If an
observation is not included in any of the tracks in a hypothe-
sis, it is assumed to be a false alarm. We represent hypotheses
with indicator vectors τ in which each element corresponds
to a possible track. If the ith element τi is 1, the hypothesis
includes the corresponding track. A hypothesis represents a
complete explanation of the observed data. Thus, data asso-
ciation can be formulated as an optimization problem where
the goal is to find the most likely hypothesis:

τ ∗ = argmax
τ

Pr(τ | z1:k) (1)

It is commonly assumed that each target can only give rise
to one observation per scan and that each observation is the
result of at most one target. Hypotheses that violate these
assumptions are assigned zero prior probability.

3. BACKGROUND AND PRIOR ART

3.1. Track-oriented MHT

The TOMHT was introduced as an alternative to its closely-
related predecessor, the hypothesis-oriented MHT
(HOMHT) [3]. Both approaches take a deferred-decision
approach in which they maintain the complete set of possible
data associations within a sliding window, putting off hard
decisions as long as possible. The TOMHT is unique in its
representation of potential hypotheses: it uses a data structure
called the track tree to represent hypotheses implicitly, as
opposed to the HOMHT’s explicit enumeration. This allows
the TOMHT to represent a much larger set of hypotheses.

A track tree is simply a rooted tree in which each node
corresponds to an observation and every root-leaf path rep-
resents a possible track. As new scans arrive, existing track
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Fig. 2. Track trees generated from the observations in Fig-
ure 1. To save space, trees created after scan 1 are omitted.

trees are extended to include the new observations and new
trees are created to represent possible new targets. Pseudo-
observations are included in each scan to represent missed de-
tections and track deaths. Figure 2 illustrates two of the track
trees resulting from the example data shown in Figure 1.

Kurien [1] showed that the log probability of a hypothesis
could be written, up to a constant, as a sum involving one term
for each constituent track:

log Pr(τ | z1:k) = C +

|T |∑
i=1

τisi (2)

The terms si, called track scores, lend themselves to efficient
recursive computation. Furthermore, their values specify the
optimization problem posed in (1).

3.2. Factor graphs

A factor graph [4] G is defined by a variable set V and factor
set F . Each factor fi is a non-negative, real-valued function
defined over a subset of the variables Vi. Together the factors
define a joint probability distribution: Pr(V) = 1

Z

∏
i fi(Vi),

where Z =
∑
V
∏
i fi(Vi) is a normalizing constant called

the partition function.
Numerous general-purpose approximate algorithms exist

for estimating the MAP, marginals, and partition function of
distributions written in this form. In this work we make use
of a classic algorithm for approximate marginalization called
loopy belief propagation (BP) [4]. While BP does not offer
general guarantees regarding the accuracy of its results, it has
been used with great success in many applications from error-
correcting codes [5] to computer vision [6].

4. TRACK TREES AS FACTOR GRAPHS

In Section 2 we introduced two basic assumptions: each target
produces at most one observation per scan, and each observa-
tion is the result of at most one target. We now formulate a
factor graph that explicitly encodes these assumptions as con-
straints between random variables.

The track tree factor graph G = (V,F) contains one bi-
nary variable corresponding to each track tree node. Each
vi ∈ V serves as an indicator variable for the partial track
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Fig. 3. The track tree factor graph corresponding to the track
trees in Figure 2.

terminating in its corresponding node in the track tree. If a
variable vi corresponds to a track tree leaf node, we call it a
track indicator variable. The set of such variables is denoted
by T . Every assignment to T uniquely specifies a hypothesis,
but many such hypotheses violate our assumptions. The setF
contains a collection of factors that encode our assumptions
and assign probability zero to all invalid hypotheses.

We split these constraint factors into two groups: tree con-
sistency factors and global consistency factors. Tree consis-
tency factors ensure that, for each subgraph of G represent-
ing a track tree, only the all-zero configuration and configura-
tions including a single root-leaf path of ones have non-zero
probability. To achieve this we create one factor, f ti , for each
non-leaf variable vi. Denote by vch(i) the variables that are
children of vi (borrowing the parent-child relationships from
the corresponding track tree). Then we define f ti as follows:

f ti (vi,vch(i)) =


1 : (vi = 0 and

∑
vk∈vch(i)

vk = 0)

or (vi = 1 and
∑
vk∈vch(i)

vk = 1)

0 : otherwise.

Global consistency factors assign zero probability to configu-
rations that include the same observation in more than one
selected track. Denote by vzi,j the set of variables corre-
sponding to observation zi,j . We add one global consistency
factor for each unique observation (not including the pseudo-
observations) and define them as follows:

fgi (vzi,j ) =

{
1 :

∑
vk∈vzi,j

vk ≤ 1

0 : otherwise.

Finally, we introduce a collection of score factors, fsi , to
appropriately weight the valid hypotheses. There is one score
factor for each vi ∈ T , defined as follows:

fsi (vi) =

{
esi : vi = 1
1 : vi = 0,

where si is the score for track i as defined in equation 2.
Thus, the probability mass function represented by the

factor graph may be written as

Pr(V) ∝
∏
vi /∈T

f ti (vi,vch(i))
∏
zi,j

fgzi,j (vzi,j )
∏
vi∈T

fsi (vi)

Figure 3 illustrates the factor graph resulting from the exam-
ple input of Figure 1. An instantiation of the variables will
evaluate to the exponentiated sum of the selected track scores
if it corresponds to a valid hypothesis, and zero otherwise.

5. EM FOR ONLINE PARAMETER ESTIMATION

The parameters of the dynamics model can significantly affect
tracking performance. It is often useful to be able to adjust the
parameters as data is received, either because training data are
unavailable or target behavior is expected to vary over time.

In single-target tracking, parameter estimation is often
carried out using the EM algorithm, treating the target state
as “missing data.” The same strategy applies to multitarget
tracking, with the caveat that measurement associations com-
prise additional missing data. The conditional expectations
required for EM in this context take the following form:

Pr(τ ki = 1 | z1:k)
∫
x1:k

g(·) Pr(x1:k | τ ki = 1, z1:k), (3)

where g(·) is some function of the target state variable. The
integral in this equation is the same conditional expectation
that would be required in the single-target case. Thus, param-
eter estimation hinges on being able to compute the first term:
the marginal probability of a track indicator variable.

In the HOMHT, the marginal probability of a track is com-
puted as the sum of the probabilities of all hypotheses con-
taining that track. In the TOMHT this computation is more
involved: since hypotheses are not explicitly represented, it is
not obvious how to efficiently sum over them. We propose to
approximate the required marginals using belief propagation
on the track tree factor graph. Recall that every track has a
corresponding leaf variable in the factor graph. After running
BP we can simply query the marginal of the appropriate leaf
node for an estimate of the track marginal probability.

The marginals computed by BP are not exact, so this
pseudo-EM algorithm will not monotonically increase the
likelihood. However, our experiments suggest that the quality
of the approximate marginals is sufficient for this application.

6. EXPERIMENTAL RESULTS

We conducted an empirical evaluation of the online EM al-
gorithm on a set of simulated tracking problems, a typical
example of which is illustrated in Figure 4. The data follow
linear Gaussian dynamics and observation models:

fd(x
k+1 | xk) = N (Axk, Q) fo(z | x) = N (Hx,R)

A =

[
1 1
0 1

]
Q =

[
.12 0
0 .22

]
H =

[
1 0

]
R =

[
0.252

]
In all trials we fixed the following parameters: pD = 0.95,
λφ = 1, λν = 1, pγ = 0.1. We also configured the tracker
with the true values of A, H , and R, but experimented with
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Fig. 4. A typical test problem used in our evaluation. Targets
begin at locations -5, 0, and 5, with velocities 0.5, 0, and -0.5,
respectively. True target paths are shown as dotted gray lines.
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Fig. 5. Tracking performance as a function of parameter mis-
specification. Filled and empty markers indicate performance
with and without EM, respectively. The dotted black line rep-
resents the best performance possible without online learning.

misspecifying Q to varying degrees, increasing the diagonal
elements beyond their true values. This simulates the effect of
the “cautious overestimation” one might engage in with hopes
of avoiding the catastrophic effects of an underestimate. We
consider four levels of misspecification, increasing the stan-
dard deviations by 50% of their original value each time.

To measure tracker performance we used the “OSPA for
tracks” metric [7]. This metric accounts for localization error
(distance between estimated and true target state), cardinality
error (predicting the incorrect number of targets), and labeling
error (swapping states among one or more tracks). Lower
scores are better, and in our evaluation we parameterized the
metric such that the worst possible score is 0.5.

Figure 5 plots the mean track OSPA score for three dif-
ferent tracker configurations over 100 simulated problems.
TOMHT 3-scan and TOMHT 5-scan differ only in their de-
gree of pruning, with TOMHT 5-scan being the more expen-
sive variant. HOMHT 1k is a hypothesis-oriented MHT im-
plemented for comparison purposes. The dotted black line
corresponds to a HOMHT run without online estimation but
with the capacity to maintain 100,000 hypotheses. In this ex-
ample, that serves as a reasonable approximation of the best
performance achievable without online estimation.

In all cases performance degrades as parameter misspec-
ification increases, and in all cases online estimation is able
to recover some of that lost performance. The magnitude of

0% 50% 100% 150% 200%

Increase in initial value of position and velocity noise SDs

−0.02

−0.01

0.00

0.01

E
ff

ec
t

o
f

E
M

o
n

tr
a
ck

O
S

P
A

Fig. 6. The effect of online parameter estimation on tracking
performance in each individual trial with the 5-scan TOMHT
algorithm. Negative values indicate improved performance
with online parameter estimation.

the improvement is comparable in the HOMHT and TOMHT
cases, indicating that the approximate marginals from BP are
not causing significant problems.

Figure 6 shows how the effect of EM varied among the
100 simulated problems. As expected, the benefit of parame-
ter estimation increases with the degree of misspecification.

7. CONCLUSION

The track tree factor graph is a formalization of the TOMHT’s
posterior distribution over tracks in the language of graphical
models. We demonstrated that this formulation enables ap-
proximate computation of track marginal probabilities, which
may then be used to perform online parameter estimation.
The factor graph representation also supports approximate
partition function and mixed maximization / marginalization
queries. These quantities could be useful in developing new
methods for model selection and track pruning, which is a
promising direction for future work.
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