
CBF: A Packet Filtering Method for DDoS Attack Defense

in Cloud Environment

Qi Chen, Wenmin Lin, Wanchun Dou *

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing, China

e-mail: adios737@gmail.com, linwenmin_cn@126.com,

douwc@nju.edu.cn *

Shui Yu

School of Information Technology

Deakin University

Burwood, Australia

e-mail: syu@deakin.edu.au

Abstract—Distributed Denial-of-Service attack (DDoS) is a

major threat for cloud environment. Traditional defending

approaches cannot be easily applied in cloud security due to

their relatively low efficiency, large storage, to name a few. In

view of this challenge, a Confidence-Based Filtering method,

named CBF, is investigated for cloud computing environment,

in this paper. Concretely speaking, the method is deployed by

two periods, i.e., non-attack period and attack period. More

specially, legitimate packets are collected at non-attack period,

for extracting attribute pairs to generate a nominal profile.

With the nominal profile, the CBF method is promoted by

calculating the score of a particular packet at attack period, to

determine whether to discard it or not. At last, extensive

simulations are conducted to evaluate the feasibility of the CBF

method. The result shows that CBF has a high scoring speed, a

small storage requirement and an acceptable filtering accuracy,
making it suitable for real-time filtering in cloud environment.

Keywords-Distributed Denial-of-Service Attack; Filtering;

Confidence; Correlation Pattern; Network Security; Cloud

Environment

I. INTRODUCTION

A. Current Status of Related Research

Cloud computing is a long-held dream of computing as a
utility. As discussed in [1], it has the potential to transform a
large part of the IT industry, making software even more
attractive as a service and shaping the way IT hardware is
designed and purchased. Nowadays, it is evolving as a key
computing platform for sharing resources including
infrastructure resources, software resources, application
resources and business processes [2]. However, with large
amount of resources online, these cloud systems are facing
severe security problems.

Distributed Denial-of-Service (DDoS) attack can be

considered as a major threat to cloud computing. The

attackers often compromise vulnerable hosts, called zombies,

on the network and install attack tools on them. These

zombies together form a botnet and will generate large

amout of distributed attack packets targeting at the victims

under the control of the attackers. This attack will block the
legitimate access to the servers, exhaust their resources such

as network bandwidth, computing power and even lead to

great financial losses as shown in [3].

In recent years, many researches on DDoS defense have

been carried out and many successful schemes have been

put forward. There are approximately three major branches

of the research: attack detection [4] [5] [6], attack filtering

[7] [8] [9] [10] [11] [12], and attack traceback [13] [14] [15].

As mentioned in [7], the branch of attack filtering can be

roughly categorized into three areas based on the point of

protection: source-initiated, path-based and victim-initiated.

The method proposed in this article is in victim-initiated
area, which filters incoming attack packets from victim side.

In this area of research, a number of brilliant approaches

have already been proposed.

PacketScore [7] generates value distributions of some

attributes in the TCP and IP headers, and then uses Bayes’

Theorem to score packets. PacketScore has a pretty high

filtering accuracy and it is also easy to be deployed. But

since its scoring and discarding are related to attack intensity,

it is not suitable for handling large amount of attack traffic.

Also it has some costly operations in scoring, which leads to

low process efficiency in real-time filtering.
 ALPi [8] is an improvement of PacketScore. Two

schemes LB and AV which uses leaky buckets and value

variances of attributes respectively are proposed and are

evaluated by comparison with PacketScore. Hop-Count

Filtering (HCF) [9] uses the relationship of source IP

address and TTL value to carry out filtering. After building

an IP to hop-count mapping, it can detect and discard

spoofed IP packets with about 90% accuracy. It is effective

and easy to be deployed but it is vulnerable to distributed

attacks because of its assumption about spoofed IP traffic.
Our method aims at mining the correlation patterns,

which refer to some simultaneously-appeared characteristics
in the legitimate packets. [16] [17] use the document
popularity and user browsing behaviors to detect attack
packets, which reflect some correlation patterns between
packets in a flow. But these patterns are mainly in
application layer, making these methods mostly effective for
application layer DDoS.

B. Motivation

Considering more and more resources being shared in
cloud platforms, especially in an elastic cloud environment
which could nearly provide unlimited capabilities [18], the
effect of DDoS attacks can be not only much more powerful
and influential, but also in much wider range. In view of this
challenge, this paper aims at proposing a method for cloud
security, which means to be much quicker in responding,
easier to be widely deployed and more powerful in ability
than before.

C. The Organization of the Paper

This paper is organized as follows: In Section 2, we will
introduce some basic concepts and give an overview of our
method, Confidence-Based Filtering. In the next three
sections, we focus on the details of some important parts in
the method. In Section 3, the nominal profile structure along
with a feasible storage saving strategy is discussed. In
Section 4 and 5, we talk about the score calculation details
and the discarding strategy in filtering. In Section 6, the
performance of our method under different types of DDoS
attacks are evaluated based on real world traffic. Section 7
discusses some important issues about the ability of the
method, and then Section 8 gives a brief conclusion and the
direction of future work.

II. AN OVERVIEW OF CONFIDENCE-BASED FILTERING

METHOD

A. Basic Concepts

1) Key Terms
To help illustrate our method, some key terms used in

this paper are summarized in Table I.

2) Correlation Pattern
In order to discriminate attack packets from legitimate

ones, the method proposed in this paper utilizes correlation
patterns. The concept of correlation refers to the situation
that some interior characteristics take places at the same time
in the packet flows. So the basic assumption of this method
is that there are indeed some unique correlation patterns in
legitimate packet flows. Fortunately, this assumption can be
valid in most circumstances. In user browsing behaviors,

TABLE I. KEY TERMS APPEARED IN THIS PAPER

Terms Description

n
The number of the attributes under consideration in

the method

Ai The i-th attribute in the packet, (1 ≤ i ≤ n)

mi The number of values which attribute Ai can have

ai,j The j-th value of attribute Ai, (1 ≤ j ≤ mi)

t A time interval in packet flows

Nn
The total number of packets in the packet flow in one

time interval t

N(Ai = ai,j)
The number of packets whose attribute Ai has value

ai,j in this packet flow in one time interval t

N(Ar = ar,x,

As = as,y)

The number of packets whose attribute Ar has value

ar,x, attribute As has value as,y in this packet flow in

one time interval t

p A packet in the packet flows

p(i)

The value of attribute Ai in packet p

when a person logs on a certain website, his/her focuses tend
to make up a certain pattern. For example, since the majority
of NBA fans who live in Los Angeles love the team Los
Angeles Lakers, the website of ESPN will have more packets
containing correlations between visits of Lakers webpage
and the IP addresses from the area around Los Angeles.
Considering that there are a large amount of correlation
patterns like this or even more complicate ones, it is quite
hard for attackers to notice and mimic these patterns when
carrying out DoS or DDoS attacks. Thus, using this kind of
patterns to judge the legitimacy of packets can be feasible.

In this method, we focus our probe on transport and
network layers. The correlation patterns in these two layers
are the co-appearances between attributes in IP header and
TCP header. These attribute pair patterns are distinctive
because certain characteristics of the operating system,
network structure and even hobbies of users can affect the
values of these attributes, and thus make some attribute pairs
related. In [9], the hop-count filtering constructs an IP2HC
table which maps source IP addresses to TTL values, and
filters attack packets by checking the validation of TTL
according to the source IP address. It can be seen that the key
point of its success is utilizing the correlation pattern
between TTL and source IP address. So it is reasonable to
generalize this idea to all correlation patterns between
attributes in IP header and TCP header.

3) Confidence and CBF Score
In this part, we will first introduce two concepts: the one

named confidence for measuring correlation patterns, and the
one named CBF score for judging the legitimacy of packets.
With the concept of CBF score, we will define the CBF
legitimacy of a packet.

The concept of confidence reflects how much trust we
can put on a correlation pattern between an attribute pair. In
this paper, we define it formally as follows,

Definition 1. (Confidence): Confidence is the frequency
of appearances of attributes in the packet flows. The
confidence (Conf for short) for single attributes and attribute
pairs are calculated as (1) and (2),

Confidence for single attributes:

 n

jii

jii
N

aAN
aAConf

)(
)(

,

,

(1)

, where i = 1, 2, 3, …, n, j = 1, 2, 3, …, mi,
Confidence for attribute pairs:

 n

jiijii

jiijii
N

aAaAN
aAaAConf

),(
),(222111

222111

,,

,,

(2)

, where i1 = 1, 2, 3, …, n, i2 = 1, 2, 3, …, n, j1 = 1, 2,
3, …, m1, j2= 1, 2, 3, …, m2,

In (1) and (2), the meanings of the variables are listed in
Table I.

Indicated by Def.1, the more times an attribute pair
appears in the legitimate packet flows, the higher confidence
value of this pair we can get. The concept of confidence is
the basis of the calculation of CBF score and the whole
filtering process, so we name our method Confidence-Based
Filtering, CBF for short.

With confidence values of attribute value pairs, the
legitimacy criterion of a packet is defined as follows,

Definition 2. (CBF Score): CBF score for a packet is the
weighted average of the confidence of the attribute value
pairs in it. The CBF score for a packet p is calculated as (3):

d

k

kk

d

k

kkkk

AAW

kpAkpAConfAAW

pScore

1

1

21

),(

))(),((),(

)(

21

2121

(3)

In this definition, d is the total number of the attribute

pairs involved in the calculation of score.
1kA and

2kA are

two attributes in the k-th attribute pair.),(
21 kk AAW is the

weight for the k-th attribute pair. Considering the range of
each confidence value is in [0, 1], the range of Score(p) is
also in [0, 1].

Thus, in order to calculate CBF scores of packets, we
need to prepare the confidence of each attribute value pair in
legitimate packet flow beforehand. In our method, we design
a dataset for these confidence values, named nominal profile.
The generating details of it are discussed in Section 3.

In (3), the attribute pairs which cannot be easily copied
by attackers will be given a high weight. Thus, higher score
of a packet corresponds to more frequently-appeared and
difficultly-copied correlation patterns, and thus more likely
to be legitimate. So we can choose a discarding threshold to
make the judgment of filtering. In view of this, the
legitimacy of the packets is defined as follows,

Definition 3. (CBF Legitimate Packet): The legitimate
packet in CBF is the one whose CBF score is above the
discarding threshold.

So on the contrary, those packets with scores lower than
the discarding threshold are regarded as attack ones.

B. Confidence-Based Filtering

The overall process of CBF method can be divided into
two periods: non-attack period and attack period. An outline
of our method is shown in Fig.1. The details of it will be
introduced in the following sections.

At non-attack period, the main target is to generate
nominal profile. For incoming packets, our method firstly
extracts the needed attribute value pairs from them. With (2)
in Def.1, the number of appearances of these value pairs will
be counted and their confidence values are calculated. Then
these confidence values are used to update nominal profile.

At attack period, most packets are not legitimate, so CBF
will stop generating nominal profile. Like that at non-attack
period, extracting the attribute value pairs from the incoming

packets is the first step. With these value pairs, our method
searches nominal profile for their confidence values in
legitimate flows. Then CBF score, the filtering criterion, is
calculated using (3) in Def.2. After a packet discarding
strategy is selected, CBF will judge the legitimacy of the
packet based on Def.3, and decide to let it pass or not.

III. GENERATING NOMINAL PROFILE

A. Nominal Profile Structure

In this part, we will introduce the structure of nominal
profile. Firstly, we select six candidate single attributes as
shown in Table II. Then, we combine every two (not the
same) of the six attributes and get 15 attribute pairs. After
combination, the values of attribute pair will have 32-bit
sizes since the 6 single attributes all have the sizes of no
more than 16-bit. Table III shows an example of the nominal
profile structure which contains two attribute pairs (TTL,
packet size) and (TTL, source IP address).

The overall constructing of the nominal profile is divided
into small time intervals, which are called windows. The size
of a window can be set to fixed ones or dynamic ones. In
each time interval t, our method CBF counts the number of
the value appearances of these 15 attribute pairs, and then
use Def.1 to calculate the confidence values. At the end of
each time interval, the new confidence values are used to
update the nominal profile. In order to minimize the false
negative rate, the highest confidence value of an attribute
value pair in the nominal profile is stored, which means the
updating only takes place when the new confidence value is
higher than the one stored in the nominal profile.

TABLE II. SINGLE ATTRIBUTES SELECTED FROM IP/TCP HEADER

Location Attribute Description

IP

Header

Total Length
The length of the datagram, measured in

octets, including internet header and data.

Time to Live

(TTL)

The maximum time the datagram is

allowed to remain in the internet system

Protocol Type
The next level protocol used in the data

portion of the IP datagram

Source IP

Address

The destination IP address (our method

uses the 16-bit prefixes of it)

TCP

Header

Flag

Control bits that indicate different

connection states or information about

how a packet should be handled

Destination

Port Number
The destination port number

Nominal Profile

confidence

values
attribute pairs

Nominal Profile

confidence

values
CBF score

PacketsExtract

Def.1

Def.2

Update

Look up

Non-Attack Period

Attack Period

attribute pairs
Discard or Pass

Figure 1. Outline of Confidece-Based Filtering

TABLE III. EXAMPLE OF NOMINAL PROFILE WITH TWO ATTRIBUTE

PAIRS

Attribute

value pair
TTL, packet size TTL, TCP flag

1 1
TTL=1,

packet size=1
0.1%

TTL=1,

TCP flag =1
0.01%

1 …
TTL=1,

packet size=…
…

TTL=1,

TCP flag =…
…

1 255
TTL=1,

packet size=255
1.5%

TTL=1,

TCP flag =255
1.2%

2 1
TTL=2,

packet size=1
0.1%

TTL=2,

TCP flag =1
0.05%

… … … … … …

255 255
TTL=255,

packet size=255
0.3%

TTL=255,

TCP flag =255
0.08%

B. Profile Storage Saving

In order to construct the nominal profile, CBF calculates
the confidence values of every attribute value pairs and
stores them in certain data structure. However, this may
incur storage problem. The common strategy for storing
them will use a 3-dimension array. The first dimension is for
attribute pair and has the length of 15. The second dimension
is the value set of certain attribute pair, which has 32-bit size.
The third dimension is the confidence value dimension and
the size of it depends on the precision requirement of
confidence values. If we use 32-bit for the third dimension,

the overall needed storage will be 15×232×4 bytes, which
equals to 240 Gbytes. This amount of storage cannot be
feasible in practice.

For this problem at storing step, we can use iceberg-style
profiles [21]. In this implementation, we only store the
confidence values of attribute value pairs which are higher
than a predetermined threshold, e.g., 0.001 percent. We call
this threshold minconf, which means the minimum
confidence value in the nominal profile. In this way, the size
of data needed to store is cut down shapely. With the usage
of hash functions to search and store them, this storage
problem seems to be successfully solved. However, this
cannot be the complete solution. At the counting step, we
also need the same size of storage to prepare spaces for
counting the attribute pair value appearances. The 240
Gbytes counting space will also not be affordable.
The other part of the solution is to generate confidence of
attribute value pairs by confidence of single attribute values.
If the confidence of one attribute value in an attribute value
pair is not greater than minconf, the confidence of the
combination of this value pair will still not be greater than
minconf. So we can firstly count the number of appearances
of single attribute values and calculate the confidence of
them using (1) in Def.1. Then we get the candidate attribute
value pairs from the combination of only single attribute
values whose confidence values are greater than minconf. So
at the counting step, we will only prepare storage spaces for
the candidate attribute value pairs instead of all possible ones.
So at the last step, we select the attribute value pairs in the
candidate ones whose confidence values are higher than
minconf to update the iceberg-style profile.

Table IV shows the storage requirements for 3 minutes
data in a trace recorded in WAWI Traffic Archive [19]. We

TABLE IV. PROFILE STORAGE REQUIREMENTS FOR DIFFERENT

MINCONF VALUES AT STORING AND COUNTING PERIOD

minconf

Storing Period Counting Period

Number of

confidence

values

Size of

confidence

values

(Kbyte)

Average

number of

counting

spaces

Size of

counting

spaces

(Kbyte)

0.01 177 0.691 175.393 0.685

0.001 2213 8.645 1138.607 4.448

0.0005 5242 20.477 2100.714 8.206

0.0001 54120 211.406 9080.893 35.469

0.00005 210900 823.828 15978.429 62.416

set the window size to 5 seconds and use 32-bit to store each
confidence value and each counting space. For measuring
storing period storage, we count the number of confidence
values which are actually stored in iceberg-style profile after
processing all 3 minutes data. For counting period, we
calculate the average number of needed counting spaces for
candidate attribute value pairs in each window. The result in
the table shows that even using extremely low minconf like
0.00005, the storage usage at storing period and counting
period will not exceed 1 Mbyte, which is much less than 240
Gbytes. And the storage requirement of a proper minconf
like 0.001 is around 8 Kbytes at storing period and 4.5
Kbytes at counting period, which is feasible in most cases.

This sharp cutting down in storage also indicates that the
frequently-appeared attribute value pairs only make up a
small share of all possible value pairs, thus they build up
valid patterns for filtering. As shown in Section 6, a minconf
around 0.0005 can be effective in filtering. So the core
storage size for CBF is only about 20 Kbytes, which makes it
easy to be deployed in cloud platforms.

C. Non-Attack Period Process Details

Figure 2. Details of CBF in one window at non-attack period

calculate the

confidence of single

attribute values

 calculate the

confidence of candidate

attribute value pairs;

update the profile

generate

candidate attribute

value pairs

...

Period 1

Period 2

Period 3

Period 4

Incoming

Packets

calculate the

confidence of single

attribute values

calculate the

confidence of single

attribute values

calculate the

confidence of single

attribute values

generate

candidate attribute

value pairs

generate

candidate attribute

value pairs

 calculate the

confidence of candidate

attribute value pairs;

update the profile

Figure 3. Pipeline implementation time line for CBF at non-attack period

Step 1: Count the number of appearances of single attribute values

and then calculate the confidence of them;

Step 2: Select the single attribute values with confidence higher

than minconf to generate the candidate attribute value pairs;

Step 3: Scan the packet flow for the second time to count the

number of appearances of the candidate attribute value pairs and

calculate their confidence; Then use the confidence values which

are higher than minconf to update the nominal profile;

TTL IP protocol conf

2 17 0.02

3 6 0.008

… … …

29 17 0.07

30 17 0.06

IP protocol TCP flag conf

1 2 0.003

1 3 0.05

… … …

6 2 0.1

.. … …

TTL TCP flag conf

2 2 0.03

2 6 0.002

… … …

30 2 0.09

.. … …

Not found,

use minconf 0.0005 instead

Weighted

Average CBF ScoreIncoming

Packet

Nominal Profile

Nominal Profile

Nominal

Profile

A1

TTL=30

A2

IP protocol = 6 (TCP)

A3

TCP flag =2 (SYN)

Figure 4. Example of the scoring process in CBF

Based on the solution of storage saving, a more specified

process at non-attack period during one time window is

described in Fig.2.

This is a 3-pass process and it can be largely accelerated
if being carried out in parallel. As shown in Fig.3, the single

attribute value counting, the candidate attribute value pair

generating and the second time scanning can be put in a

pipeline implementation, which will make CBF more

suitable for real-time filtering and cloud computing.

IV. CALCULATING CBF SCORE

Indicated in Fig.1, in attack period CBF will firstly look

up the nominal profile for the confidence values

corresponding to the attribute value pairs in the current

packets and then calculate the scores for them. In most cases,

the confidence values of frequently-appeared attribute value

pairs will be found in nominal profile successfully. But
considering that we use iceberg-style profile, the confidence

of some rarely-appeared attribute value pairs will be absent.

In this case, we will use minconf value instead when these

confidence values are required in score calculation.

The adjustments of the attribute pair weights will take

into consideration the unique characteristics of the operating

system, the network structure and many other elements. The

general idea is to make more outstanding the correlation

patterns which are less possible to be copied by attackers

and more related to the inherent features of the server. For

example, when under a denial-of-service attack, the source
IP address in a packet is spoofed in most cases. So we can

give the attribute pairs including source IP address a higher

weight. On the other hand, we can give the attribute pairs

including protocol type or TCP flag a lower weight because

the ranges of their values are limited, thus it is easy for

attackers to guess.

Fig.4 gives an example of the scoring process. In this

figure, we assume that only 3 single attributes are involved

in CBF filtering, which are TTL, IP protocol and TCP flag

respectively. The scoring process starts from looking up the

confidence of attribute value pairs in nominal profile.
Because of the iceberg-style storing, we cannot find the

confidence of the value pair in which TTL is 30 and IP

protocol is 6. So we use minconf to represent its possible

confidence value. Then a weighted average calculation is

carried out with these confidence values to generate the
CBF score for this incoming packet. If the weights for (TTL,

IP protocol), (IP protocol, TCP flag) and (TTL, TCP flag)

are 5, 1 and 3, the CBF score for the packet in the example

is given by

0414.0
)315(

)09.031.010005.05(

.
The scoring part of CBF only requires a few looking-ups

in nominal profile and some arithmetic operations. The

asymptotic time complexity of CBF at this period is in O(1),

so it will be fast enough even if large amount of packets

burst in when under denial-of-service attack.

V. DISCARDING STRATEGY

After the CBF scores of packets are generated, we will

use them to distinguish attack packets from legitimate ones.

According to Def.3, CBF will only accept the packets with
scores greater than the discarding threshold. Thus for the

example in Fig.4, if the discarding threshold is 0.03, the

packet will be judged legitimate. On the other hand, if it is

0.05, the packet will be an attack one.

The discarding threshold can be fixed based on the CBF

score distribution of legitimate packets. According to Def.2,

the CBF score is independent from the utilization of the

victim, so the fixed discarding threshold is feasible if the

distribution of the scores is known. And the processing

speed will be very high with a fixed discarding threshold.

Also dynamic discarding threshold can be adopted. Like
the load-shedding algorithm used in [20], we can use current

utilization of the victim and the maximum utilization to

generate the amount (Φ) of suspicious traffic that needs to

be discarded. We can generate the cumulative distribution

function (CDF) of the scores in current time window and

decide the discarding threshold using Φ. However, this may

incur the additional scores counting and CDF computing,

which will be slightly slower than a fixed one.

VI. PERFORMANCE EVALUATION

In this section, we will use real world statistics to test the
filtering method CBF. The data in the MAWI Traffic

Archive [19] is adopted and the test environment is a 2.26

GHz Intel Core 2 Duo processor with 2 Gbytes Memory.

The simulation programs were written in C++. We will

firstly introduce the simulation conditions including the data

source, the parameter selection for the method and different

attack types. The result is shown and analyzed by taking

into consideration of the comparison with PacketScore [7].

A. Simulation Conditions

1) Data
We select the data from MAWI Working Group Traffic

Archive [19]. The part of data used in this section is

collected from 14:00:00 to 14:15:00 on Jan 1, 2006. There

are about 6587564 packets (2395.28Mbytes) contained in

this data set and the average rate is 22.33Mbps. Every

second, the data set has around 6000 to 7000 packets.

2) Parameters
The window size is set to 5 seconds, and the value of

minconf is set to 0.005. Under this circumstance, the storage

will be around 20 Kbytes at storing period and 8 Kbytes at
counting period, which is affordable in normal servers. Our

method spends around 0.4 seconds to process data during

each time window. We believe this time can be minimized

sharply after using pipeline implementations shown in Fig.3

and optimizations of the programs.

The weights in score calculation are set higher in the

attribute pairs containing source IP address, TCP server port

number or TTL value, and set lower in those only with TCP

flag, IP protocol type and packet size. For the fast response

at attack period, fixed discarding threshold is adopted.

In the comparison with PacketScore, the window size of
PacketScore is set to 5 seconds and the threshold for

iceberg-style profile is 0.01. In our implementation, after

discarding percentage is selected by a load-shedding

algorithm [20], CDF is used to calculate the discarding

threshold of the score. We use the same six single attributes

shown in Table II like those in CBF to carry out

PacketScore filtering.

3) Attack Types
In this evaluation, we simulate the following types of

attacks:

a) Generic attack
All attributes in the attack packets are selected randomly

in their allowable ranges.

b) TCP-SYN Flood attack
The TCP SYN flag is set in each attack packets and the

packet lengths of them are set to be 40. Other attributes are

selected randomly.

c) SQL Slammer Worm attack
The IP protocol type is UDP, the destination port is set to

1434 and the packet size is between 371 to 400 bytes. Other

attributes are selected randomly.

d) Nominal attack
Every attributes in the packets are selected randomly in

smaller value ranges, which contain the most frequently-

appeared values of this attribute at non-attack period. This

attack supposes that the attackers know the value

distributions of the single attributes and mimic it to carry

out attack.

e) Mixed attack
In this attack, the attack type of each packet will be

selected randomly from the four types above.

The score calculating and packet discarding of CBF are

not affected by the intensity of the attack and the changing

frequency of the attack types. Thus in this evaluation, we
will not largely focus the tests of CBF on changing the type

and intensity of attacks like [7] and [8].

B. Simulation Result and Analysis

Fig.5 (a) shows the score distribution of generic attack

and the legitimate flow using more than 100,000 packets

data. To avoid the trouble with decimal scores, we multiply
the original CBF scores with 10,000 when shown in the

graph. Since the legitimate attribute pair patterns cannot be

easily copied, most generic attack packets only have scores

which consists of basic confidence minconf, 0.0005. For

legitimate packets, high scores around 20 to 100 take place

because they have more frequently-appeared attribute value

pairs. Fig.5 (b) shows the cumulative distribution function

(CDF) of the CBF scores of nominal attack and the

legitimate flow (generic attack is not chosen here because its

CDF curve is too steep to see a clear distribution). It

illustrates more clearly that the majority of attack packets
are concentrated in the low-score region.

To evaluate CBF in a more quantified way, we will test its

performances of false positive (FP) rate and false negative

(FN) rate when filtering. CBF and the classic scheme

PacketScore are both filtering methods, both use attributes

in TCP and IP headers to build nominal profile and both

score packets to distinguish attack ones from legitimate ones.

So we pick up it to make comparison when analyzing the

ability of CBF.

Table V shows the result of their performances. The

discarding threshold values for discarding in CBF are
chosen to make the best performance among all possible

ones. Since the CBF scores are not affected by attack

intensity, the FP and FN rates are almost the same when

there are 5 times and 10 times amount of attack packets than

normal.
In most cases, these two methods share similar filtering

abilities. In generic attack, CBF has a lower false positive
rate because it is quite hard to generate the accurate attribute
value pairs in random approach. In false negative rate,
PacketScore has a better performance in SQL slammer worm
attack but a worse one in mixed attack.

 (a) (b)

Figure 5. CBF score distribution of attack flow and legitimate flow

TABLE V. THE PERFORMANCE OF CBF AND PACKETSCORE UNDER

DIFFERENT ATTACK TYPES

Attack

type

Attack

Intensity

False Positive

Rate(%)

False Negative

Rate(%)

CBF PacketScore CBF PacketScore

Generic
5× 0.513 3.266 0.695 0.0173

10× 0.516 1.729 0.692 0.0432

TCP-

SYN

Flood

5× 7.701 3.571 7.775 1.249

10× 7.703 1.956 7.770 1.542

SQL

Slammer

Worm

5× 1.521 3.473 3.883 0.000

10× 1.524 1.988 3.881 0.000

Nominal
5× 5.229 5.032 6.925 9.519

10× 5.234 2.929 6.915 13.462

Mixed
5× 4.564 4.771 6.524 7.601

10× 4.565 2.653 6.524 9.543

In TCP-SYN flood, the performance of CBF has some
degradation. It results from the situation that the TCP-SYN
packets may be also frequent in legitimate time. But the
approximate 7.7 percent false positive rate and false negative
rate can also be considered as an effective filtering in
practice.

PacketScore has a worse performance in false negative
rate in nominal attack compared to our method. This is
because we assume the attackers have the information of the
single attribute value distributions in this attack. For CBF, its
filtering can be ineffective if the attackers find the correlation
patterns of the attribute pairs, but these data are quite
impossible to be fully collected in practice.

At attack period, CBF are quite faster than PacketScore
due to the simplicity of score calculation. Table VI shows the
process time in one time window (5 seconds) at attack period

TABLE VI. THE COMPARISON OF CBF AND PACKETSCORE IN PROCESS

TIME AT ATTACK PERIOD

Attack

Intensity

Process Time in 1 Time Window (second)

CBF PacketScore

1× 0.332 0.495

5× 1.073 1.432

10× 1.919 2.564

20× 3.661 4.895

for CBF and PacketScore. Since CBF has no concept of

time window at attack period, we measure the time that CBF

processes the same amount of packets as those in a 5 second

window of PacketScore instead. Due to the limitation of our

experiment environment, we believe that the process time in

the table for both methods can be reduced largely by

optimizations and hardware supports.

Since the discarding period of PacketScore requires

packet counting and CDF calculating, its process time in the
table under all attack intensity conditions is higher than that

of CBF, which only need a few looking-ups to generate

score. For CBF, the most costly operation is to search the

confidence values in nominal profile, so it can still be faster

if a better hash function is adopted.

VII. DISCUSSION

CBF utilizes the attribute value pairs in TCP and IP

headers to construct correlation patterns. In Section 6, these

patterns are tested to be effective in distinguishing attack

packets from legitimate ones under different types of denial-

of-service attack. As shown in evaluation results, the most
outstanding advantages of CBF are its high efficiency at

attack period and small storage requirements for nominal

profile. These features make CBF powerful especially in

attacks with extremely large amount of traffic. In filtering

ability, CBF does not have a strictly high accuracy

compared to the previous researches. But the FP and FN

rates at present are no more than 8 percent, which has

already been acceptable in most cases.

Indeed, CBF can be ineffective if the attack packet flows

mimic the correlation patterns of legitimate flows. However,

in order to carry out large quantities of packets as fast as

possible, even finding out the value distribution of single
attributes will be too costly for the attacker. Thus the case

that attackers have the complete attribute pair distributions

will not be quite possible in practice. The situation that the

single attribute value distribution is known by attackers is

simulated in nominal attack in Section 6 and CBF takes on a

good performance by maintaining FP and FN rates around 5

to 6 percent.

In the situation that a distributed attack is carried out, all

the source IP addresses will not be spoofed in the attack

flow. But CBF can still successfully defeat this attack

because the ability of CBF depends on the co-appearance of
two attributes. That means even if the source IP address is

authentic, the attack packets need to have the right attribute

which frequently appears along with that source IP address

as well. Considering the difficulty of that, CBF will also be

quite effective when dealing with distributed attacks.

Flash crowds are the situations that a large number of

legitimate customers happen to visit a server at the same

time period. For CBF, it will not confuse flash crowds with

denial-of-service attack. Since the filtering of CBF will not

be affected by the number of packets, the packets sent by

legitimate customers will have the frequent correlation

patterns as usual. Thus these packets will also get a high
CBF score to avoid being blocked.

VIII. CONCLUSION AND FUTURE WORK

The key concept of CBF is correlation pattern, which is

the co-appearance of attribute pairs in our implementation.

We introduced confidence to represent the distribution of

attribute value pairs and then devised a feasible approach to

generating the nominal profile in order to store these

confidence values. With the nominal profile, CBF can

calculate scores for incoming packets at attack period to

conduct filtering. Since the confidence reflects the

frequency of appearances of the attribute value pairs,
packets with more attribute value pairs of higher confidence

will get higher score, which means more legitimate in this

method. As shown in Section 3 and Section 6, CBF has a

small storage size, an acceptable filtering accuracy, and a

high scoring speed, which together make it a practical

DDoS defending method in cloud platforms.

In the future, a more flexible discarding strategy to set the

discarding threshold is required. The candidate one should

not be so time-consuming that CBF loses its advantage of

fast response at attack period. Also we will work on a more

theoretical way of choosing the weights for each attribute

pairs in CBF score calculation. The ideal strategy is
adjusting the weights automatically based on the condition

of the network. Finally, some optimizations and a better

hash algorithm should be adopted to further accelerate the

speed and the filtering accuracy of CBF.

ACKNOWLEGEMENTS

The authors would like to express their thanks to the

numerous valuable help given by Y. Sun, D.-C. Zhan, and

many other friends and professors. This paper is partly

supported by the National Science Foundation of China

under Grant No. 61021062, 61073032 and 60736015, and

Jiangsu Provincial NSF Project under Grants BK2008017.

REFERENCES

[1] M. Armbrust et al., “A View of Cloud Computing,” Communications
of the ACM, vol. 53, no. 4, pp.50-58, 2010.

[2] L. Zhang, and Q. Zhou, “CCOA: Cloud Computing Open
Architecture,” Proceedings of the IEEE International Conference on

Web Services, pp.607-616, 2009.

[3] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of Network-
Based Defense Mechanisms Countering the DoS and DDoS

Problems,” ACM Computing Surveys, vol. 39, no. 1, p.3, 2007.

[4] A. Chonka, J. Singh, and W. Zhou, “Chaos Theory Based Detection
against Network Mimicking DDoS Attacks,” IEEE Comm. Letters,

vol. 13, no. 9, pp.717-719, 2009.

[5] Y. Xiang, K. Li, and W. Zhou, “Low-Rate DDoS Attacks Detection
and Traceback by Using New Information Metrics,” IEEE Trans.

Information Forensics and Security, vol. 6, no. 2, pp.426-437, 2011

[6] H. Liu, and M.S. Kim, “Real-Time Detection of Stealthy DDoS
Attacks Using Time-Series Decomposition,” Communications (ICC),

2010 IEEE International Conference, 2010.

[7] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao, “PacketScore: A
Statistics-Based Packet Filtering Scheme against Distributed Denial-

of-Service Attacks,” IEEE Trans. Dependable and Secure Computing,
vol. 3, no. 2, pp.141-155, 2006.

[8] P.E. Ayres, H. Sun, H. J. Chao, and W. C. Lau, “ALPi: A DDoS
Defense System for High-Speed Networks,” IEEE J. Selected Areas

Comm., vol. 24, no. 10, pp.1864-1876, 2006.

[9] H. Wang, C. Jin, and K.G. Shin, “Defense against Spoofed IP Traffic
Using Hop-Count Filtering,” IEEE/ACM Trans. Networking, vol. 15,

no. 1, pp.40-53, 2007.

[10] P. Du, and A. Nakao, “DDoS Defense Deployment with Network
Egress and Ingress Filtering,” Communications (ICC), 2010 IEEE

International Conference, 2010.

[11] Z. Duan, X. Yuan, and J. Chandrashekar, “Controlling IP Spoofing
through Interdomain Packet Filters,” IEEE Trans. Dependable and

Secure Computing, vol. 5, no. 1, pp. 22-36, 2007.

[12] F. Soldo, A. Markopoulou, and K. Argyraki, “Optimal Filtering of
Source Address Prefixes: Models and Algorithms,” Proc. IEEE

INFOCOM, 2009.

[13] M.T. Goodrich, “Probabilistic Packet Marking for Large-Scale IP
Traceback,” IEEE/ACM Trans. Networking, vol. 16, no. 1, pp.15-24,

2008.

[14] Y. Xiang, W. Zhou, and M. Guo, “Flexible Deterministic Packet

Marking: An IP Traceback System to Find the Real Source of
Attacks,” IEEE Trans. Parallel and Distributed Systems, vol. 20, no. 4,

pp.567-580, 2009.

[15] S. Yu, W. Zhou, R. Doss, and W. Jia, “Traceback of DDoS Attacks
Using Entropy Variations,” IEEE Trans. Parallel and Distributed

Systems, vol. 22, no. 3, pp.412-425, 2011.

[16] Y. Xie, and S. Yu, “Monitoring the Application-Layer DDoS Attacks
for Popular Websites,” IEEE/ACM Trans. Networking, vol. 17, no. 1,

pp.15-25, 2009.

[17] Y. Xie, and S. Yu, “A Large-Scale Hidden Semi-Markov Model for
Anomaly Detection on User Browsing Behaviors,” IEEE/ACM Trans.

Networking, vol. 17, no. 1, pp.54-65, 2009.

[18] W. Dou, L. Qi, X. Zhang, J. Chen, “An Evaluation Method of
Outsourcing Services for Developing an Elastic Cloud Platform”,

Journal of Supercomputing, (published online, DOI: 10.1007/s11227-
010-0491-2), 2010.

[19] MAWI Traffic Archive, [Online]. Available:

http://tracer.csl.sony.co.jp/mawi/

[20] S. Kasera et al., “Fast and Robust Signaling Overload Control,” Proc.

Int’l Conf. Network Protocols, 2001

[21] B. Babcock et al., “Models and Issues in DataStream Systems,” ACM
Symp. Principles of Database Systems, 2002.

