
Open Doors for Bob and Mallory: Open Port Usage in

Android Apps and Security Implications

Yunhan Jack Jia, Qi Alfred Chen, Yikai Lin, Chao Kong, Z. Morley Mao

University of Michigan

{jackjia, alfchen, yklin, chaokong, zmao}@umich.edu

Abstract—Open ports are typically used by server software

to serve remote clients, and the usage historically leads to

remote exploitation due to insufficient protection. Smartphone

operating systems inherit the open port support, but since they

are significantly different from traditional server machines in

performance and availability guarantees, little is known about

how smartphone applications use open ports and what the

security implications are. In this paper, we perform the first

systematic study of open port usage on mobile platform and

their security implications. To achieve this goal, we design

and implement OPAnalyzer, a static analysis tool which can

effectively identify and characterize vulnerable open port usage

in Android applications.

Using OPAnalyzer, we perform extensive usage and vul-

nerability analysis on a dataset with over 100K Android

applications. OPAnalyzer successfully classifies 99% of the

mobile usage of open ports into 5 distinct families, and from

the output, we are able to identify several mobile-specific

usage scenarios such as data sharing in physical proximity.

In our subsequent vulnerability analysis, we find that nearly

half of the usage is unprotected and can be directly exploited

remotely. From the identified vulnerable usage, we discover

410 vulnerable applications with 956 potential exploits in total.

We manually confirmed the vulnerabilities for 57 applications,

including popular ones with 10 to 50 million downloads on

the official market, and also an app that is pre-installed on

some device models. These vulnerabilities can be exploited to

cause highly-severe damage such as remotely stealing contacts,

photos, and even security credentials, and also performing

sensitive actions such as malware installation and malicious

code execution. We have reported these vulnerabilities and

already got acknowledged by the application developers for

some of them. We also propose countermeasures and improved

practices for each usage scenario.

1. Introduction

An open port (or a listening port) is a communication
endpoint for accepting incoming connections in computer
networking model, typically used by server applications to
handle requests from remote clients. However, these ports
can also be connected by malicious clients if not carefully
protected, exposing potential vulnerability in the server soft-
ware to remote exploitation. Such inherent weakness has

always accompanied the usage of open ports throughout the
history of network services, opening doors for large num-
bers of severe Internet attacks such as TCP SYN flooding
attacks [27], the Conficker worm [14], and more recently
the Heartbleed bug [9]. To mitigate the problem in these
traditional usage scenarios, firewalls and user authentication
mechanisms are usually adopted.

In the recent evolution to the mobile era, smartphone
operating systems inherit the support for open port. But for
smartphone applications (apps), traditional open port use
cases such as hosting network services no longer apply.
One major reason is that compared to stationary server
machines with wired network connectivity, the mobility
nature of smartphones makes it difficult to maintain a stable
IP address. Moreover, the IPs assigned to mobile devices
are often behind a NAT (network address translation) pre-
venting incoming network connections. Also, continuously
receiving network traffic can easily drain the battery of a
mobile device, leading to a form of denial-of-service (DoS)
attack [49]. Due to these inherent differences, our current
understanding about smartphone usage of open ports are
rather limited.

With the immense popularity of smartphones, any po-
tential smartphone open port usage may directly expose end
users to severe damage. Several such examples have already
been reported recently, called “Wormhole” apps [12], where
open ports in popular Android apps allow an attacker to
remotely collect location data, insert contacts, and even
install app without authorization, and over 100M devices
are affected. While these exploits are alarming, it is still
unclear whether these vulnerabilities are exposed by popular
use cases of open ports in the smartphone ecosystem, or just
by poor implementation practices.

In this work, we perform the first systematic study of
open port usage and the security implications on mobile
platform. To achieve this goal, we design and implement
a tool called OPAnalyzer, which can effectively identify
and characterize vulnerable open port usage in Android
apps. To use OPAnalyzer, we first formalize open port app
design pattern in the language of program analysis, which
in high level specifies what sensitive functions are triggered
from open ports, and how they are triggered. With these
definitions, OPAnalyzer first uses static taint analysis to
track the information flow from the remote input entry point,
and identifies the sensitive functionalities that can potentially

be triggered. After this step, a set of usage paths of the
open port are generated, which will lead to remote exploits
if not well protected. To help prioritize human inspection,
OPAnalyzer examines the security checks along the usage
paths guarding the sensitive functionality. If the execution
of a given path is found to have no constraints or contains
only weak checks, a potential remote exploit is directly
revealed (§4.4). OPAnalyzer also dynamically tests whether
the vulnerable port is open by default, and labels the weak
paths as highly insecure if the corresponding port opens
automatically at app launching time. For high precision,
our design leverages the Amandroid approach [46], which
supports flow-, context-sensitive data-flow analysis.

To ensure high effectiveness, we overcome several en-
gineering challenges in the tool implementation. First, our
analysis needs accurate identification of the permission-
protected APIs, but the API to permission mappings pro-
vided by the most recent work, PScout [21], are incomplete
for our purpose since it does not consider the prerequisites
of the API usage. To address this limitation, we improve
PScout to automatically fix some common missing cases
(§4.3). Second, we find that Java reflection is commonly
used to handle remote input from open ports, which is
not resolved by many static taint analysis tools such as
Amandroid. To ensure the call graph completeness, we
add an extra analysis to locate the target class or method,
which successfully resolves over 86% Java reflection use
cases in our app dataset (§4.4). Third, we find that many
apps actually implement open port usage in native code,
which cannot be captured by Java-layer static analysis alone.
Therefore, our tool also includes native code support based
on binary analysis techniques, which is commonly excluded
in nearly all existing static analysis tools on Android apps
due to high engineering efforts [20], [33], [34], [46](§4.2).

Using OPAnalyzer, we perform an open port usage
analysis on 24K popular Android apps from Google Play,
and successfully classify 99% of the usage paths into 5
categories: data sharing, proxy, remote execution, VoIP call,
and PhoneGap (§5.2). We also find that significantly dif-
ferent from traditional usage, ports in some categories were
mostly intended only for clients in physical proximity of the
smartphone, or even on the same device.

Among these open port usage families, many are found
to directly enable a number of serious remote exploits if
not well protected. More specifically, we use OPAnalyzer
to examine the security checks along the identified usage
paths, and find that they generally lack sufficient protection:
for the most popular usage, data sharing, over half of the
paths can be easily triggered by any remote attacker, and in
some usage categories such as proxy, over 80% of the paths
are not protected. From OPAnalyzer output, we uncover
410 vulnerable applications with 956 potential exploits in
total, and manually confirm 57 vulnerable apps that have
not been previously reported, including popular ones on
the market and even a pre-installed app on some device
models. These newly-discovered exploits can lead to a large
number of severe security and privacy breaches. for example
remotely stealing sensitive data such contacts, photos, and

even security credentials and performing malicious actions
such as executing arbitrary code and installing malware re-
motely (§6). To get an initial estimate on the impact of these
vulnerabilities in the wild, we performed a port scanning in
our campus network, and immediately found a number of
mobile devices in 2 minutes which were potentially using
these vulnerable apps. we have reported these vulnerabilities
to the relevant parties through vulnerability tracking systems
including CVE [5] and CERT [16], and some of them have
been acknowledged (e.g., CVE-2016-5227, VR-176). We
encourage readers to view several short attack video demos
at https://sites.google.com/site/openportsec/ [11].

Leveraging the insights from these analysis, we further
categorize the vulnerable apps based on their intentions of
open port, and discuss defense strategies depending on the
unique characteristics in each category (§7). Specifically,
for the physical proximity usage, which does not have any
effective and usable protection yet, we propose a transparent
socket-level solution that allows users to conveniently verify
a connection from a device nearby and can be easily adopted
by app developers.

We summarize the key contributions of this paper:
• We formalize open port app design pattern, and

develop OPAnalyzer to systematically characterize open port
usage in Android apps and detect exposed vulnerability. To
ensure high accuracy, we tackle several challenges, e.g.,

improving the API to permission mapping completeness,
resolving Java reflection, and enabling native code analysis.

• Using our tool, we perform the first systematic
study of open port usage and their security implications
on mobile platform. We are able to classify 99% of the
identified usage into 5 distinct usage families, and discover
some mobile-specific scenarios. We find that nearly half of
these usage paths have no protection implemented, which
can directly be triggered by remote attackers to leak sensitive
information and perform high-privileged actions.

• We perform an in-depth analysis on the vulnerable
open port usage, and construct real exploits to validate the
threats. From the results, we manually confirmed 57 new
vulnerable apps containing popular ones on the market and
also a pre-installed app on some device models, which can
be used to remotely steal sensitive user data such as photos,
security credentials, and perform malicious actions such as
executing arbitrary code and installing malware. We also
suggest countermeasures and improved practices to mitigate
these problems in each intended open port usage scenario.

2. Background and Threat Model

In this paper, we broadly define mobile apps with open
TCP or UDP ports as open port apps. And two types of
open port apps are covered by our study. (1) Mobile service

app provides useful functionality such as sharing files on the
handset by opening a file server to be connected by user’s
desktop. (2) Malicious open-port apps intentionally open
ports to carry out malicious activities such as receiving com-
mands from remote attackers for data theft or device control.
Our study does not focus on malware detection, since it’s

2

https://sites.google.com/site/openportsec/

very hard to distinguish malicious and legitimate open port
usage without having a comprehensive understanding of
the designed functionality of each app. Instead, we focus
on identifying problematic usage (including both malicious
and legitimate) that exposes vulnerabilities to attacker and
affects the well-being of the user.

Threat model. The threat to an app with open ports
comes from the attackers with the ability to reach these
ports. In the design of popular smartphone operating systems
such as Android, ports are reachable from both the same
device, e.g., another app or a script on the web page, and an-
other host in the same network with the victim device. Thus,
compared to the majority of previously-reported smartphone
app vulnerabilities that only consider the threat from on-
device malware [20], [28], [30], [50], [51], open port apps
additionally face threats from network attackers, e.g., local
network attacks, and web attackers, e.g., malicious scripts,
which is much more diverse and also of wider range. More
specifically, in this paper we consider the following three

adversary types:
(1) Malware on the same device. A malicious

app, or malware, installed by the smartphone
user can use netstat command or proc file
/proc/<pid>/net/tcp to find the listening ports
on the same device and send exploitation traffic.

(2) Local network attacker. For victims behind NAT
or using private WiFi networks, attackers sharing the same
local network can use ARP scanning [4] to find reachable
smartphone IP addresses at first, and then launch targeted
port scanning to discover vulnerable open ports.

(3) Malicious scripts on the web. When a victim user
visits an attacker-controlled website using their mobile de-
vice, malicious scripts running in the handset’s browser can
exploit the vulnerable open ports on the device by sending
network requests, which doesn’t require any permission.

For each of these three threat models, we have prepared
short attack video demos on our website [11] to help readers
more concretely understand their practicality.

Scope and assumptions. Our study focuses on TCP
ports, which are most commonly used. We did not study
UDP ports, but we argue that our methodology can be easily
adapted for it. Our tool is expected to handle obfuscated
Android apps as long as they can be disassembled. In the
current implementation, our tool only fails to analyze very
few samples (0.6% of apps in our dataset); for them, even
the disassembling process cannot succeed.

3. Design Pattern of Open Port Apps

Figure 1 shows a simple example Android app that
opens a port for accepting remote command to push no-
tifications on the user’s device. The app first creates a
ServerSocket to listen on a TCP port. Once a client
connects to the port, the app reads the remote input from
the socket and serves the request. In this example, the
app checks whether the remote input contains the “PUSH”
command, and if so, it starts pushing the messages contained
in the remote input to device’s notification bar.

ServerSocket ss =

 new ServerSocket(port)

//Bind to a TCP port

Socket s = ss.accept()

//Accept an incoming socket

input = s.getInputStream()

//read remote input

if (input[0] == “PUSH”)

//Check remote input

{

 Push_Notification(input[1])

//API being triggered

}

Remote Input

Sensitive
Functionality

Constraints

Entity Dependency

Data
dependency

Control
dependency

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 1: Design pattern of open port Android app

We generalize the logic of Android apps with open ports
as the design pattern shown on the right side of Figure 1,
consisting of three different entities and the dependency
relationship among them.

Remote entry point is defined as the content passed
to the open port app from the incoming sockets. And it
serves as the entry point in our analysis framework (§4.1).
Security mechanisms such as authentication token can be
used to authorize the remote access to the app.

Sensitive functionality refers to the sensitive API set
that can be triggered by remote input. The sensitive API
set defined in this work contains (1) APIs protected by the
Android permission system e.g., sendTextMessage()
protected by SEND_SMS permission, and (2) APIs not pro-
tected by permissions but considered sensitive in the open
port context. For example, an app does not require any
permission to read its own data cache. However, if the data
is written back to the incoming socket and transmitted to
the remote client, a potential information leakage is caused,
since the app cache may contain sensitive user data. We
describe our approach to construct sensitive API set in §4.3.

Constraints refer to the conditional statements along
the path between the remote input and the sensitive APIs.
It is usually introduced by the protocols that the app uses
to communicate with the remote clients. If the constraints
on a path are easy to bypass, the sensitive functionality on
the path may be exploitable by remote attacker to launch
privilege escalation attack. We discuss more on the strength
of the constraints in §4.4.

Dependency. We identify the dependency between re-
mote input and sensitive API as the Program Dependency,
consisting of control dependency and data dependency. We
use it to describe the “trigger” relationship between the
source and the sink, which is shown to be efficient for us to
characterize open port usage and understand their security
implications.

In practice, the dependency between the remote entry
point and sensitive API set of an app is not easy to charac-
terize. The analysis must handle various program flow jumps
in the Android lifecycle, including inter-component commu-
nications, Java reflection, and even jumps from native code,
to accurately model the open port functionality. Moreover,

3

APK

Native Code
Analyzer

Application
Layer

Analyzer

Environment
Builder

Usage Path Analyzer

Entry Points Sensitive APIs

Reachability
Analyzer

Constraints
Analyzer

Taint Analysis Engine

Usage Paths

Weak Paths

Highly
Insecure
Paths

OPAnalyzer Output

Exploits

Figure 2: OPAnalyzer approach overview

to identify those vulnerable paths that can be leveraged by
remote attacker, the analyzer is required to evaluate whether
a given usage path is practically exploitable in terms of the
timing window for attacker, and the strengths of the checks
performed on the path. We design OPAnalyzer to analyze
the usage and security implications of these apps to address
these technical challenges.

4. OPAnalyzer Approach

The goal of OPAnalyzer is bi-fold (1) to characterize
the open port usage on mobile devices, and (2) to identify
vulnerability exposed by the usage. To achieve the goal,
we design OPAnalyzer to automatically discover all the
sensitive functionalities that can be triggered by remote input
and examine the constraints that guard them. We define a
usage path as a program path from the remote entry point
to a single sensitive functionality with all the conditional
statements along the path annotated. OPAnalyzer performs
the analysis on usage path level, so that various functionality
of a given open port can be comprehensively examined.

Figure 2 shows the overview of OPAnalyzer’s approach.
(1) OPAnalyzer takes apk files as input, extracts both
Dalvik bytecode and native shared objects to build the envi-
ronment for the app; (2) It calculates the entry points from
both the native code and Dalvik bytecode for subsequent
static analysis(§4.1). (3) It constructs the Inter-component
Data Flow Graph (IDFG) and Data Dependency Graph
(DDG) from the entry points based on Amandroid, which
are both flow- and context-sensitive; (4) It performs taint
analysis to study the dependency between remote input
and a precomputed sensitive API set(§4.3), and outputs the
paths.(5) Constraints analyzer examines all the checks along
the paths that are control dependent on the remote input, and
annotates the strength of each constraint. (6) Reachability
analyzer filters those paths unreachable from the program
entry set, and annotates the run-time reachability for each
path(§4.4). Usage categorization and vulnerability discovery
are then performed on the annotated usage paths.

In the remainder of this section, we provide an overview
of the main analysis steps and how we overcome several
challenges.

4.1. Entry Point Analysis

Entry point analysis collects the remote entry points
from both Dalvik and native code. It integrates apktool
as its front-end to decompress the apk file. Dalvik bytecodes
are decoded to smali format and further converted to
an IR called Pilar. The application layer analyzer ex-
tracted those Java classes that accept connections from either
ServerSocket or ServerSocketChannel, which are
the only Android framework APIs for apps to open TCP port
in Java, as entry points. However, apps can also embed the
open port functionality into the native code either for the
purpose of disguising their stealth behavior or for perfor-
mance reasons. Thus we implement a native code analyzer
to collect those entry points embedded in native code and
capture the control-flow jumps from native code to the Java
layer.

4.2. Native Code Analyzer

Figure 3 is a code snippet from a real app showing the
open port functionality embedded in native code. The app
accepts the incoming socket in native C code, and passes the
control-flow to application layer to serve the request. Shown
on line 4, native code broadcasts an intent using the
system function, and the intent is captured by the Java
layer receiver and triggers the ActionReceiver logic.
Another type of control-flow jump in this example is shown
on line 8. The app starts a service defined in the Android
manifest from native code, and the UploadService starts
running in the background. Such cross-layer interactions
cannot be captured by existing static analysis approaches,
leading to inaccuracy in the security analysis. We design
and implement a native code analyzer that captures such
control-flow jumps based on inter-procedure taint analysis.

The native code analyzer takes the shared object files
extracted from the apk as input, and performs taint analysis
on the decompiled assembly code. The taint source is the
socket accepted from the open port, while the sinks are
those function calls that can initiate control-flow jump to
application layer, such as system(). After locating the
source and sink in the assembly code, it analyzes whether
there is a path that propagates the taint value to the sink
either explicitly or implicitly. The system() function calls

4

v0 = accept(sock,&addr,&addr_len)

//accept a remote incoming socket

if (v0 == “action”){

 system(“am broadcast com.example.action”)

 //broadcast an intent in Java layer

}

else {

 system(“am startservice com.example.UploadService”)

 //start an application service in Java layer

}

<receiver android:name=“com.example.ActionReceiver”>

 <intent-filter>

 <action android:name=“com.example.action” />

 //specify that action will be handled by receiver

 </intent-filter>

</receiver>

<service android:name=“com.example.UploadService”

 android:process=“.uploadService” />

 //an upload service that runs in separate process

1

2

3

4

5

6

7

8

9

10

Figure 3: Snippet from real app showing control-flow jump from the native code layer (Left) to the application layer (Right).

in Figure 3 are not directly tainted by the source, but
are control-dependent on the tainted conditional statement,
as an example of implicit taint. The taint analysis handles
inter-procedure calls, as well as asynchronous I/O. To
handle many clients simultaneously in native code, app
can perform non-blocking I/O using Linux’s epoll fa-
cility [8], which provides readiness notification to simulate
I/O multiplexing. To serve multiple requests, the thread
uses epoll_wait to get tasks from event queue, and
epoll_ctl to add new connections waiting to be handled
into the event queue. The taint analysis propagates taint
values accurately through such asynchronous function calls
by keeping track of each event queue. We show how the
native code analyzer improves the effectiveness of our tool
in §4.5

The native code analyzer is implemented as a plug-in
for IDAPro written in Python. It uses IDAPro [10] as
the front-end, and performs the inter-procedural data-flow
analysis on the CFG of the assembly code. The time it takes
for analyzing an app depends on the number of shared object
files contained in the app. The mean analyzing time is 80.0
seconds with the interquartile range of 74.9 seconds.

4.3. Sensitive API Selection

OPAnalyzer aims at characterizing all the sensitive func-
tionality triggered by remote input. To define the sensitive
API set and categorize their functionality, we need an ac-
curate mapping from Android APIs to the permissions they
require. However, constructing such mapping for our use
case is non-trivial because our analysis is performed on the
component level. We detail the challenges and our solutions
below.

PScout [21] provides a static analysis approach to find
the mappings between API calls and permissions. However,
we find that it suffers from some completeness problems.
Taking the ServerSocket as an example, which re-
quires Android Internet permission. In the mappings
generated by PScout, we only find the constructor of
the ServerSocket mapped to the Internet permis-
sion, while other sensitive APIs such as accept() and
getOutputStream() are missing. We suspect that it
is because Android enforces some permission checks at
the class level instead of API level. Although enforcing

the permission check at the constructor implies that all
the member functions of this class are also protected, the
incompleteness of the < API, permission > mappings
restricts its usability for program analysis, especially when
the analysis is performed on the component level. To address
this problem, we design a static analysis tool to automati-
cally add such missing APIs to the mappings. For every class
constructor presented in the original PScout output, the tool
takes the AOSP source code as input and extracts all the
member functions of the class to complete the mappings.

In addition, we find that some APIs are not protected
by Android permissions, however, when used together, are
also considered sensitive in the mobile service context. For
example, an app retrieves the device location and stores it in
the application data cache. Once a remote connection comes
in, it reads the location data from the cache and sends it to
the remote attacker. In this scenario, the incoming socket
does not trigger any permission check except INTERNET,
which we think is granted by default, but the sensitive
location data is stolen and leaked asynchronously. To capture
such sensitive functionality in the mobile service context, we
manually collect all the sources that an app can retrieve data
asynchronously that do not require permission, including
app cache, database, shared preference, etc. We define a
pseudo permission called DATA_LEAK. If the data written
to the incoming socket is dependent on the data retrieved
from these asynchronous sources, we consider it as invoking
the DATA_LEAK permission check. The pseudo permission
together with the associated API pairs are added to the
sensitive API set.

4.4. Usage Path Analysis

To identify program dependency, OPAnalyzer performs
taint analysis on the DDG rooted from remote entry points,
taking the remote input as source, and sensitive API set
as sink. It outputs all the usage paths that the remote input
can trigger, together with all the constraints that guard the
sinks, which are useful for open port usage categorization
and vulnerability discovery.

IDFG and DDG. are built for each remote entry
point using Amandroid, which include all those Inter-
Component Communication (ICC) edges, and are both flow-
and context-sensitive. However, the control-flow jumps in-

5

socket = ServerSocket.accept()

// socket = Source#1()

remote_input = socket.getInputStream()

flag = remote_input[0]

if (flag == “True”) {

 password = getSharedPreferences(“password”,0)

 // password = Source#2()

 outStream = socket.getOutputStream()

 outStream.write(password)

 // Sink()

}

1

2

3

4

5

6

7

8

9

10

11

Figure 4: An example for implicit and explicit taint logic.

Socket socket = ServerSocket.accept();

InputStream in = socket.getInputStream();

String input = in.readLine();

String command = input.split(“=“)[0];

String value = input.split(“=“)[1];

Map map = new HashMap<String,String>();

map.put (command,value);

if (map.size() > 0){ //C1

 if (command == “SEND_SMS”) { //C2

 SendSMS(value); //Sink()

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5: Sample app code showing that sensitive API is
protected by constraints

troduced by Java reflection cannot be captured by this ap-
proach. Since we find that reflections are heavily used in our
dataset, and also are found in those well-known Wormhole

apps, we add reflection support to the taint analysis engine.

Java reflection is used by programs to examine or
modify the runtime behavior of apps running in Java virtual
machine. We have seen reflections used in apps for both
legitimate purpose (e.g., bypass some API-level restrictions)
and malicious purpose (e.g., disguise the entry to malicious
code). Handling reflection accurately is impossible for static
analysis, and remains challenging even combining runtime
analysis [43]. To capture the control-flow jumps of reflection
to our best effort, we implement a handler in the IDFG
builder similar to the one used in FlowDroid [20], which
can link the target class or method invoked by reflection
to the calling function, and add the missing edges to the
IDFG. Currently, it only handles reflection calls with targets
explicitly provided in the same procedure, and will miss
those whose targets are not deterministic statically. However,
we find that over 86% of reflections in our dataset can be
handled by applying this heuristic, and it also helps identify
significantly more vulnerable paths as shown in §4.5.

Java layer taint analysis is used to examine the depen-
dency among remote input and sensitive APIs. We define
a notion to describe the explicit and implicit dependency
relationships among statements. The notion is further used
to categorize usage.

Notion 1. The dependency relationship between two state-

ments along the same usage path is either implicit or
explicit, and transitivity applies.

stmt1
E
−→ stmt2 : if stmt2 is explicitly tainted by

the return value of stmt1.

stmt1
I
−→ stmt2 : if stmt2 is implicitly tainted by

the return value of stmt1.

stmt1
I
−→ {stmt2

E
−→ stmt3} : if stmt3 is explic-

itly tainted by the return value of stmt2, and both
stmt2 and stmt3 are implicitly tainted by the return
value of stmt1.

Explicit taint describes the data dependency relationship
propagated by assignment expressions, while implicit taint
reflects the “triggering” relationship, in which the source is
presented in the conditional statements. Shown in Figure 4,
the first taint source comes from the remote input, and flag
is explicitly tainted by the remote_input, since it is de-
rived from it. All the statements in the if block are implic-
itly tainted by the flag, since they are control-dependent
on the if statement. Specifically, another taint source is
identified as the getSharedPreferences, which reads
data from an asynchronous source. The password read
from the shared preferences is written to the socket, identi-
fied as an explicit taint relationship between statements in
line 5 and line 6. Thus, the dependency relationship along
this usage path is expressed as:

accept()
I
−→ {getSharedPreferences()

E
−→ write()}

To further narrow down the potential vulnerable path list,
and provide insights to identify the vulnerability, OPAna-
lyzer integrates both constraints analysis and reachability
analysis to help analyst prioritize paths output by OPAna-
lyzer to reduce human efforts.

Constraints analyzer examines all the conditional state-
ments along the usage path to which the sensitive API
is control dependent on. Shown in Figure 5, the remote
input is separated into two substrings and put into a Map.
The sensitive API SendSMS is control dependent on two
constraints. Constraint C1 defined in line 8 checks whether
the Map is empty, while the constraint C2 in line 9 checks
whether the command passed in from remote input is
“SEND SMS”. Both checks are easy to bypass, an arbitrary
remote attacker can construct the input string to bypass
the checks and trigger the malicious payload to be sent
via SMS, which results in a remote privilege redelegation
attack [30]. OPAnalyzer annotates a constraint as weak if it
is either (1) comparison with constants or (2) comparison
with a predefined set of trivial API (e.g., Map.size(),
Set.isEmpty()). The heuristic reduces human efforts
by prioritizing usage paths that are obviously easy to be
controlled, but could introduce false negatives(§ 4.5).

Reachability analyzer characterizes the reachability of
a path using both static and dynamic approaches. First, the
static analysis models the app Activity lifecycle, and
filters those usage paths unreachable from the program entry
set. The dynamic approach identifies those usage paths that
start with a port that is open by default at app launching

6

OPAnalyzer

Categorization

apk

usage path

No

Usage
families

Pattern
matches

Yes

open port usage family

Convert to

Notation 1

Generalize

usage pattern

Figure 6: Usage categorization methodology

time. These paths are annotated as highly insecure since
remote attacker has a large timing window to exploit them.
Note that ports that are not open by default are still vulner-
able to the on-device malware in our threat model, since
the malware can monitor the proc file and exploit the
vulnerable paths as long as it detects the port is open. The
dynamic analysis is implemented using function hooking
based on Xposed framework [17], and combined with device
automation, the analyzer automatically annotates reachabil-
ity results on the usage paths.

Usage categorization methodology. Shown in Figure 6,
OPAnalyzer aggregates usage paths with similar open port
usage into one family based on the sensitive APIs they
contain and the notion. It extracts usage paths and converts
them to Notion 1. The categorization approach matches the
notion of new paths with those already identified patterns.
If an incoming path cannot be categorized into any of the
existing families, we manually generalize its usage to a
pattern and add a new family to the existing usage family
set. Following this approach, OPAnalyzer categorizes most
of the usage paths except a few that cannot be converted to
Notion 1(§5.2).

Vulnerability discovery methodology. Considering an
attacker in our threat model, to exploit a usage path and
trigger the sensitive functionality, he needs to (1) find the
right timing when the port is open, (2) bypass all the checks
along the path to execute the sensitive API. The usage
paths output from OPAnalyzer come with the reachability
information, sensitive functionality, and strengths of predi-
cates all annotated, help human analyst efficiently examine
these two prerequisites for an attack, and identify vulnera-
bility. Specifically, OPAnalyzer prioritize “weak paths” and
“highly insecure” paths for manual inspection. And note
that we also selectively examined the other usages paths in
the OPAnalyzer output since they may also be vulnerable
to remote exploits. Some of the interesting vulnerabilities
(e.g., AirDroid exploit) in our case study(§6) are actually
identified in those non-weak usage paths.

4.5. Evaluation

We obtain 24,000 apps from the PlayDrone dataset [45]
to evaluate our tool, which contains top 1000 popular apps

from each of the 24 categories in the Google Play including
entertainment, tools, etc. Our evaluation focuses on the
vulnerability discovery of OPAnalyzer, which is the most
security critical functionality.

Discovery accuracy. To evaluate the false positives
(FPs) of the weak path detection, we first define the FPs
as “weak” paths that are verified to be not exploitable
through manual inspection. We examined the weak usage
paths output by OPAnalyzer, and constructed remote input
to see if the sensitive functionality could be triggered. We
call these weak paths that are verified to be exploitable
vulnerable paths, and the rest of them are considered as
FPs. Among the 24,000 apps, 6.8% of them (1632) have
open-port functionality, and 133 weak paths are identified
to be reachable at app launching time by OPAnalyzer. We
manually identified 113 vulnerable paths that can be easily
exploited by constructing remote input (FP rate 15.1%).
The FPs mainly come from paths that contain checks on the
runtime property of the app. As an example, a usage path is
guarded by the constraint if (debugMode == True)

will not be triggered when the app is in release mode, but
will be output falsely as weak path.

Due to the lack of any publicly accessible study of open
port vulnerabilities on mobile platform, we run OPAnalyzer
on the recently-reported Wormhole apps from the Chinese
app market to evaluate the false negatives (FNs) of OP-
Analyzer. To the best of our knowledge, they are the only
reported instances that contain confirmed open port exploits,
which are usable as ground truth in the FN evaluation. The
FNs of the weak path detection are those paths that are not
annotated as “weak”, but are verified to be exploitable with
our manual inspection. Wormhole apps are vulnerable due
to their integrations of vulnerable SDKs including Baidu,
Qihoo360, AMap, and Tencent [12], and thus we choose
the most popular apps in each SDK category. We do not
test on Qihoo360 library since the problem only affects an
old beta version which can no longer be found in apps on
major app markets.

As shown in Table 1, OPAnalyzer discovers usage paths
that contain sensitive functionality in all of the three apps,
with some of them reported as weak paths. Unfortunately,
the report has no detailed path information that can be used
as ground truth for evaluation, we do our best to manually
analyze the decompiled app to find exploitable paths. For
Baidu SDK, OPAnalyzer detects all the exploitable paths
that we manually discovered, and even discovers new ex-
ploits that have not been reported in the report, such as
stealing the WiFi BSSID. For AMap, OPAnalyzer reports
four usage paths, while none of them are recognized as weak
paths. However, three exploits (FNs) from those non-weak
paths are identified. We find that one of the conditional
statement shared by all 4 usage paths depends on value
that is defined beyond the IDFG of the remote entry point.
OPAnalyzer thus does not consider the check as “weak”
since its value cannot be determined, while it turns out to be
constant in the run time. It is due to the limitation of lacking
of backward analysis support, so that OPAnalyzer doesn’t
have enough visibility into how a variable encountered on

7

Wormhole family Sample app Version Entry points # Usage path #
Weak path Not weak path

total exploitable total exploitable

Baidu com.baidu.BaiduMap 8.5.0 1 15 8 8 7 0

Tencent com.tencent.android.qqdownloader 5.7.0 4 16 1 1 15 1

AMap com.autonavi.minimap 7.3.4 1 4 0 0 4 3

TABLE 1: OPAnalyzer output for three popular “Wormhole” apps that are reported vulnerable

Feature
of usage

Improv. Featured app/lib
paths captured

none 636 N/A WiFi file transfer

+ reflection 804 +26% OpenVPN

+ API 1472 +131% AMap

+ native 845 +33% Tencent XG

+ all 1934 +204% Baidu wormhole

TABLE 2: Evaluation of accumulative improvement brought
by (1) handling explicit Java reflection and (2) adding open-
port specific sensitive API (3) capturing native code jump.

the usage path is propagated to this procedure, if it is
defined beyond the IDFG of the entry point. This affects the
accuracy of the information leakage tracking and constraints
analysis, and can be solved by integrating backward slicing
technique [20], [48]. We plan to add that to the OPAnalyzer
in the future.

False negatives may also be introduced by the na-
tive code analyzer due to a limitation inherited from the
IDA-PRO front end. ARM processor supports multiple in-
teraction sets mixed in one segment in the runtime, while
the disassembler can interpret one type at the same time in
the static analysis [3]. And when the 16-bit “Thumb” and
32-bit “ARM” instructions coexist within one segment due
to optimization, the disassembling result may be incorrect.
Additionally, the native code analysis of OPAnalyzer does
not cover all possible types of interactions between native
code and Java code. Combining native code and Java code
analysis is a fundamental challenge of Android app analy-
sis [38], and we leave it as future work to accurately model
all the control- and data-flow transitions between native and
Java layers.

We also evaluate the improvement on the effectiveness of
OPAnalyzer’s path discovery brought by three of our engi-
neering efforts; namely (1) adding open-port specific APIs to
the sensitive API set, (2) handling explicit Java reflections,
and (3) capturing native code jump. Shown in Table 2,
integrating these features greatly improves the coverage of
OPAnalyzer by 204%, while completing the sensitive API
set turns out to be the most effective engineering effort we
spent. These improvements reduce false negatives, which is
crucial to our system.

Performance. The most compute-intensive step in OP-
Analyzer is the taint analysis, which includes building the
IDFG and DDG, and running the Dijkstra’s algorithm on the
DDG to find all the usage paths. We measure the time to
perform the taint analysis for the top 1000 popular apps from
our dataset. The experiment runs on a machine with Intel
Core i5-3470 CPU and 8GB of RAM. For apps with at least

one entry point, the median processing time for OPAnalyzer
to finish the taint analysis is 61.5 seconds with standard
deviation of 127.2.

5. Usage and Vulnerability

With the usage paths output from OPAnalyzer, we sys-
tematically study open port usage and their security impli-
cations in the top 1000 popular apps from each of the 24
different categories on Google play.

5.1. Popularity and Permission Usage

Among the 24,000 apps, we identified open port func-
tionality in 6.8% (1632), while 50% of these open port apps
have more than 500K downloads.

Sensitive permission usage. To understand the most
common functionality triggered by remote input, we use
the API to permission mappings constructed in §4.3 to get
the set of sensitive permissions. Figure 7 shows the top
security-sensitive permissions involved in open port usage.
Surprisingly, we find that in open port apps, a rich set of
highly-sensitive OS-level functions in Android can be in-
voked remotely, ranging from accessing private data such as
contacts and location to performing sensitive actions such as
using camera and sending SMS. If not protected sufficiently,
this usage can be remotely exploited to cause severe dam-
ages such as privacy leakage and privileged code executions,
just like the recently reported Wormhole exploits [12]. In
addition, we find that the pseudo permission DATA_LEAK

(defined in §4.3), which indicates that data is read from
asynchronous sources such as internal storage or content
providers and sent to the remote end, has top popularity in
open-port apps. This shows that open port usage commonly
has potential risk of exposing internal application data to the
remote attacker, which typically involves plenty of sensitive
data such as credentials and conversation history [51].

5.2. Usage Family Categorization

Using OPAnalyzer, we categorize usage paths into differ-
ent usage families defined by code patterns. Table 3 shows
the 5 major usage families we identified in our dataset,
together with the path categorization results and the types
of potentially-exposed vulnerabilities. As shown, 99% of
reachable usage paths of open port apps are categorized into
one of the five families, which are described in detail as
follows.

Data sharing path a usage path through which data read
from the device is sent to the remote host. In this category,

8

 0

 5

 10

 15

 20

 25

WRITE_EXTERNAL_STORAGE

C2DM_RECEIVE

DATA_LEAK

ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

GET_TASK

CAMERA

READ_CONTACTS

DISABLE_KEY_GUARD

WRITE_SETTING

RECORD_AUDIO

CALL_PHONE

SEND_SMS

%
 o

f
o

p
e

n
 p

o
rt

 a
p

p
s

Sensitive permissions

Figure 7: Permission protected APIs triggered by remote input.

Usage category Pattern Usage path # Perc. App # Weak path # Vulnerability

Data sharing accept()
I
−→ {APIdata read

E
−→ write()} 1340 69.3% 425 775 V1

Proxy accept()
E
−→ APIout connection 122 6.3% 59 101 V1,V3

Remote execution accept()
I or E
−−−−→ APIexecution 127 6.5% 41 69 V2,V3

VoIP call accept()
I
−→ APIaudio setting 45 2.3% 27 11 V3

PhoneGap Categorized using code signature 282 14.6% 141 0 N/A

Uncategorized N/A 18 0.9% 10 0 N/A

TABLE 3: Open port usage and potential vulnerability. V1:sensitive data leakage, V2: privileged remote execution, V3: DoS.

the most commonly used protocol for data sharing is HTTP,
while HTTPS, FTP, UPnP [15] and some customized proto-
cols are also observed. As shown, nearly 60% of the paths
in this category are found to be weakly protected without
any client authentication, leaving them easily exploitable
(examples in §6). By examining the apps in this category, we
also identified a mobile-specific open port usage scenario,
data sharing in physical proximity, e.g., allowing a user
to transfer photo to her PC nearby. This usage turns to
bring most exploits in this family: as shown later in §6,
24 out of 26 exploits in data sharing are associated with
this particular usage. Also worth noting is that in this usage
family, sensitive data can be leaked without invoking any
permission-protected APIs along the tainted path. Due to
our improvement in sensitive API selection (§4.3), our tool
can successfully capture these cases.

Proxy path is defined as forwarding requests in remote
input to other destinations. We find that all the paths in these
apps are used as local proxy, e.g., for advertising and content
filtering. For example, to overcome the content modification
restrictions in Android WebView, a web browsing app starts
as background service a local web proxy so that it can insert
its own ads into the fetched web pages. If exposed to remote
attackers, such local proxy can be used as a reflector in
targeted DDoS attacks. Also, if it is configured to cache
pages or store cookies, attackers can access personalized
pages to harvest user privacy, or even hijack victim’s email
or social network accounts for spear phishing attacks.

Remote execution path refers to usage paths that can
trigger certain actions on the device such as sending SMS

and writing to storage. Besides common use cases such
as push notification, we also observe interesting usage in
physical proximity, which allows the same user to use mo-
bile device functionality through PC interface, e.g., texting
SMS using keyboard. However, there are also sensitive func-
tionality that can be executed remotely and are beyond the
declared functionality of the app, which we suspect to be
“backdoors” left by app developers.

VoIP call paths are used in apps to listen on incoming
call requests based on the Session Initiation Protocol (SIP).
After accepting a SIP invite message from the port, the
app extracts information such as caller ID and starts the
ring tone to notify the user. Remote attackers in theory can
send spoofed packet to ring the phone and spoof the caller
ID. However, due to the IPSec support in SIP, such off-path
attack is unlikely to be practical.

PhoneGap paths belong to apps developed by Phone-
Gap/Cordova, a hybrid app development framework al-
lowing developers to quickly build apps using JavaScript
and HTML5. It uses open ports to serve requests from
the JavaScript client and handle the API calls. The result
written to the incoming socket is not defined in the IDFG
of the remote entry point, making it difficult for OPAna-
lyzer to capture sensitive APIs. To address this, we use
the presence of several PhoneGap-specific classes such as
CallbackServer as the code signatures to identify these
usage paths. The port intended for IPC is falsely opened
to the Internet. However, we find that the usage paths of
PhoneGap are protected by strong security checks, which
verifies whether the request contains a 128-bit token derived

9

Open port intention Vulnerability description Featured attacks Vulnerable app example App #1

Usage of the app user
Lack of authentication to verify that Data theft WiFi file transfer 24
connections come from the app user Privilege escalation AirDroid, PhonePal 10

Communication with Lack of authentication to verify the requests Data theft Lenjoy 15
backend are from authentic app backend server Privileged escalation KindeeExpress 5

Local communication
Port used for on-device communication DoS VGet, Fast secure VPN 12
falsely opened to the network Data theft CachedProxy 1

1 Number of vulnerable apps in the same category. An app may be vulnerable to both attacks in each category.

TABLE 4: Case study of verified exploitable app categorized by the intended usage of open port.

from the device’s Universally Unique Identifier (UUID) [1].
Thus, we consider the open service of PhoneGap as well-
protected.

5.3. Security Implications

Usage paths in different families, if not well protected,
can lead to different security breaches. As shown in table
3, OPAnalyzer outputs 956 weak paths. We find that nearly
half of the total usage paths are considered “weak”. In the
proxy category, over 80% of the paths are not protected.
From these weak paths, we identify three vulnerability
categories: sensitive data leakage (V1), privileged remote
execution (V2), and DoS (V3). Besides, we also discover
a new problem that any open port on smartphones can be
exploited to harvest cellular IPv6 addresses which allows
attacker to collect victim IPs without scanning the huge IPv6
address space and further launch attack to exploit vulnerable
ports. The vulnerability is detailed in the Appendix A.

V1: Sensitive data leakage. Sensitive data of a mobile
device can be retrieved from many sources such as SD Card,
sensor, etc. If these paths are not well protected, remote
attacker can exploit them to steal sensitive data that are
even protected by Android permission or UNIX uid/gid

check. More importantly, if the victim IP is public, such
vulnerabilities can be easily revealed using fast Internet-
wide scanning tools such as ZMap [26], causing large scale
data theft.

V2: Privileged remote execution. Vulnerable paths that
trigger native actions can be leveraged by remote attackers
to execute privileged functionality such as sending SMS and
modifying contacts. Moreover, by exploiting the broadcast-
ing Intent mechanism provided by Android, attackers can
even execute functionality beyond the vulnerable app. For
example, an unprotected usage path that sends Intent

based on remote input can be leveraged to launch YouTube
app to play the video from the URL passed by the remote
attacker. By uploading a maliciously crafted MP4 file to the
URL, attacker can gain full control of the device exploiting
the Stagefright vulnerability [6].

V3: Denial of service. Most remote execution paths are
vulnerable to DoS attack against the device user. For the
local proxy usage paths, they can also be used by attackers
as reflectors in targeted DDoS attack against victims in
the Internet to hidden their IP addresses. Other security
problems of open proxies, such as leaking internal network
data and IP spoofing based attack also apply.

6. Exploits Case Studies

To broaden the scope of our vulnerable study, and dis-
cover more exploitable open port usage, we extended our
data set to include all the 78K apps from the Tools cate-
gory of the PlayDrone dataset to our vulnerability analysis,
based on the observation that the percentage of open-port
apps in the Tools(10.9%) is significantly higher than the
average (6.8%). Furthermore, we also crawled the top 3,000
most popular apps from a Chinese app market [2], where
the Wormhole problem was reported from.

By analyzing the annotated usage paths from the OPAna-
lyzer output, we successfully discover several new exploits
of sensitive data leakage and privileged remote execution in
both apps and third-party libraries, including some high-
profile ones with millions of downloads and even pre-
installed apps. Moreover, we classify these vulnerable apps
into 3 categories based on the intended usage scenario of the
open port inferred from the manual analysis: (1) intended
for use by app users; (2) intended for communication with
the backend; and (3) intended for local communication.
Such categorization helps better understand the challenges
in securing the port opened for different purposes. Table 4
shows an overview of the 57 exploitable apps that are man-
ually verified from the OPAnalyzer output. A case study of
interesting vulnerability in each category is presented below.
The video demos for some of the implemented attacks are
shown on our website [11].

6.1. Intended for Use by App Users

Such apps open ports for different purposes intended
for the app users, such as transferring file from the phone
to another device of the same user. However, essential
checks are found missing in many apps in this category, thus
exposing the sensitive data and also privileged functionality
of the device to attackers.

Virtual data cable is a popular app on China market
that helps user transfer their photos to PC by opening a web
server on the phone. The server port opens by default at app
launch time and silently runs in the background. It does not
authenticate clients nor notify incoming connections, thus
can be easily scanned and exploited by remote attackers.
Moreover, it does not check the requested file path, so that
attacker can access files beyond the photo folder on SD card
by adding “../” to the path and steal sensitive data from
app cache and system directory. Similarly, a popular file

10

sharing app WiFi file transfer with 10 million installs does
not authenticate clients, while it opens the server port only
when user presses a toggle button. However, an on-device
malware that only has Internet permission in our threat
model can listen on the status of the port by monitoring the
/proc file system and steal data from the port as long as
it is open.

PhonePal allows a user to remotely control his/her
device with a web-browser, which contains highly sensitive
usage paths such as open URLs in the Android browser,
and open videos in the YouTube app. All these usage paths
are found unprotected, which puts the device at the risk
of phishing attack and even compromise [6]. Moreover,
vulnerabilities such as allowing attacker to remotely install
apps on the victim device, are identified in the high-profile
app AirDroid, pre-installed on Samsung Chromebook and
Smartisan phone [13]. We present a case study of this app
in the mitigation strategy section (§7).

6.2. Intended for Communication with Backend

Open ports in these apps are intended to communicate
with the app developer’s backend server for various pur-
poses. If the open port service does not authenticate the
identity of the remote server, attackers can spoof the app
server. Interestingly, by manually examining the apps, we
find that open port usage of some apps are beyond the apps’
declared functionality, implying potentially covert malicious
behavior.

KindeExpress is the most popular mail/package tracking
app on a China market with 1 million downloads, whose
functionality is to provide tracking information from many
delivery service providers. One of its usage path is able to
start an Activity of the app and display the data from
remote input on the app’s UI, which also brings the app to
the front even when it is running in the background. We
verified that none of the declared functionality of the app
depends on this usage path, and we suspect it to be used
for advertising. Unfortunately, this path is not protected by
any authentication mechanism, and remote attacker can send
command to the app pretending as it comes from the app
server to display deceptive content on the app UI.

Huang CheatMaker is a game modifier app that helps
users cheat when playing mobile games. We identified a
usage path that accepts data pushed from the app server,
stores the data as a shared object (.so) file and loads
it at run-time. The authentication along the path is weak,
and the app dynamically loads the code without verifying
where it comes from nor its integrity, which enables remote
attackers to inject malicious payload to the app to that will
be executed, thus compromising the device.

6.3. Intended for Local Communication

Usage paths in Proxy and PhoneGap families are in-
tended for on-device communication, which can be either
IPC among different components of an app, or proxy for
different apps on the device to use. However, open ports

in some apps that are intended for local usage are falsely
exposed to the network, and thus lead to security breaches.

OpenVPN is an open-source VPN implementation that
is integrated by several popular VPN apps on Google Play.
Multiple interfaces are provided by OpenVPN for the app
to configure the local VPN settings, while the open TCP
port interface is identified to be the least secure one. A
remote attacker can DoS the victim user by changing proxy
settings such as port number on the device. Fortunately,
some app developers paid extra attention when integrating
OpenVPN, and closed the insecure configuration interface
from the open TCP port, but VPN apps vulnerable to this
problem still remain (e.g., Fast secure VPN).

CacheProxy is an app that opens local proxy with the
capability of caching the web page content. Upon receiving
a request, the proxy first checks whether the request can be
served using cached content before fetching the page, with
no authentication performed on the source of the incoming
request. Remote attackers can thus easily access sensitive
information of the victim, such as e-mails by requesting the
e-mail page, since the page is retrieved from the cache for
the attacker.

To get an initial estimate on the severity of open port
vulnerabilities in the wild, we performed a small scale port
scan in a subnet of a campus network. The ports scanned
are those opened by the most popular vulnerable apps in
our dataset, whose port number needs to be static and
unique. Note that we only scanned for the existence of
the open ports but did not send any data to the ports to
verify the vulnerability for ethical concerns. We performed
only one scan using a scanning tool [26], which finished in
two minutes. Surprisingly, 40 hosts identified to be mobile
devices open such ports. Although different apps that use
the same port number may introduce false positives, the
scanning result indicates that immediately exploitable open
ports exist in the wild.

7. Mitigation Strategy

Traditional solutions to protect an open port from
Internet attackers are through firewall, which monitors and
controls incoming and outgoing traffic based on prede-
termined security policies. However, the firewall solution
suffers from usability in the mobile context, since it is
hard for individual users to configure suitable firewall rules
for each app installed on the device, and coordinate both
app functionality and security assurance. Moreover, in the
physical proximity use scenario, since users can initiate
connections from arbitrary hosts, it is hard to configure rules
in advance.

Despite a variety of open port usage described, the
fundamental problem is the lack of proper client authen-
tications. However, we find that it is non-trivial to provide a
general solution to patch the security problems for all usage
cases, while preserving usability. We discuss the major chal-
lenges in different scenarios and propose countermeasures.

Intended for communication with backend. For the
open port mobile app to verify that the incoming connection

11

is from the authentic server, we suggest using secure tokens
to perform authentication. Although tokens are already used
in some open port apps, implementation flaws are commonly
seen. For example, a third-party push notification service
that distributes token to app developers for them to embed
in the app is vulnerable, because the token can be extracted
from the released app binary by attacker to exploit the vul-
nerable app installed on other victim devices. We suggest the
app and server negotiate a shared token using mechanisms
such as Diffie-Hellman [7] at app launching time. And open
port app uses the token to authenticate further incoming
connections.

Intended for use by app users. Compared to the
previous usage scenario, open port apps in this case do not
know in advance the legitimate remote hosts that should
connect to them. Depending on the usage of the app user,
the trusted remote hosts can be user’s desktop or even his
friend’s laptop. A general solution is to use password or pin
code to authenticate incoming connections; however, some
security issues are raised in practice. As an example, all
the apps we examined that use password, provide hard-code
default password that does not require users to change before
using the app, leading to the potential use of the default
password and degrading app security. Randomly generated
pin codes in the open port apps we examined are usually
no longer than 4 characters, which is trivial to enumerate.
Experiment in our local WiFi network indicates that it takes
less than 5 minutes to send probing requests that enumerate
all the 4-character strings.

Another authentication solution adopted by the top
trending apps for this usage scenario is the incoming con-
nection notification, which pops up a window when a new
host connects to the open port and displays the IP address
of the host. And the request is not served until user explic-
itly accepts the client by clicking the “allow” button. For
ordinary users, the timing of the pop-up window is also an
important indicator for them to make the decision of whether
to allow or deny the request. However, on-device malware
can infer the timing when there is an incoming connection to
the port by monitoring /proc/net/[tcp][tcp6], and
send request immediately to trick user into also allowing its
connection by overlaying the pop-up window. We further
find that even the most popular apps in this category has
implementation flaws that can be practically exploited by
attackers in our threat model.

AirDroid1 is a top-ranked app on the market that allows
users to access and manage their Android device wirelessly
from desktop by opening a server on the phone. It provides
a rich set of functionality to users such as access camera
and install apps remotely, and uses the incoming connection
notification schema to authenticate client. However, if the
timing of user initiated connection is inferred by the attacker
with the help of an on-device malware, and attacker sends
request to the open port before the user accepts the previous
connection, the app won’t pop up another window. Instead,
the attacker connection silently replaces the previous legit-

1. AirDroid: https://www.airdroid.com/

ServerSocket

SecureServerSocket Remote client

Request
from IP0

Return IP0

 as QR code

Scan

Trust IP0

Request
from IP0

Return

Socket Socket

Display

Check
 IP0

Figure 8: SecureServerSocket design

imate connection in the waiting queue, without changing
the IP address displayed on the pop-up window. And when
a user clicks the button to allow the legitimate connection,
the attacker client is allowed instead, and numerous sensitive
capabilities of AirDroid are granted to the attacker.

Usage in this category is usually for the cable-less com-
munication with nearby hosts of the user. We confirmed that
24 out of the 26 vulnerable apps in this category are intended
for the use in physical proximity. We demonstrate a transpar-
ent socket-level solution that addresses the security and us-
ability challenges in this usage scenario. Shown in Figure 8,
we provide SecureServerSocket, which encapsulates
the Android ServerSocket API to accept incoming sock-
ets. When a remote client, the user’s desktop for example,
tries to connect to the port, the SecureServerSocket

first puts the connection on hold, and then encodes the IP
address of the client into a QR code and returns to the
remote client. The remote client is required to display the
QR code and let the user scan it using the mobile device in
order to get access.

Once the QR code is scanned, the decoded IP address
is returned to the SecureServerSocket and the con-
nection from this IP is allowed. It then returns the incom-
ing socket to the upper application layer to be handled.
This approach authenticates clients on the IP layer, and
ensures that the open port only serves clients in physical
proximity of the device user, and it achieves both security
and usability. We provide SecureServerSocket as a
library that app developers can simply use as a replacement
of ServerSocket. No changes on the client side are
required if the client is a web browser, which is the common
case in our app dataset. For other client types that cannot
display QR code, we suggest using one-time pin code to do
the authentication instead. Demo of the SecureServerSocket
implementation can also be found on our website [11]. And
for future work, we plan to conduct a user study to evaluate
the effectiveness of this approach.

Intended for local communication. For the local usage
of on-device proxy, the best practice is to bind the proxy to
the loopback address of the device, which makes the service
unreachable from the network. For another local usage

12

https://www.airdroid.com/

scenario where different components of an app communicate
using open port, we suggest using other IPC mechanisms,
such as Intent, Binder, and LocalSocket instead.
And application layer authentications are required when us-
ing them. For example, uid/gid check should be enabled
when using LocalSocket to ensure that the connections
are from the same app.

8. Related Work

Security implications of open port usage. The security
implications of using open ports on the network services
have been studied using Internet-wide scanning tools such as
ZMap [26], revealing various vulnerabilities [9], [14], [27],
[41]. However, the open port usage and security concerns
on mobile platform remain under-explored. Understanding
this problem in the mobile context is non-trivial, since both
the current usage and the existing defense solutions are not
applicable to the mobile scenario. We design and implement
OPAnalyzer to bridge this gap.

Static analysis on Android. Static analysis has been
used extensively in vulnerability discoveries. Specifically,
on Android platform, many tools have been built to identify
system vulnerability [18], [23], [39], [42], [44] and mali-
cious apps [20], [22], [28], [29], [32], [40], [46]. Among
these work, TriggerScope [32] is most closely related to
our work, which focuses on detecting malicious activities
embedded in narrow conditions using static analysis. OP-
Analyzer serves a different goal, which is detecting open
port related vulnerabilities. However, the trigger analysis

proposed by TriggerScope can be potentially integrated by
OPAnalyzer to improve its accuracy of weak constraints
analysis. FlowDroid [20] and Amandroid [46] are two static
analysis tools similar to OPAnalyzer, both of which model
the Android Activity lifecycle [20], and capture inter-
component communications. Compared to these generic app
analysis tools that evaluate the app as a whole, our tool
focuses on examining the part that contains open port func-
tionality. Another difference is that we integrate native code
analysis for high accuracy and coverage of our analysis,
which is commonly excluded in these tools due to high
engineering effort.

Android app security. Mobile app security issues have
gained much attention recently, and research efforts were
made on detecting repackaged apps [19], [22], [36], [50],
apps with malicious behavior [24], [31], [32], [35], [47],
[52], or apps with vulnerability [25], [30], [37]. Different
from these prior studies, we investigate the vulnerability
in open port apps, which is not covered by related work,
and has a new threat model not previously explored. Our
analysis results shed important light on the common design
and implementation flaws in these apps, and we also propose
solutions to some mobile-specific usage scenarios.

9. Conclusion

In this paper, we develop a tool called OPAnalyzer,
which can systematically characterize open port usage in

Android apps and effectively detect exploitable vulnerabili-
ties. Using this tool on 24K popular Android apps, we are
able to classify 99% of the mobile usage into 5 families, and
identify some unique usage scenarios on mobile platform.
From the vulnerability analysis performed, we find that such
usage is generally unprotected. We are able to discover a
bunch of new exploits causing vulnerabilities such as infor-
mation leakage, denial of service, and privileged execution.
We also propose countermeasures and improved practices
to mitigate these problems in different usage scenarios.
As a potential future work, we want to apply OPAnalyzer
to analyze Android system applications to discover more
critical vulnerabilities.

References

[1] Android Universally Unique Identifier. http://developer.android.com/
reference/java/util/UUID.html.

[2] Anzhi app market. http://www.anzhi.com.

[3] ARM processor specifications. https://www.hex-rays.com/products/
ida/support/idadoc/1350.shtml.

[4] Arp-scan. http://linux.die.net/man/1/arp-scan.

[5] Common Vulnerabilities and Exposures (CVE). https://cve.mitre.org/.

[6] CVE-2015-6602. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-6602.

[7] Diffie-Hellman Key Agreement. https://www.ietf.org/rfc/rfc2631.txt.

[8] Epoll I/O notification. http:linux.die.net/man/4/epoll.

[9] Heartbleed. http://heartbleed.com/.

[10] IDA-Pro. https://www.hex-rays.com/index.shtml.

[11] Mobile Open Port Security Project. https://sites.google.com/site/
openportsec.

[12] One hundred days before and after Baidu Wormhole’s Dis-
covery. http://www.inforsec.org/wp/wp-content/uploads/2016/01/
\wormhole external final.pdf.

[13] Smartisan technology. http://www.smartisan.com.

[14] The Conficker Worm. https://www2.sans.org/security-resources/
malwarefaq/conficker-worm.php.

[15] UPnP: Universal Plug and Play. https://tools.ietf.org/html/rfc6970.

[16] US-CERT. https://www.us-cert.gov/.

[17] Xposed Module Repository. http://repo.xposed.info/.

[18] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang, X. Zhou,
W. Du, and M. Grace. Hare hunting in the wild android: A study on
the threat of hanging attribute references. In ACM CCS. ACM, 2015.

[19] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith.
Sok: Lessons learned from android security research for appified
software platforms. 2016.

[20] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. In ACM SIGPLAN Notices. ACM, 2014.

[21] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing
the android permission specification. In ACM CCS, 2012.

[22] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu. Finding unknown malice in 10 seconds: Mass vetting for
new threats at the google-play scale. In USENIX Security, 2015.

[23] Q. A. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. M. Mao. Static Detection
of Packet Injection Vulnerabilities – A Case for Identifying Attacker-
controlled Implicit Information Leaks. In ACM CCS, 2015.

13

http://developer.android.com/reference/java/util/UUID.html
http://developer.android.com/reference/java/util/UUID.html
http://www.anzhi.com
https://www.hex-rays.com/products/ida/support/idadoc/1350.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1350.shtml
http://linux.die.net/man/1/arp-scan
https://cve.mitre.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6602
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6602
https://www.ietf.org/rfc/rfc2631.txt
http:linux.die.net/man/4/epoll
http://heartbleed.com/
https://www.hex-rays.com/index.shtml
https://sites.google.com/site/openportsec
https://sites.google.com/site/openportsec
http://www.inforsec.org/wp/wp-content/uploads/2016/01/wormhole_external_final.pdf
http://www.inforsec.org/wp/wp-content/uploads/2016/01/wormhole_external_final.pdf
http://www.smartisan.com
https://www2.sans.org/security-resources/malwarefaq/conficker-worm.php
https://www2.sans.org/security-resources/malwarefaq/conficker-worm.php
https://tools.ietf.org/html/rfc6970
https://www.us-cert.gov/
http://repo.xposed.info/

[24] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App without
Actually Seeing It: UI State Inference and Novel Android Attacks.
In USENIX Security, 2014.

[25] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in Android. In ACM Mobisys, 2011.

[26] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide scanning and its security applications. In USENIX Security,
2013.

[27] W. M. Eddy. TCP SYN Flooding Attacks and Common Mitigations.
rfc4987, 2007.

[28] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth. TaintDroid: An Information Flow Tracking System for
Real-Time Privacy Monitoring on Smartphones. In OSDI, 2010.

[29] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith. Why Eve and Mallory love Android: An analysis of
Android SSL (in) security. In ACM CCS, 2012.

[30] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission Re-delegation: Attacks and Defenses. In USENIX Security

Symposium, 2011.

[31] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman, Z. M.
Mao, and A. Prakash. Android UI Deception Revisited: Attacks and
Defenses. In FC, 2016.

[32] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna. TriggerScope: Towards Detecting Logic Bombs in Android
Applications. In IEEE Security & Privacy, 2016.

[33] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: Auto-
matically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale. In TRUST, 2012.

[34] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and
M. Rinard. Information-flow Analysis of Android Applications in
DroidSafe. In NDSS, 2015.

[35] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection
of capability leaks in stock android smartphones. In NDSS, 2012.

[36] H. Huang, S. Zhu, P. Liu, and D. Wu. A framework for evaluating
mobile app repackaging detection algorithms. In TRUST. 2013.

[37] Y. Z. X. Jiang. Detecting passive content leaks and pollution in
android applications. In NDSS, 2013.

[38] P. Lantz and B. Johansson. Towards bridging the gap between
dalvik bytecode and native code during static analysis of android
applications. In Wireless Communications and Mobile Computing

Conference, 2015.

[39] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Iccta: Detecting
inter-component privacy leaks in android apps. In Proceedings of the

37th International Conference on Software Engineering-Volume 1,
pages 280–291. IEEE Press, 2015.

[40] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting
android apps for component hijacking vulnerabilities. In ACM CCS,
2012.

[41] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer Worm. IEEE Security & Privacy,
2003.

[42] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon. Effective inter-component communication mapping
in android: An essential step towards holistic security analysis. In
Presented as part of the 22nd USENIX Security Symposium (USENIX

Security 13), pages 543–558, 2013.

[43] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating an-
droid anti-malware against transformation attacks. In ACM ASIACCS,
2013.

[44] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao. Kratos:
Discovering Inconsistent Security Policy Enforcement in the Android
Framework. In NDSS, 2016.

[45] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google
play. In ACM SIGMETRICS Performance Evaluation Review, 2014.

[46] F. Wei, S. Roy, X. Ou, et al. Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps. In ACM CCS, 2014.

[47] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appcontext:
Differentiating malicious and benign mobile app behaviors using
context. In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, volume 1, pages 303–313. IEEE, 2015.

[48] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Sidebuster:
Automated Detection and Quantification of Side-channel Leaks in
Web Application Development. In CCS, 2010.

[49] L. Zhang, M. Gordon, R. Dick, Z. M. Mao, P. Dinda, and L. Yang.
ADEL: An Automatic Detector of Energy Leaks for Smartphone
Applications. In Proc. of International Conference on Hardware-

Software Codesign and System Synthesis, 2012.

[50] Y. Zhou and X. Jiang. Dissecting Android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy, 2012.

[51] Y. Zhou and X. Jiang. Detecting Passive Content Leaks and Pollution
in Android Applications. In NDSS, 2013.

[52] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of
My Market: Detecting Malicious Apps in Official and Alternative
Android Markets. In NDSS, 2012.

14

	Introduction
	Background and Threat Model
	Design Pattern of Open Port Apps
	OPAnalyzer Approach
	Entry Point Analysis
	Native Code Analyzer
	Sensitive API Selection
	Usage Path Analysis
	Evaluation

	Usage and Vulnerability
	Popularity and Permission Usage
	Usage Family Categorization
	Security Implications

	Exploits Case Studies
	Intended for Use by App Users
	Intended for Communication with Backend
	Intended for Local Communication

	Mitigation Strategy
	Related Work
	Conclusion
	References

