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ABSTRACT
Commodity small networks typically rely on NAT as a perimeter de-
fense, but are susceptible to a variety of well-known intra-network
attacks, such as ARP spoofing. With the increased prevalence of
oft-compromised Internet-of-Things (IoT) devices now taking up
residence in homes and small businesses, the potential for abuse has
never been higher. In this work, we present a novel mechanism for
strongly attributing local network traffic to its originating principal,
fully-compatible with existing legacy devices. We eliminate Man-in-
the-Middle attacks at both the link and service discovery layers, and
enable users to identify and block malicious devices from direct at-
tacks against other endpoints. Despite the prevalence of prior work
with similar goals, previous solutions have either been unsuited to
non-Enterprise environments or have broken compatibility with
existing network devices and therefore failed to be adopted. Our
prototype imposes negligible performance overhead, runs on an
inexpensive commodity router, and retains full compatibility with
modern and legacy devices.
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1 INTRODUCTION
Access control is one of the oldest, most used, and strongest security
mechanisms in use today. However, in today’s home and small
business networks it is difficult, if not impossible, to enforce any
meaningful access control in the presence of adversaries. Unlike
local-device permission systems [18], which can enforce access
control policies by binding a user’s identity to the user’s account,
the modern network stack is distributed and anonymous. Research
on access control in distributed systems has generated important
models such as end-to-end encryption [21], ticket-granting [22],
and the Public Key Infrastructure [13]. However, these models
have historically been implemented at the application layer of the
network stack and require coordination between compatible client
devices. Due to the difficulty in applying these models to the lowest
layers of the network stack while retaining compatibility with
legacy devices, our networks are still vulnerable to a variety of
well-known attacks today.

Identifiers such as MAC and IP addresses of a device are used by
low-level networking protocols to direct traffic, but can be easily
changed or spoofed and are not sufficient for strong attribution.
For instance, in the ARP spoofing attack, an attacker associates its
MAC address with a victim’s IP address to intercept the victim’s
packets, opening the door for data theft and the spread of mal-
ware. Well-known attacks like this continue to pose a real threat,
especially on home networks and public wireless networks that
lack network administrators or the capability for robust intrusion
detection. Fundamentally, this is caused by the lack of an effec-
tive low-layer mechanism to attribute network functions to their
originating principals. We identify this as the Attribution Problem.

Despite this, commodity small networks, such as home and
small business networks, have traditionally been regarded as safe
since Network Address Translation (NAT) prevents unauthorized
inbound connections from the Internet and devices on the local
network are generally benign. However, the Internet of Things
(IoT) has dramatically shifted the threat landscape for edge net-
works. In addition to transient devices, such as an infected laptop
brought in by a guest, the widespread security weaknesses in to-
day’s IoT devices have been shown to cause large scale infections
in home and small business networks [10, 17, 20, 26]. The Vault
7 leaks [25] have revealed weaponized code designed to invade
the home network, including an attack that turns Samsung smart
TVs into audio recorders. Once the perimeter defense has been
bypassed, compromised IoT devices can serve as gateways to at-
tack other devices on the network. Devices with valuable content,
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such as smartphones and laptop computers, are common targets
for attacks such as WannaCry [3]. Sharing a local network with
adversaries is risky enough that the US Department of Homeland
Security cautions users to avoid connecting to public WiFi when
possible [14]. Network-based firewalls are ineffective when adver-
saries can change their identifiers at will. Without the capability for
strong attribution, malicious devices have free reign to intercept
users’ network traffic and launch unfiltered attacks against their
targets.

Enterprise network security solutions can defend against these
attacks, but are poorly suited to small networks due to cost and
complexity. Small network security has therefore been an area
of active research. However, previous work has failed to make
an impact because: 1) it focused on specific attack patterns and
did not generalize to protect against other categories of attacks,
2) it required clients, many of which run proprietary software and
cannot easily be updated, to implement new network protocols,
3) it was not fully compatible with legacy use cases, or 4) it was not
easy to use by an only moderately technical user.

In this paper, we present what we believe to be the first com-
prehensive solution to the Attribution Problem, focusing first on
commodity small networks. Our design provides strong network
attribution at the router, which, as the central point in the network,
is capable of defending all hosts on the network simultaneously. To
provide strong attribution, the router first assigns unique creden-
tials to each device in a network and then binds these credentials
to separate virtual network interfaces (vNICs) on the router. This
allows the router to effectively differentiate flows between devices,
even when adversaries spoof their identifiers. To achieve compat-
ibility with existing devices and network functions, we leverage
the credentials used by existing wireless authentication protocols
so that the attribution process is completely transparent. This at-
tribution layer resides below the link layer of the network stack
and thus requires no changes to existing devices or protocols. It
cannot be tampered with by an adversary short of compromising
the router itself.

Leveraging the support of the strong attribution at such a low
layer, we are able to design and implement security modules to
defend against local network attacks at any higher layers of the
network stack. In this paper, we present two new security modules:
Checkpoint, which eliminates Man-in-the-Middle (MitM) attacks
at the link layer, and Dreamcatcher, which enforces an on-demand
access control policy for devices on the network.

Users primarily interact with Dreamcatcher, a user-driven access
control system [19], which provides simple interfaces for enrolling
new devices on the network and managing the network’s access
control policy. As devices exercise network functionality, Dream-
catcher creates rules to extend the policy on-demand, enabling users
to allow or block connections between devices. Our current access
control model prioritizes simplicity and usability, as is appropriate
for a small network environment, although alternate models with
finer- or coarser-grained permissions are possible. All traffic is cat-
egorized into one of four high-level rule categories and expressed
to the user in plain English. We show that this model is approach-
able for most users and protects against several entire categories of
attacks.

We present the following contributions:

• Anewmechanism for strong attribution on commodity small
networks, fully compatible with existing protocols, that can
protect all layers of the network stack.

• An evaluation of our approach that shows our approach is
effective in defending against several categories of network
attacks, including ARP spoofing, name poisoning, server-
side registration spoofing, and direct attacks. The network
performance overhead is also shown to be negligible.

• A prototype implementation of our attribution mechanism
and new security modules which runs on a $50 commodity
router and is released as open source.

2 THREAT MODEL
In this work, we consider any internal attack on commodity small
networks, even zero-day attacks. We assume that the router is
trusted, as our implementation runs on it, but otherwise any device
on the network may be compromised. Compromised devices may
attempt to send any arbitrary network packets to the router or
other devices on the network.

Overtly malicious behaviors, such as malware which causes a
Denial of Service (DoS), are outside the scope of this paper. We
assume that they will be detected by the administrator, perhaps by
leveraging the attribution mechanism provided in this paper, and
that an appropriate remediation (e.g. unplugging the device) will
be attempted. Thus, the primary threats we consider are stealthy
attacks that aim to subvert the integrity or confidentiality of legit-
imate communications, or attempt to directly compromise other
devices, without visibly affecting normal device operations.

We specifically note that our work does not attempt to com-
pletely block all threats, but to enable users to more effectively
defend their network. Ultimately, the degree to which this is possi-
ble depends on many factors including which devices are initially
compromised and the user’s understanding of the system.

3 METHODOLOGY
3.1 Attribution mechanism
The MAC and IP addresses used in all low-level protocols such as
the Address Resolution Protocol (ARP), switching, and routing are
not unique and can be changed or spoofed by any device. The exist-
ing computing base depends on these legacy protocols for correct
operation, and thus previous attempts to replace these identifiers
with more secure alternatives [2, 4, 6] have ultimately failed to be
adopted.

Design Overview. Fundamentally, our goal is to split the flows
between devices so they can be uniquely identified and differen-
tiated. This is done in two steps. We must first assign unique cre-
dentials to each device, and then bind these credentials to an ar-
chitectural component suitable for use in our security modules.
To do this, we leverage the credentials used in existing wireless
authentication protocols and associate each device’s credentials
with its own virtual network interface (vNIC) on the router. By
associating each device with a unique vNIC, we make each device’s
traffic accessible for packet filtering using physical-layer criteria.
Operating at such a low layer enables us to defend any higher layer
while remaining compatible with all network protocols.



3.1.1 Assigning unique device credentials.
In most small networks using WPA Personal network authenti-
cation, credentials consist of the SSID (network name) and a pre-
shared key (PSK) used across all devices that connect to the network.
Conceptually, we can tweak this model so the name of the network
represents a publicly-visible username, and the PSK represents a
unique credential for a single device, so long as that credential is
not shared. Modern consumer routers often support the ability to
run multiple wireless networks using the same physical radio, each
with a unique PSK. We can assign unique credentials to each device
by creating them separate wireless networks

Enterprise environments must often support hundreds or thou-
sands of clients simultaneously and so use one of several enterprise
protocols. All WPA Enterprise protocols assign each user their
own credentials, typically in the form of a username and password,
which we can use directly.

These two credential schemes each have drawbacks. Unfortu-
nately, commodity routers are often limited below the software
layer to hosting a maximum of 8 wireless networks per radio. This
is not a fundamental limitation of the approach, but rather a practi-
cal limitation imposed by router manufacturers. Since our use of
WPA Personal networks can only support a single device while
maintaining unique credentials for each, we quickly run out of avail-
able networks if we only use this technique. WPA Enterprise does
not limit the number of devices but is not universally supported by
all devices, particularly legacy devices such as network printers and
streaming media players. However, by using both WPA Personal
and Enterprise authentication mechanisms simultaneously, we can
mitigate the downsides of both.

Our approach uses a single main WPA Enterprise network to
connect all modern computing devices, and then uses the remaining
15 available wireless networks from two radios to support a single
legacy device each. We believe this should be sufficient for the
majority of small network use cases.

3.1.2 Binding device credentials to vNICs.
After assigning a unique credential to each device, we must provide
a way for applications to attribute flows to devices. For both of the
credentialing techniques presented above, we split each device’s
traffic out into a separate vNIC within the router based on the
credentials provided. For WPA Personal networks, each generates
its own network interface: wlan0, wlan1, etc. These vNICs are
connected to the main local network bridge and so all connected
devices will share the same network.

However, using our WPA Enterprise technique, all devices share
the same wireless network, and therefore the same vNIC by default.
To split each device’s traffic into separate vNICs, we use an enter-
prise feature: VLAN Isolation. VLAN isolation allows administrators
to specify that each wireless client will be placed on a pre-defined
virtual local area network (VLAN), isolated from other VLANs. We
can create a new VLAN with associated vNIC for each device. Un-
fortunately, by itself, this approach interferes with normal network
operation. Placing each device on a separate VLAN also puts it on
a separate network. Many local network protocols, such as ARP,
DHCP, and mDNS fail to traverse the network boundaries when
using VLAN isolation. To solve this issue, we modify the hostapd
utility responsible for generating the virtual network infrastruc-
ture to dynamically connect each vNIC to the main LAN bridge as

Figure 1: By combining both techniques for attribution on
WPA Personal and WPA Enterprise networks, we can sup-
port an effectively unlimited number ofmodern devices and
15 legacy devices.

clients enter and leave the network. Thus, despite being on sepa-
rate VLANs, all devices share the same network and local network
protocols succeed. The architecture for our combined approach
supporting both WPA Personal and WPA Enterprise attribution
techniques is shown in Figure 1.

3.2 Security applications
Leveraging this support for strong attribution, we are able to design
and implement security modules to defend against local network
attacks at higher layers of the network stack. We present Check-
point, a completely transparent solution to ARP andMAC spoofing
attacks, and Dreamcatcher, an access control system for the com-
modity small network.

3.2.1 Checkpoint: link-layer integrity checking.
In IP/Ethernet networks, the ARP protocol is used to resolve a target
IP address to its corresponding MAC address. In ARP spoofing
attacks, a adversary associates the target IP address with its own
MAC address so that packets are rerouted to itself at the link layer.

In traditional networks, this is a difficult issue to address since
MAC addresses can be spoofed. However, our new attribution mech-
anism guarantees that each device’s traffic will be bound to a unique
vNIC, and thus Checkpoint can filter ARP traffic based on a strong
device identity. To address ARP spoofing, Checkpoint allows each
device to claim IP addresses as a byproduct of the Sender Protocol
Address field (i.e. source IP address) on any sent ARP packet. If an IP
address is claimed by a device, Checkpoint will block any ARP pack-
ets from other devices claiming that same address. Devices must
periodically re-claim IP addresses, or the claim will expire. This
simple mechanism stops ARP spoofing attacks entirely. Checkpoint
also prevents MAC spoofing attacks via a similar mechanism.



Figure 2: Dreamcatcher architecture. Dreamcatcher creates
new rules on demand. Users change policy with the web UI.

By binding these low-level network identifiers to each device’s
true identity, we can provide a simple, robust, and compatible mech-
anism to eliminate link-layer MitM attacks.

3.2.2 Dreamcatcher: device permission manager.
At its core, Dreamcatcher is a firewall. Dreamcatcher blocks all
local network traffic by default, allowing only approved connec-
tions to proceed. Upon encountering a new network event, such
as one device sending a packet to another device for the first time,
Dreamcatcher will prompt the user to create a rule to allow or
block the event. Thereafter, for similar events, Dreamcatcher will
follow its existing set of rules without prompting the user. This
is a familiar access control model, similar to other demand-driven
security applications and recent iterations of mobile permissions
systems [1, 8, 24]. Dreamcatcher’s architecture is shown in Figure 2.

Users interact with Dreamcatcher’s web interface: two additional
web pages added to the router’s normal configuration interface.
New devices are added through the Add Devices page. Users are
prompted to specify a unique device name, such as “work laptop” or
“Alice phone.” Dreamcatcher will randomly generate a 16-character
alphabetic password for the device and display it to the user, which
can be used along with the input device name to connect to the
wireless network. Once the user has left the page, the password will
never be displayed again. Instead, users are cautioned to never reuse
device passwords and to delete and recreate devices in the event
of an accidentally forgotten password. We model this password
choice after Google’s Application-Specific passwords [12] which
were designed to be easily entered a single time on devices with
reduced accessibility. We note that an alternate password scheme
could easily be substituted to meet more or less stringent security
requirements, such as extending the password to 20 characters
to reach the 64-bits of entropy recommended by NIST’s Digital
Identity Guidelines [15] for unthrottled attacks.

The Rules page allows users to view new events and manage
the rules they create. New events create pending rules, which are
shown at the top of the screen for easy access. Each rule has but-
tons to accept reject, or delete the rule. Approved rules display the
previously-chosen verdict and also allow the user to delete the rule
in case the verdict needs to be changed. Rules are described in plain
English, not technical terms, and capture relationships between
entire devices, not specific types of network traffic.1 Categorizing
network traffic in terms of intent is a significant contributor to

1A single user action often initiates several different types of network connections. In
our early prototypes, we found protocol-specific rules to be overly cumbersome.

making the entire system usable in practice. Details of this catego-
rization can be found in Appendix A.

Companion App. To facilitate real-world use of Dreamcatcher,
we created an Android application to deliver real-time rule alerts
to the user. This provides immediate feedback, prompting users
to make rule decisions immediately after a new event is detected.
Dreamcatcher will queue alerts and deliver them to the Android
app when it is detected on the local network. The application will
listen for an incoming alert, display a notification to the user, and
allow the user to quickly Accept or Reject the new rule.

4 EVALUATION
We built prototypes of Checkpoint and Dreamcatcher on a fork of
the OpenWRT Linux framework for embedded devices [7]. Our
test platform is a TP-Link WDR4300 wireless router with 8MB of
persistent flash storage, 128MB of RAM, and an Atheros AR9344
CPU clocked at 560 Mhz. This router cost under $50 at time of
purchase, which we believe makes it a reasonable test platform for
an average consumer home. For our testing, we also used a variety
of unmodified consumer devices, such as laptops and smartphones,
listed in Appendix B. We evaluate these security modules on their
effectiveness, their usability, and their performance impact.

4.1 Effectiveness
We test a variety of different attacks that may be used on a tradi-
tional home or public WiFi network and explore the effectiveness of
Checkpoint and Dreamcatcher in defending against these attacks.

4.1.1 ARP spoofing.
In this scenario, Laptop3 used the Ettercap [16] tool to launch an
ARP spoofing attack and MitM the connection between Phone1 and
Desktop1. Laptop3 sent repeated gratuitous ARP replies to Phone1,
informing it that Desktop1’s IP address should be associated with
Laptop3’s MAC address. Checkpoint, having already bound the
Desktop1’s IP address to Desktop1’s identity, blocked Laptop3’s
ARP replies containing Desktop1’s IP address in the source address
field. Thus, the ARP spoofing attack was completely blocked.

4.1.2 mDNS spoofing.
In this scenario, Roommate1 used a reimplementation of the mDNS-
based MitM attack discovered by Bai et al. [2] to intercept printed
documents between Laptop1 and Printer1. When Laptop1 at-
tempted to print, it sent a service discovery packet to the network to
find an eligible printer. Roommate1 saw this packet and attempted to
race Printer1 with an advertisement for Printer1’s device name,
“Brother DCP-L2540DW series”. If Dreamcatcher had not been run-
ning and Roommate1’s advertisement arrived first, Laptop1 would
have connected instead to Roommate1. However, Dreamcatcher in-
tercepted Roommate1’s advertisement packet, blocked it by default,
and created a new rule informing the user that Roommate1 was at-
tempting to advertise itself as “Brother DCP-L2540DW series”. Thus,
the attack was blocked and the user was notified that Roommate1
was attempting to impersonate a printer.

4.1.3 Direct attack.
There are many potential direct attacks, ranging from exploits
for specific running services to simply logging in to a device via
telnet with default credentials. Direct attacks, by our definition, will
consist of a malicious device attempting to send some number of



packets directly to a victim device to exploit the target vulnerability.
These packets, if not already allowed by an existing rule, will trigger
a new unicast rule between the malicious and victim devices.

As a stand-in for this category of attacks, we used a Raspberry Pi
that we identified to the network as a smart lightbulb. Lightbulb1
attempted to log in to Laptop1 via SSH with previously-obtained
credentials. Dreamcatcher blocked the connection automatically
and because the Lightbulb had no reason to need to connect to
Laptop1 in the future, we rejected the rule.

4.1.4 Server registration spoofing attack.
In this scenario, Roommate1 launched a MitM attack against the
Filedrop application as Laptop1 and Laptop2 attempted to transfer
a file. The Filedrop application finds other compatible devices by
registering with the Filedrop servers and requesting a list of the
IP addresses of any other Filedrop-enabled devices on the local
network. We reverse-engineered the Filedrop application and repli-
cated the same device registration and discovery logic in a Node.js
script. In this attack, the script periodically retrieved the local de-
vice list and upon discovering the target victim, Laptop2, it quickly
sent another registration request to the Filedrop server to asso-
ciate Laptop2’s device name with Roommate1’s IP address. Without
Dreamcatcher, Laptop1 would connect to Roommate1 in place of
Laptop2. However, whenwe performed this test on aDreamcatcher-
enabled network, Laptop1’s connection to Roommate1 was blocked
by default, generated a new rule, and the Filedrop application failed
to connect. Thus, the MitM attack was downgraded to a DoS attack.

4.2 Usability
While Checkpoint’s defense is completely transparent to the user,
the effectiveness of Dreamcatcher is directly dependent on how it
is used. For instance, it is critical that users do not share credentials
between devices, so our device enrollment process encourages good
behavior by making new device enrollment easier than retrieving
existing credentials. To evaluate the usability of Dreamcatcher,
we turn to a study using Mechanical Turk as a stand-in for real
users. This study was conducted after obtaining a waiver from our
University’s Institutional Review Board.

Amazon’s Mechanical Turk is an online labor market in which
Requestors can post tasks to be completed and Workers can com-
plete tasks for payment. We used Mechanical Turk to recruit partic-
ipants for our survey, restricting participants to those with over 500
completed tasks and a 95% acceptance rate but with no diversity
restrictions. In Mechanical Turk, workers are typically paid a flat
fee for each task they complete. Therefore, workers are incentivized
to complete tasks as quickly as possible to maximize their hourly
income. Since we wished for our participants to respond thought-
fully to our survey, we structured payment in terms of a base rate
to be paid for completion of the survey, with a bonus to be paid for
“correct” responses to the survey questions. We manually reviewed
and graded all survey responses. Of 108 workers who accepted our
task, 95 completed the survey normally, 9 we designated as rushed
due to completion times under nine minutes, 3 gave abnormal an-
swers indicating they didn’t fully understand the survey itself, and
1 was eliminated for failing to complete the survey in good faith.

At a high level, our survey was composed of the following com-
ponents: (1) A brief overview of Dreamcatcher. (2) A form for the

Scenario Category Normal Users Rushed Users Abnormal Users
1 Setup 68/95 (72%) 2/9 (22%) 0/3 (0%)
2 Setup 82/95 (86%) 2/9 (22%) 0/3 (0%)
3 Normal Use 90/95 (95%) 3/9 (33%) 1/3 (33%)
4 Attack 63/95 (66%) 3/9 (33%) 2/3 (67%)
5.1 Normal Use 87/95 (92%) 7/9 (78%) 1/3 (33%)
5.2 Normal Use 74/95 (78%) 6/9 (67%) 3/3 (100%)
5.3 Normal Use 94/95 (99%) 8/9 (89%) 3/3 (100%)
6 Attack 78/95 (82%) 6/9 (67%) 3/3 (100%)
7 Attack 86/95 (91%) 2/9 (22%) 2/3 (67%)

Mean Time (mm:ss) [Std. Dev] 24:36 [14:24]** 6:48 [1:44] 27:04 [26:26]
Table 1: Proportion of scenarios completed successfully by
Mechanical Turk workers. **We exclude the survey time
from seven outliers of our normal user population with sur-
vey times in excess of 80 minutes.

participant’s self-reported computer and network experience levels,
included in Appendix C. (3) A walkthrough of the Dreamcatcher
user interface and description of how to add devices to the network
and make rules decisions. (4) A short training module to introduce
the concepts of adding devices to the network, accepting necessary
rules, and blocking potentially-malicious network actions. None
of the training scenarios reflected a subsequent storyline scenario.
(5) A series of scenarios in which we presented a fictional story-
line and asked participants to respond to the network events that
would have occurred, shown in Table 1. (6) A brief post-survey exit
questionnaire. Details of these scenarios and how they were graded
are included in Appendix D.

From our normal user survey results, it is clear that the majority
of users were able to successfully navigate most of the scenarios
presented to them. Most importantly, almost all users were able
to properly identify the rules they needed to accept in order to
successfully transfer a file and print a document. Only 14% of users
who correctly enabled device communication also granted extra
privileges to other benign devices on the home network. 69% of all
users were able to answer all of the normal use questions correctly,
and amongmore technical participants the success rate reached 88%.
With very little training, and no way to learn from their mistakes as
would be possible in the real world, the majority of our participants
had no difficulty using Dreamcatcher to accept rules for everyday
activities. This is significant, as any user who can succeed in normal
device operations has very little disincentive to using Dreamcatcher
and is able to benefit from the ability to resist attacks, even if some
attacks can still succeed for some users.

4.3 Performance
As Dreamcatcher and Checkpoint affect every packet that traverses
the router, it is important that it not introduce overhead that af-
fects the user experience. We measure both first-packet latency
and overall throughput. Since the filtering for both Checkpoint and
Dreamcatcher is done through the netfilter framework entirely in
the kernel, we expect the performance overhead to be minimal. Due
to Checkpoint and Dreamcatcher sharing a common filtering plat-
form and Dreamcatcher’s rules being substantially more complex
than those of Checkpoint, we have taken a worst-case approach
and present our results using Dreamcatcher rules.
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Figure 3: First-packet latency. Service discovery often takes
several seconds and the ~9 ms of additional latency for ad-
vertisement packets does not degrade the user experience.

4.3.1 First-packet Latency.
To measure first-packet latency, we sent various requests between
a desktop and laptop, both with Dreamcatcher completely disabled
and enabled with various numbers of rules in effect. Using tcpdump
on the router, we captured timestamps for all packets both as they
entered through the desktop’s network interface and left through
the laptop’s network interface. Thus, we can rule out any overhead
from wireless interference or retransmission. We tested Dream-
catcher under four configurations: with Dreamcatcher completely
disabled, Dreamcatcher enabled but with no additional rules, with
10 additional rules, and with 100 additional rules. We evaluate first-
packet latency differently for each category of network traffic, as in
some cases the traffic is handled differently by Dreamcatcher. In all
cases with Dreamcatcher enabled, a rule exists to accept the specific
network traffic we evaluate, since otherwise the traffic would be
blocked. Our results over 100 iterations are detailed in Figure 3.
Details of each experiment can be found in Appendix E.

We note that for service discovery 9 milliseconds is unnoticeable
in practice. The mDNS specification, RFC 6762 [5], repeatedly men-
tions that mDNS responders should delay their responses by up to
500 milliseconds, and in practice, service discovery often takes sev-
eral seconds. Dreamcatcher’s first-packet latency is unnoticeable.

4.3.2 Throughput.
To measure throughput, we used the iperf [9] utility. We installed
iperf on both our desktop and laptop, and performed twenty 10-
second TCP bandwidth measurements for each of the four Dream-
catcher configurations. We observed average bandwidths of 51.80
mbps, 52.99 mbps, 52.92 mbps, and 51.60 mbps for the Dreamcatcher
off and 0/10/100 additional rules tests, respectively, with standard
deviations ranging from 2.08 to 2.70 mbps. In other words, no sig-
nificant decrease in bandwidth with Dreamcatcher enabled.

5 CONCLUSION
Adding attribution to commodity small networks makes them
demonstrably safer. In this work, we introduce a new mechanism
for strong attribution on local networks, and develop two prototype
security modules that can protect devices against several categories
of attacks. We evaluate these security modules, and show that they

block ARP spoofing, name poisoning, and in many cases even di-
rect attacks on vulnerable devices, while maintaining compatibility
with existing network protocols and normal network functions.
We demonstrate that the majority of surveyed users can operate
these security modules properly with minimal training, and block
most attacks, even when unaware. Our solutions introduce only a
fraction of a millisecond of additional first-packet latency for most
new connections, and negligible throughput overhead.
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A DREAMCATCHER RULE TYPES
In attempting to reduce all network traffic into actionable events,
we have identified two main types of rules the user must evaluate.
The first event type is a direct connection between devices, which
we present to the user as “<Device A> wants to send messages to
<Device B>” using the user-specified device names. This event type
is directional, meaning Device A may be able to initiate connections
to Device B but a new connection originating from Device B will
be treated as a separate event. This reflects the asymmetric nature
of many device interactions, e.g. a user device may need to initiate
connections to a lightbulb to change its state, but the lightbulb can
be blocked from independently connecting to the user device.

The second event type deals with service discovery. Often on
local networks, a device will make a general inquiry of the network
to see if any other devices support a given service. For instance,
your laptop may query the network for any devices that support
the IPP (printing) protocol when looking for a network printer.
A network printer that receives such a query will then announce
its name, the protocols it supports, and its IP address. In Name
Poisoning attacks [11], a malicious device can race the legitimate
announcement with its own, register the device name with its own
IP address, and MitM future connections. Dreamcatcher protects
against Name Poisoning attacks by handling announcements as the
second event type, presented to the user as, “<Device A> wants to
advertise itself on your network as <Advertised Name>.” The user
can then easily detect and block a malicious device attempting to
masquerade as another. We note that devices will typically advertise
themselves using a human-readable name, as this name field is
often displayed to the user by the application (e.g. “HP Officejet
Pro X476”). Currently, Dreamcatcher only supports mDNS-based
service discovery, but can be extended to support LLMNR, NetBIOS,
SSDP, and other service discovery protocols as well.

Additionally, we have slight variants of these two rule types for
broadcast packets and service discovery query packets, respectively.

B EXPERIMENTAL NETWORK DEVICES

Name Model Role in user study
Laptop1 Macbook Pro User’s main laptop
Laptop2 Macbook Pro (Windows 10) User’s secondary laptop
Laptop3 Dell XPS 13 (Debian) User’s compromised laptop
Desktop1 Custom (Debian) User’s desktop
Phone1 Nexus 5x User’s phone
Printer1 Brother DCP-L2540DW User’s printer
Roommate1 Dell Optiplex (Windows 10) Malicious roommate’s desktop
Lightbulb1 Raspberry Pi (Raspbian) Compromised light bulb bridge

C SURVEY PARTICIPANT PROFICIENCIES

Experience Level Network
1: Limited 2: Some 3: Strong Total

Co
m
pu

te
r 1: Beginner 0 0 0 0

2: Average 4 27 0 31
3: Power 1 38 6 45
4: Beginner Dev 0 8 10 18
5: College Degree 0 2 11 13

Total 5 75 27 107

D MECHANICAL TURK SURVEY SCENARIOS
Scenarios 1 and 2 were free-response questions about the steps
necessary to add devices to the network, one before and one after
the training module, although both were after a description of how
to add devices to the network. They were graded subjectively based
on whether we believed the user would be able to properly add new
devices to the network. Correct and incorrect answers were clearly
differentiable in the vast majority of cases. An answer of, “go in
phone settings and connect to my wifi connection” was marked
incorrect whereas an answer of, “Using my laptop I need to log into
the router and add another device for my smartphone” was marked
correct. Scenarios 3 and 5 presented the userwith scenarios inwhich
they needed to transfer a file and print a document, respectively,
and asked which, if any, rules they would need to accept, reject, or
delete to accomplish the stated objective. Responses were graded
correct if the participant accepted all of the requisite rules to enable
the network function to succeed. Scenarios 4, 6, and 7 presented the
user with scenarios in which the previously-working file transfer, a
subsequent print job, and a YouTube video failed due to malicious
interference and again asked which, if any, rules would need to
be adjusted. Responses were graded correct if the participant did
not accept any rules that would allow the malicious behavior to
succeed. We intentionally did not point out any malicious behavior,
but only that the services in question were malfunctioning.

E LATENCY EXPERIMENTS
For direct packets, we send ICMP echo (ping) requests from the
desktop to laptop. With Dreamcatcher disabled, these packets are
immediately sent to the laptop. With Dreamcatcher enabled, these
packets traverse the netfilter chain for direct packets and match the
allowed rule. As we add additional direct rules prior to the accept
rule, the overhead increases by only 0.016 milliseconds on average
between the ’Dreamcatcher off’ and ’100 rule’ tests.

For broadcast packets, we similarly send ICMP echo requests
from the desktop, and measure them from the laptop, but these
packets are sent to the broadcast address and to every other device
on the network. As the packets hit the routing layer, they are split
into multiple packets – one for each device on the network – which
we believe accounts for the slightly increased latency. Still, the
average overhead introduced between the ’Dreamcatcher off’ and
’100 rule’ tests is only 0.196 milliseconds.

For discovery packets, we replay an mDNS discovery packet
using the tcpreplay [23] utility. With Dreamcatcher disabled, this
packet is immediately accepted. With Dreamcatcher enabled, we
see very similar latency increases to the broadcast packet test. This
is to be expected, since the discovery packet is sent to a multicast
IP address and similarly split into multiple packets, one for each
device on the network. The average overhead introduced between
the ’Dreamcatcher off’ and ’100 rule’ tests is 0.156 milliseconds.

For advertisement packets, we also use tcpreplay to replay
an mDNS advertisement packet. We note that the mDNS adver-
tisement packet we used contained four answer fields and two
unique device names, requiring our mDNS kernel module to match
the packet against multiple approved device names. This is repre-
sentative of real-world advertisement packets and not a best-case
scenario. We notice 8.682 milliseconds of additional latency as soon



as Dreamcatcher is enabled, with only a 0.161 millisecond increase
as additional rules are added. We believe this dramatic increase is
due to the complexity of parsing the mDNS name structure, which
has variable length and can contain back-references at any point.
We ensure that for each device, the mDNS kernel module will only
need to parse the name structure once by bundling all approved
names into a single netfilter rule and ensuring that that rule is

placed before any rules for rejected names. If the packet is not
accepted, it will either be rejected or sent to Dreamcatcher, in which
case any additional latency is irrelevant since the packet will be
blocked. Thus, the 100 additional rules we add prior to the target
accept rule must be for different devices and can be quickly passed
without activating the mDNS kernel module.
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