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ABSTRACT

Carrying over 75% of the last-mile mobile Internet traffic, WiFi

has inevitably become an enticing target for various security threats.

In this work, we characterize a wide variety of real-world WiFi

threats at an unprecedented scale, involving 19 million WiFi access

points (APs) mostly located in China, by deploying a crowdsourced

security checking system on 14 million mobile devices in the wild.

Leveraging the collected data, we reveal the landscape of nationwide

WiFi threats for the first time. We find that the prevalence, riskiness,

and breakdown of WiFi threats deviate significantly from common

understandings and prior studies. In particular, we detect attacks

at around 4% of all WiFi APs, uncover that most WiFi attacks are

driven by an underground economy, and provide strong evidence

of web analytics platforms being the bottleneck of its monetization

chain. Further, we provide insightful guidance for defending against

WiFi attacks at scale, and some of our efforts have already yielded

real-world impact—effectively disrupted the WiFi attack ecosystem.
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• Security and privacy → Mobile and wireless security; Econom-

ics of security and privacy.
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1 INTRODUCTION

More than 75% of the last-mile Internet traffic of today’s mobile sys-

tems is delivered via WiFi [29], which thereby has also become an
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enticing target for various security threats [15, 45, 88]. Criminals ex-

ploit security vulnerabilities of WiFi access points (APs) [4, 55, 88]

to eavesdrop on wireless traffic [27], to launch phishing attacks

through DNS hijacking [15], and to directly generate profits through

cryptojacking [45]. Furthermore, adversaries not only compromise

existing WiFi APs, but also deploy malicious WiFi-based edge de-

vices [40, 51]. Currently, WiFi-based attacks have become nation-

wide security threats, affecting hundreds of millions of end users.

Census Methodology. To comprehensively understand nationwide

WiFi threats, we take a unique opportunity to collaborate with WiFi-

Manager (actual name anonymized), a crowdsourcing-based WiFi

discovery and management service used by 800+ million (M) An-

droid devices across 200+ countries/regions. It helps Android sys-

tems automatically discover accessible WiFi APs with Internet con-

nectivity, by crowdsourcing the connectivity information and sta-

tistics contributed by the numerous live devices—each user device

serves as a tester for a given WiFi AP. Leveraging this massive-scale

crowdsourcing platform, we build a WiFi security checking system,

which we call WiSC (WiFi Security Checker), integrated in WiFi-

Manager as an optional function. WiSC enables us to measure a

wide variety of real-world WiFi threats at an unprecedented scale.

Running on a massive number of heterogeneous mobile devices

requires WiSC to address three challenges: 1) no root privilege ac-

cess, as WiFiManager needs to be a pure user-space app to register

wide deployment; 2) achieving a good detection coverage while

maintaining high precision, both being crucial to a comprehensive

and in-depth understanding of the WiFi threat ecosystem; and 3) no

long-term traffic monitoring to avoid excessive resource consump-

tion on mobile devices and to minimize users’ privacy concerns.

To tackle these issues, we judiciously engineer our attack detec-

tion framework. Deployed atop a regular Android app, WiSC utilizes

generic system APIs with limited system privileges to detect attacks

on both LAN and WAN. As a result, our threat model targets attacks

mainly occurring at upper layers, including ARP/DHCP spoofing

in LAN and TCP/DNS hijacking in WAN; for other attacks oper-

ating at the MAC/PHY layer, we cannot detect them since WiSC

has no privileged access to WiFi modem and other hardware com-

ponents. To balance the detection accuracy and resource overhead,

WiSC conducts the detection through a novel two-stage pipeline,

by first capturing suspicious attacks in a fast and resource-efficient

manner, followed by a more detailed scrutiny to rule out possible

false positives. Specifically, for LAN-side attacks, WiSC performs

cross-connection gateway-consistency detection (§2.2) by leverag-

ing a common usage scenario where user devices are repeatedly

connected to the same AP; it overcomes limitations in traditional

detection schemes [26, 58]. For WAN-side attacks, we develop a
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cross-layer decoy-based detection scheme (§2.3), where we instru-

ment carefully-crafted decoy packets to extensively trigger primary

WAN attacks and analyze the attack risks by synthesizing cross-layer

information. Combining the above efforts, WiSC manages to realize

accurate attack detection on commodity Android devices within 5

seconds, incurring less than 10 KB of network traffic.

Under user consent and a well-established IRB, WiSC collected

measurement data from 14M user devices upon 19M WiFi APs,

over a period of six months (10/2018 – 04/2019). The data analysis

enabled us to develop a holistic understanding of WiFi threats, with

a number of novel insights.

Prevalence and Riskiness. We detect attacks at 3.92% of the ex-

amined WiFi APs. The percentage is significantly higher than those

(0.21%–1.5%) reported by small-scale studies [67, 69]. A key reason

is that prior studies omit attacks that are considered difficult to launch

given today’s seemingly strengthened mobile OS and network proto-

cols. In particular, common sense suggests that given the increasing

adoption of HTTPS, web content manipulation such as advertise-

ment (ad) injection is unlikely to occur. Nevertheless, our findings

indicate that the majority (55%) of our detected attacks remain ad

injections. We attribute this to the prevalent misconfigurations of

HTTPS in the real world. We find (and confirm through controlled

experiments) that ad injections can be successfully launched to-

wards popular HTTPS-equipped content providers (e.g., TMall [83],

BBC [11], and Shopify [71]) due to improper HTTPS configura-

tions. For example, a lack of HTTP Strict Transport Security (HSTS)

allows an HTTPS session to fall back to HTTP, making SSL/TLS

stripping attack and henceforth ad injection feasible. Worse still,

even among equipped with HSTS, most do not properly configure

the HSTS parameters (e.g., timeout threshold and preload list).

Counter-intuitively, we notice that ad injections are more likely to

occur on better protected APs: 2.3% of the APs using strong encryp-

tion (WPA/WPA2) vs. 1% of the APs with no or weak encryption

(WEP). We attribute this to the statistically better Internet connec-

tivity of the APs with stronger encryption. The results indicate that

common practices for enhancing WiFi security are not that effective

when confronting today’s sophisticated, mature cybercrime market.

Within the LAN, we identify both ARP and DHCP spoofings.

While ARP spoofing has been reported before [24, 84], DHCP spoof-

ing was mostly deemed as a hypothetical form of attack under WiFi

environments due to the high cost of launching it [56, 87]. Nonethe-

less, our observation refutes this by revealing that DHCP spoofing

is as feasible as other popular attacks in practice. We observe a

considerable fraction (25%) of APs are subject to poor network

connectivity with user devices, and such poor network conditions

substantially increase the success rate of DHCP spoofing.

Economics Behind. Next, we go beyond basic characterizations

by revealing the economics behind WiFi threats: what are attackers’

key decisions for maximizing their profits? A major finding is that

APs under LAN attacks (ARP/DHCP spoofing) exhibit significant

physical movements (median of 724 m) during our measurement;

in comparison, APs under WAN attacks and benign APs are quite

stationary (median of 31 m and 21 m respectively). This can be

explained by our observation that LAN attacks are more likely to

succeed under poor LAN environments, which in turn can easily

arouse network administrators’ vigilance and defensive measures.
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Figure 1: The underground ecosystem of WiFi attacks uncov-

ered by our census. Advertisers pay the adversaries typically

based on the ad-effect reports generated and signed by third-

party, legitimate web analytics platforms.

Thus, adversaries need to strategically relocate to increase the suc-

cess rate and evade detection. Notably, 10% of the APs under LAN

attacks even manifest a clear pattern of shifting among several loca-

tions, forming one or multiple loops.

Perhaps more surprisingly, we notice that most adversaries do not

inject ads to every web page visited by a victim user. Instead, they

opportunistically perform ad injections at a low probability of ∼17%.

The rationale for such “low-rate” attacks is that high-frequency ad in-

jections are more likely to incur users’ complaints and henceforth AP

reset, AP firmware upgrade, or even AP disconnection, causing the

attacker to lose the compromised AP. The attacker therefore needs to

tune the injection frequency to maximize the profit. We mathemati-

cally model the attacker’s revenue, and find that the modeling results

well support our hypothesis—the maximum profit appears at an ad

injection probability of 15%, close to the measurement observation

(17% on average).

Further, our end-to-end analysis on ad-injection attack unravels

its underground ecosystem centered around the monetization chain.

As depicted in Figure 1, adversaries first collect ad requirements

from advertisers ( 1○), and then distribute visible ads to victim users

via compromised or maliciously deployed APs ( 2○ 3○ 4○); after that,

according to the ad-effect reports generated and signed by web ana-

lytics platforms ( 5○ 6○ 7○ 8○), adversaries get paid by the advertisers

( 9○). Our key insight is that the legitimate web analytics platforms

are abused by the attackers; however, they are also the bottlenecks

(i.e., “cut points”) in the monetization chain—almost all of the in-

jected ads are monetized using only four web analytics platforms.

We have reported our findings to the four platforms, leading to defen-

sive intervention that effectively disrupted the WiFi attack ecosystem.

For example, Baidu Analytics have responded to us and stopped

serving 67% of the reported ad links, leading to 49.8% of decrease

of ad injections as of August 2020.

Broader Impact. We acknowledge that most of the WiFi APs in

our study are located in China. It is worth mentioning that we also

detect extensive WiFi attacks in many other countries where WiFi-

Manager is widely used. In some countries (e.g., Burma and Russia),

the fraction of malicious APs is even larger than 4%, as shown in

Table 2. Hence, we feel that our study also provides valuable in-

sights for combating WiFi security threats outside China. Owing to
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its prominent impact in understanding and mitigating WiFi threats

in the wild, WiSC is now an official component of the production

WiFiManager system.

2 STUDY METHODOLOGY

We first outline how the WiSC system works (§2.1). We then explain

in detail our detection schemes for LAN (§2.2) and WAN (§2.3)

attacks. Finally, we describe our large-scale deployment (§2.5).

2.1 WiSC System Overview

To address the three design challenges mentioned in §1, we develop

a novel two-stage pipeline to detect the abovementioned LAN and

WAN attacks. It first efficiently captures suspicious events, and then

scrutinizes them to remove false positives, thus ensuring a high de-

tection accuracy and low resource footprint. WiSC’s architecture is

illustrated in Figure 2. On the UI (user interface) of WiFiManager

there is a “Security Checking” button 1; once clicked, WiSC starts

the LAN attack detection (§2.2) by first retrieving (Step 1○) and

then examining (Step 2○) related LAN information. To detect WAN

attacks (§2.3), WiSC first performs a transport-layer detection (Step

3○) by sending decoy IP packets to the connected AP to determine

whether it is suspicious. For a suspicious AP, WiSC further launches

the application-layer detection (Step 4○) to rule out possible false

positives, by checking DNS responses and modifications to an in-

strumented decoy web page from our own server. The detection

results, along with the LAN information, received responses of sent

decoys, and the device’s location data collected via GPS or cellular

base-station localization, are then encrypted and uploaded via the

connected AP to our log server (Step 5○ 6○).

Ethical Consideration. All analysis tasks in this study comply with

the agreement established between WiFiManager and its users. The

users who participated in the study opted-in as volunteers with in-

formed consent; the analysis was conducted under a well-established

IRB, and no personally identifiable information such as phone num-

ber was collected. We never (and have no way to) link collected data

such as BSSID and device location to users’ true identities.

2.2 LAN Attack Detection

To detect LAN-side attacks, we develop a novel method called cross-

connection gateway-consistency detection. Our scheme first broad-

casts ARP Request messages to all the hosts within a subnet to

retrieve the LAN information and configurations of the examined

AP, and then runs consistency checking with cross-connection and

historic data to accurately detect the attacks. As to be detailed shortly,

in real-world operational scenarios, such additional data help to rule

out various false positives that traditional detection methods (e.g.,

ARP cache consistency checking [26]) may fall into.

ARP Spoofing Detection. A user device leverages ARP to map

the IP address of another device in the LAN to its corresponding

MAC address. In ARP spoofing, a local network attacker broadcasts

1We cannot directly initiate security checking since this action violates the user agree-
ment established between WiFiManager and its users. However, we note that this design
may introduce certain bias into our dataset since users (probably professional ones) may
have already noticed abnormality before they intentionally launch security checks.
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spoofed ARP Response messages that associate her own MAC ad-

dress with the gateway’s IP address [58]. If the user device accepts

such messages, its future local network traffic will be directed to the

attacker instead of the actual gateway.

Our detection is performed by examining changes in the gateway’s

(IP, MAC) address pair, a classic method for detecting ARP spoofing.

As depicted in Figure 3, when a user device initially connects to

an AP, the client of WiSC records the gateway’s (IP, MAC) address

pair by scanning the user device’s ARP cache table, denoted as (IP0,

MAC0). Then when performing security checking, we compare the

current gateway’s (IP, MAC) address pair, denoted as (IP1, MAC1),

with the recorded one. However, this consistency checking [26] is

prone to false positives stemming from ARP cache eviction [54].

Thus, before security checking, we update the user device’s ARP

cache table by querying for the corresponding MAC addresses of

all the possible IP addresses in the subnet, and then record each (IP,

MAC) address pair when it is updated, so as to prevent ARP cache

eviction from affecting our results. If the gateway’s MAC address

changes but the associated IP address remains (MAC0 ≠ MAC1 and

IP0 = IP1), we determine that the AP is under ARP spoofing.

It is worth noting that when the criterion above does not hold, it

is still possible that the AP is under ARP spoofing—the AP may

have already been compromised at the connection establishment (AP

association) time (i.e., MAC0 is already the attacker’s MAC address

and thus equals to MAC1). In this case, the gateway’s IP address and

the attacker’s own IP address should have been both mapped to the

attacker’s MAC address. Thus, if we find that there exists a MAC

address mapped to two different IP addresses in the ARP cache table,

we also conclude that the AP is under ARP spoofing.
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DHCP Spoofing Detection. When a user device connects to an AP,

it first broadcasts DHCP Discovery messages within the LAN to

acquire the gateway’s IP address. In DHCP spoofing, upon receiving

such messages, the attacker sends spoofed DHCP Offer messages

claiming that her own IP address is the gateway’s IP address [77]. If

the spoofed messages reach the user device earlier than the legitimate

ones and are accepted, the attacker can intercept its future traffic.

To detect DHCP spoofing, one direct solution is to examine

changes in the gateway’s IP address recorded by the user device [26].

However, this does not work in practice since in the design of DHCP,

neither does the gateway periodically broadcast its IP address within

the LAN, nor does the user device periodically query to check/update

the gateway’s IP address. Another solution proposed in prior work

is to detect DHCP spoofing by continuously monitoring duplicate

DHCP messages within the LAN [66], but this requires root privi-

leges and incurs enormous overhead on the user device. To the best

of our knowledge, there is no existing method that can detect DHCP

spoofing without root privileges.

To address these, we design a novel cross-connection approach

that compares the current gateway’s address pair (IP1, MAC1) with

the gateway’s address pair (IP0, MAC0) recorded in the last-time

secure connection, as depicted in Figure 4. We define last-time secure

connection as the user device’s latest connection to the examined

AP, i.e., with the same BSSID,2 when the connection is determined

by WiSC as benign; occasionally, if there are no benign connections

recorded for the AP, we simply use the latest connection. Then, if

the gateway’s IP and MAC addresses have both changed (MAC0 ≠

MAC1 and IP0 ≠ IP1), we suspect that the examined AP is under

DHCP spoofing. Note that switching to another WiFi network will

not trigger this suspicious case, as the last-time secure connection

ensures that the user device connects to the same network (i.e., with

the same BSSID).

In the above suspicious case, it is possible that the gateway’s

changes in IP and MAC addresses are benign—such changes might

be legitimately performed by network administrators. To address

this issue, we add additional logic shown in Figure 4. We check

whether the AP was used as the gateway in the last-time secure

connection—this can be identified by checking whether the AP’s

2A BSSID (Basic Service Set Identifier) is derived from the AP’s MAC address, and
they are usually identical except when the AP supports multiple service sets [25]. If the
AP supports multiple service sets, the BSSID of one of the service sets will be identical
with the AP’s MAC address.

BSSID equals the gateway’s MAC address (BSSID = MAC0). If

true, it is certain that the AP’s MAC address is used as its BSSID

(a common practice) and thus the AP’s MAC address is MAC0.

Since MAC0 is the gateway’s MAC address in the last-time secure

connection, we can then confirm that the AP was used as the gateway.

Provided that the AP was used as the gateway according to the

above examination, and the gateway’s changes (in IP and MAC

addresses) are legitimate, the AP’s IP address should stay in the

same subnet with the user device’s IP address. This is because the

802.11 standard declares that only one logical network segment (i.e.,

one IP subnet) can exist under a Basic Service Set (BSS, including

all the devices connected to the AP and the AP itself) [25]. Since

the AP’s IP address and the user device’s IP address are in the same

subnet, and ARP cache table update is performed at the beginning

of our examination, MAC0 should show up in the user device’s ARP

cache table. On the other hand, if the gateway’s changes are caused

by DHCP spoofing, this may not hold because a stealthy attacker

often uses a different subnet for her new gateway (otherwise address

conflict will occur as the attacker does not know which addresses

have been allocated by the real gateway). Thus, if MAC0 is not in

the user device’s ARP cache table, we can rule out the possibility

of legitimate gateway changes, and conclude that the AP is under

DHCP spoofing.

Trade-offs Made in LAN Attack Detection. In our design, we

make several trade-offs to achieve our goal of high precision without

root privileges and long-term passive traffic monitoring. In ARP

spoofing detection, we assume the adversary does not deliberately

hide herself from other devices in the LAN by fabricating their MAC

addresses or concealing their IP addresses, since the only known

effective method to uncover this is continuously and passively moni-

toring all broadcasts within the LAN. In DHCP spoofing detection,

we conservatively determine all APs not being used as gateways

(which account for 12.2% of all APs) as benign to ensure the de-

tection precision. Further, our cross-connection approach does not

need root privileges or long-term passive monitoring, but can only

examine the cases when user devices are repeatedly connected to

the same AP, leading to possible false negatives. Also, since DHCP

spoofing detection relies on the temporal consistency between the

gateway’s IP and MAC address pairs of current connection and the

last-time secure connection, it can leave out some malicious APs

(i.e., introduce false negatives) if they are already compromised upon

the initial connection, in which case there is no available last-time

secure connection. These design choices enable us to more easily

deploy WiSC while achieving low false positive, so as to ensure the

validity of our subsequent WiFi threat analysis.

2.3 WAN Attack Detection

For WAN attacks, we target the man-in-the-middle threat model

where adversaries can easily launch TCP/DNS hijacking attacks and

then redirect or manipulate traffic flows without users’ knowledge.

Under this threat model, even packets with unreachable destination

IP addresses are highly likely to trigger the hijacking behavior since

it is much easier to fabricate spoofed responses than to check the

actual reachability of packets’ destination IP addresses [31, 90].

Thus, we devise cross-layer decoy-based detection which starts

with a transport-layer detection that sends decoy IP packets with
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unreachable destination IP addresses, and uses the response rates to

determine the suspicious APs in terms of TCP/DNS hijacking. For

the suspicious APs, we then perform an application-layer detection

to further rule out possible false positives. In this design, transport-

layer detection acts as a quick filtering scheme of benign cases, so

as to reduce the relatively high network overhead for performing

application-layer scrutinizing. The flowchart of the detection process

is shown in Figure 5.

2.3.1 Transport-Layer Attack Detection. In the transport-layer

detection step, we assemble several decoy IP packets with mostly

unreachable destination IP addresses, which are randomly selected

from an IP list that excludes easy-to-recognize IP addresses sum-

marized in previous studies [34]. To make these decoys particularly

attractive to attackers, we mimic web traffic by crafting TCP hand-

shake segments with destination port 80, and DNS queries of domain

names randomly selected from Alexa’s list of popular websites (e.g.,

Baidu.com) [5]. This is because web traffic has been a major target

of WiFi attacks due to its wide usage and richness in privacy data,

making it an excellent “bait”.

We then send out our decoys and monitor their responses in a

5-second time window (5 seconds is a typical user’s tolerance of

waiting according to previous studies [12, 49, 70]). Specifically,

to mimic regular user behaviors, we send 𝑆𝑇 = 8 TCP packets

to the AP, which is the maximum number of parallel connections

supported by common web browsers. Meanwhile, we also emulate

the timeout-retry process of DNS querying by sequentially sending

𝑆𝐷 = 3 DNS packets, with a 2-second inter-packet delay, given the 5-

second detection time window and the 2-second timeout value of the

DNS protocol. We then determine the AP as suspicious for 1) TCP

hijacking if at least 𝑅𝑇 out of the 𝑆𝑇 TCP packets have responses,

and 2) DNS hijacking if at least 𝑅𝐷 out of the 𝑆𝐷 DNS queries have

responses. For these cases, we then apply application-layer detection

to reduce false positives as detailed later in §2.3.3.

The above detection method is generally robust against deliberate

evasion of knowledgeable adversaries for three reasons. First, our

generated decoy packets are basically indistinguishable from normal

ones, thereby preventing adversaries from identifying them with-

out incurring high overheads on their sides. Second, our parameter

Table 1: Notations and their definitions.

Notation Definition

𝑆𝑇 Amount of TCP decoys sent to the AP
𝑆𝐷 Amount of DNS decoys sent to the AP
𝑅𝑇 Threshold for the amount of TCP decoys’ responses
𝑅𝐷 Threshold for the amount of DNS decoys’ responses
𝑃𝑚 Probability of receiving responses from a malicious AP
𝑃𝑏 Probability of receiving responses from a benign AP
𝑅 Amount of received responses
P(𝑅 ≥ 𝑘) Probability of an AP’s requiring app-layer scrutinizing
P(𝑅 = 𝑘 | +○) Probability of receiving 𝑘 responses for a malicious AP
P(𝑅 = 𝑘 | -○) Probability of receiving 𝑘 responses for a benign AP

settings for generating decoy packets are adjustable as the circum-

stances may require; the adjustment strategy is discussed in §2.3.2.

Third, if an adversary alters her attack patterns (e.g., responding

to much fewer packets) to largely evade our detection, her attack

effectiveness and profits will be directly impaired.

2.3.2 Data-driven Parameter Settings. In this section, we take

a data-driven approach to systematically set 𝑅𝑇 and 𝑅𝐷 , the key

parameters in our transport-layer detection. We list the related no-

tations and definitions in Table 1. To determine 𝑅𝑇 , we use two

intuitions: 1) if the AP is malicious, due to random packet loss or

various timeouts, the probability of receiving a response for every

decoy is not 100% (denoted as 𝑃𝑚 < 1), and 2) occasionally receiv-

ing a response for some decoys from a benign AP is still possible

(𝑃𝑏 ≥ 0), when a random destination happens to be reachable. Thus,

lowering 𝑅𝑇 or 𝑅𝑆 may cause false positives (so more cases need

to be scrutinized by the app-layer detection) while increasing them

tends to incur false negatives. We next use real-world data-driven

statistical modeling to balance this critical tradeoff.

First, to understand how different thresholds affect the percentage

of suspicious APs, we conduct an experiment as a beta component

(explicitly marked as “for experimental use only” in the UI) of

WiFiManager for a month in Sept. 2018. For an opt-in user, its

client sends out 𝑆𝑇 decoys for TCP hijacking detection and 𝑆𝐷
decoys for DNS hijacking detection, and then records the number of

received responses 𝑅. In total, ∼10,000 APs were tested and ∼20,000

records were collected. Figure 6 shows the percentage of APs that

need scrutinizing (i.e., when the client received at least 𝑅𝑇 = 𝑘

responses) for different 𝑘 values, which we denote as P(𝑅 ≥ 𝑘),

whose conditional probabilities given the AP is malicious ( +○) or

benign ( -○) are modeled by the binomial distribution:
{

P(𝑅=𝑘 | +○)=P𝐵 (𝑘 ; 𝑆𝑇 , 𝑃𝑚) =
(𝑆𝑇
𝑘

)

𝑃𝑘𝑚 (1−𝑃𝑚) (𝑆𝑇−𝑘) ,

P(𝑅=𝑘 | -○)=P𝐵 (𝑘 ; 𝑆𝑇 , 𝑃𝑏 ) =
(𝑆𝑇
𝑘

)

𝑃𝑘
𝑏
(1−𝑃𝑏 )

(𝑆𝑇−𝑘) .
(1)

Given 𝑅 = 𝑘, the recall equals to the probability of a malicious AP

receiving 𝑅 ≥ 𝑘 responses:

𝑟𝑒𝑐𝑎𝑙𝑙 = P(𝑅 ≥ 𝑘 | +○) =

𝑆𝑇
∑

𝑖=𝑘

P(𝑅 = 𝑖 | +○) . (2)

From Eq. (1) and Eq. (2) we know that to calculate the recall, we

need to obtain the unknown 𝑃𝑚 . To this end, according to the Bayes’

theorem, we have:

P(𝑅 = 𝑘) =
∑

𝑆 ∈{ -○, +○}

P(𝑅 = 𝑘 | 𝑆)P(𝑆) . (3)

246



1 2 3 4 5 6 7 8

R
T

0%

5%

10%

15%

P
e
rc

e
n
ta

g
e
 o

f 
A

P
s

80%

85%

90%

95%

100%

E
s
ti
m

a
te

d
 R

e
c
a

ll

% of APs Requiring

App-layer Scrutinizing

Estimated Recall

Figure 6: % of APs that need app-layer

scrutinizing, and estimated recall for

different TCP thresholds.
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Figure 7: % of APs that need app-layer

scrutinizing, and estimated recall for

different DNS thresholds.
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tive rates for different TCP thresholds.
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tive rates for different DNS thresholds.
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Figure 11: Top 10 AP brands ordered by

the number of malicious APs detected.

With Eq. (1) (3) and the values of P(𝑅 = 𝑘) from our empirical data,

we can solve that 𝑃𝑚 = 98%. This is generally consistent with the

measurement result in prior work [37]. As shown in Figure 6, 𝑅𝑇 = 5

is empirically a “sweet spot” as it efficiently filters out 96.6% APs

while incurring little loss of recall.

For 𝑅𝐷 (the DNS case), we apply the same mechanism and find

𝑃𝑚 = 94.12%. Figure 7 shows the corresponding recall and 𝑅𝐷 = 2

is found to be a proper balance for our tradeoff.

2.3.3 Application-Layer Detection. After the transport-layer de-

tection, the set of suspicious APs for TCP/DNS hijacking behaviors

may have false positives. For example, possible benign intercep-

tions of APs that intercept and respond to users’ packets in a similar

way as that in adversaries’ attacks. Besides, ISPs may implement

DNS interceptions [41] for routing optimizations. To rule out these

possibilities, we further employ two scrutinizing strategies at the

application layer for confirming TCP and DNS hijacking behaviors

respectively. Note that the trade-off here is that we conservatively

determine an AP as benign as long as we do not detect application-

layer attacks, which is thus able to avoid false positives but can

introduce some false negatives.

For DNS hijacking, we examine the received resolution results

of our DNS decoys (if any). Recall that the decoys’ carried domain

names are randomly selected from a list of popular websites. Thus,

for the suspicious APs, we determine them as malicious if the re-

solved IP addresses conform to any of the following 3 criteria: 1)

these IP addresses have been publicly reported as malicious, 2) they

are private IP addresses, and 3) they are identical, all of which should

not be observed in benign DNS interceptions.

For TCP hijacking, we perform the detection at the web page level.

Specifically, we host an instrumented decoy web page on WiSC’s

server, and let the client query for it. To detect attacks, a direct

method is to compare the received web page at the client with the

original one. However, this can have false positives when legitimate

log-in web portal exists. To rule out these cases, we insert 256-bit

random strings into the HTML of our web page as its “fingerprints.”

By checking the fingerprints, we can have high precision in detecting

the attacks that do not completely replace web pages but only modify

them, e.g., inserting new content [60]. In the design of our web page,

we also insert HTTPS links to capture HTTPS-targeted attacks like

SSLStrip [65], which undermines HTTPS by replacing HTTPS links

in web pages with HTTP links.

2.4 Evaluation

Setup. To evaluate WiSC’s performance (in terms of false positive

and false negative rates), we conduct controlled experiments by

respectively replaying the targeted attacks (i.e., ARP/DHCP spoofing

and TCP/DNS hijacking) on 10 APs of different brands (as listed in

Figure 10) and detecting them with WiSC. For environment settings,

we setup our experiments in a campus area where 5 WiFi signals

simultaneously exist (a common scenario in public places according

247



to WiFiManager’s user data); all the signals lie in different channels

so that they do not pose direct interference to each other.

LAN Attack Detection. In the evaluation of LAN-side attack detec-

tion, we replay ARP and DHCP spoofing attacks without introducing

the trade-off scenarios as discussed in §2.2, in which we would al-

ways conservatively determine the AP as benign in pursuit of an

extremely low false positive rate. As a result, evaluations show that

all the replayed ARP and DHCP spoofing attacks can be correctly

detected by WiSC, mostly attributed to our careful examinations of

cross-connection and historic data.

WAN Attack Detection. For WAN attack detection, we focus on

evaluating the effectiveness of our crucial parameter settings in the

transport-layer detection, as well as the overall performance. In

detail, we first diagnose the APs using solely the transport-layer

detection when the APs are benign and under TCP/DNS hijacking

attacks, respectively. Figure 8 shows the false positive and false

negative rates for different parameter settings (𝑅𝑇 ) in the TCP case.

As shown, our determined threshold 𝑅𝑇 = 5 is still a practical

balance for the tradeoff between false positive and false negative, as it

effectively reduces false positive (thereby requiring less unnecessary

app-layer scrutinizing) to 0.048% while incurring only 0.82% false

negative. For the DNS case, Figure 9 illustrates the corresponding

false positive/false negative for different 𝑅𝐷 values, and 𝑅𝐷 = 2 is

also shown to be the proper choice.

Further, we include the app-layer scrutinizing to evaluate the

overall performance of our WAN attack detection component. The

results show that due to the rigorous rules applied in the app-layer

detection, the identified attacks contain no false positive, while there

is a slight increase of false negative from 0.82% (1.9%) to 1.3%

(2.2%) for the TCP (DNS) case.

2.5 Large-Scale Deployment and Field Survey

We collaborated with WiFiManager and implemented WiSC as an

optional function of WiFiManager for all its users. During the six-

month measurement from 10/22/2018 to 04/03/2019, we recorded

a total of 14M opt-in users and 19M WiFi APs, distributed in 178

countries; the vast majority are located in China where WiFiMan-

ager’s major users come from. To further confirm the validity of our

dataset, with the WiFiManager team we carry out a field survey of

100 randomly selected public APs that are determined to be mali-

cious by WiSC. We choose public APs given that they can be easily

located (using the location data provided by users), accessed and

tested. Also, we ensure that all the concerned attacks are included

in this survey. Field results show that all the sampled APs indeed

manifest malicious behaviors upon close examinations, indicating

that our dataset is able to provide a valid basis for our analyses.

3 MEASUREMENT RESULTS

Among all the 19M APs examined by WiSC, we record 445 AP

brands, 2660 AP models, and ∼750,000 APs bearing WiFi attacks,

corresponding to ∼1,413,000 attack event traces. To our knowledge,

this is so far the largest study regarding WiFi APs and related security

events in the wild. By analyzing this, we have multifold findings on

WiFi threats as follows.

Table 2: Top 15 countries ordered by the number of examined

WiFi APs.

Country # of APs Prevalence Major Attack Technique

China 19,119,764 3.92% TCP hijacking (57.6%)
Burma 7148 4.48% TCP hijacking (53.1%)

Vietnam 4288 1.8% DHCP spoofing (40.2%)
Russia 3169 8.93% DNS hijacking (43.8%)

South Korea 2701 2.07% ARP spoofing (91.1%)
Cambodia 2213 2.17% ARP spoofing (47.9%)

Laos 1530 1.05% DHCP spoofing (43.7%)
Thailand 1350 4.15% DNS hijacking (53.5%)
Malaysia 1317 2.89% DNS hijacking (44.7%)

Japan 1315 2.59% ARP spoofing (67.6%)
Singapore 1133 1.5% ARP spoofing (50%)
Philippines 840 2.86% DNS hijacking (45.8%)
Indonesia 796 22.36% TCP hijacking (91%)

United States 608 1.01% ARP spoofing (66.6%)
Pakistan 523 1.53% ARP Spoofing (62.5%)

3.1 Prevalence of WiFi Attacks

Previous reports with small-scale measurements suggest that WiFi

attacks occur to only 0.21%–1.5% of their examined WiFi APs [67,

69]. Unfortunately, our large-scale, in-the-wild measurement refutes

this, revealing that WiFi attacks have been detected on at least 3.92%

of all the 19M APs. Worse still, as our detection scheme cannot

cover every possible form of attack such as signal monitoring and

deauth [7, 43] occurring at the PHY or MAC layer, the prevalence

(∼4%) in fact only represents a lower bound of the reality, indicating

a pressing demand for the community’s attention today.

In detail, we wonder whether the AP brand impacts the preva-

lence of attacks, since different AP manufacturers may have distinct

security considerations. We plot the top 10 AP brands in Figure 10

and Figure 11 in terms of number of examined and malicious APs,

respectively. We observe that among all the malicious APs, top 10

brands account for 98.48%. Most notably, nearly half (49%) of them

belong to a single brand—Phicomm [53], whose market share is

merely 4.3%. Such a highly skewed distribution can be ascribed to

Phicomm APs’ specific security vulnerabilities, since we notice that

online reports or discussions around Phicomm APs’ vulnerabilities

are much more common than those of others [61, 62]. Although

public vulnerability disclosures can help improve the security of

the products, we have not seen Phicomm act effectively in response.

Thus, before the patches for these public vulnerabilities are devel-

oped and applied, it would be beneficial for the concerned APs to

deploy short-term mitigation strategies such as the novel MAC ad-

dress randomization [6] technique that can help hide vulnerable APs’

device fingerprints.

Moreover, for geographical distribution, we list in Table 2 the top

15 countries with the largest number of examined APs among all

the involved 178 countries. As shown, some countries like Burma,

Russia, and Thailand exhibit even higher prevalence (>4%) of WiFi

attacks than China. We note that our results may not be applicable

to some of the countries due to limited data scale and the lack of

similarity between their manifested behaviors and those of China.

However, for countries exhibiting a similar WiFi threat landscape

as in China (in terms of prevalence, major types of attacks, and

essential behaviors), such as Burma, we propose that our results may

be valuable for them as well. Further, by analyzing the geographical
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jecting ads to victims’ web pages.

distribution of the detected WiFi attacks in China, we confirm that

WiFi attacks pervasively exist in almost all areas across the country,

without being confined to specific areas or ISPs. Also, the density of

attacks is basically proportional to the population density.

3.2 WiFi-based Attack Techniques

The WiFi-based attack techniques used in the wild are found to be

heterogeneous and somewhat unexpected. The ratios of the four

attack techniques WiSC can detect are: TCP hijacking (57%), DNS

hijacking (17%), ARP spoofing (16%), and DHCP spoofing (12%).

Multiple attack techniques can happen to one AP, so their percent-

ages add up to more than 100%. Although the techniques themselves

have all been studied in prior work [2, 17, 41, 72], we have several

findings that are unknown or significantly different.

First, we observe that TCP hijacking accounts for over a half of

the detected attacks. This can be attributed to TCP’s dominating use

today for Internet applications, and the attackers’ strong capability

in undermining TCP connections or even encryptions. In principle,

the increasingly wide deployment of HTTPS across the globe should

be able to provide protection against TCP hijacking. However, our

results clearly indicate that such attacks are still rampant.

To deeply understand the situation, we further measure the HTTPS

adoption in the wild, and reveal a staggering lack of effective HTTPS

deployment in many countries. Figure 13 shows the case of top

100 and top 10,000 websites in China and the US according to the

Alexa Traffic Ranking [5]. We find that although HTTPS is widely

supported in both countries, quite a few websites do not use HTTPS

as default. Besides, more websites (60% in China and 36% in the

US for the top 100 websites) do not enable HSTS (HTTP Strict

Transport Security [30]), leaving themselves vulnerable to HTTPS

downgrade attacks such as SSLStrip.

Worse still, even for those websites who have enabled HSTS, we

notice that the vast majority of them (92.5% in China and 78.1% in

the US for the top 100 websites) fail to properly configure HSTS

parameters (e.g., timeout threshold and preload list), rendering HSTS

ineffective in practice. For example, TMall [83], a major online

shopping platform in China, configures its HSTS timeout threshold

as zero, resulting in an immediate expiration of HSTS upon accesses,

thereby letting HSTS be completely bypassed.

In terms of LAN attacks, recall that WiFiManager helps user

devices examine their connectivity (LAN connectivity) with APs.

Specifically, it measures the connection latency on a user device by

periodically pinging the gateway. Figure 14 and Figure 15 depict the

distributions of connectivity for benign APs and the APs under dif-

ferent attacks. As shown in Figure 14, both spoofing attacks are more

detected on the APs with poorer LAN connectivity, because they can

succeed more easily under worse LAN environments, which allow

spoofed responses to reach user devices faster than the legitimate

ones. Interestingly, Figure 15 makes an opposite observation: DNS

and TCP hijacking attacks are more likely to occur on good network

conditions. We will elaborate this in §3.3.
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In previous studies, DHCP spoofing was mostly a hypothetical

attack under WiFi networks, since all DHCP Discovery messages

must be first sent to and then broadcast by the AP. Thus, the AP

should be able to respond to such messages more quickly than adver-

saries [56, 87], rendering any spoofed DHCP Offer messages invalid.

However, our observation refutes this by revealing that DHCP spoof-

ing is as feasible as other popular techniques in practice. We suspect

that the attackers adopt some extreme strategies, such as flooding

DHCP Offer messages, to practically increase the success rate. Such

strategies can be especially effective when the LAN connectivity is

poor (also suggested by Figure 14).

To sum up, the root cause of ARP/DHCP spoofings lies in the

AP’s unconditionally forwarding all the broadcasts within the LAN,

which conforms to the design of Ethernet for historical reasons, and

can be thoroughly address them by performing packet checking or

encryption at the AP, e.g., through S-ARP [13] and DHCP snoop-

ing [2]. However, they can also incur non-trivial storage/computation

overhead since they rely on recording all DHCP traffic or asymmet-

ric cryptography, which may incur additional attack surfaces and are

impractical for residential APs with low-cost hardware.

An alternative may be MAC-forced forwarding [44] that enables

an AP to recognize ARP/DHCP messages within the LAN, and

selectively forward them instead of simply broadcasting them all. In

fact, this technique has been deployed in some public places (e.g.,

metro stations) to defend against spoofing [89]. In our data, we find

that 3,208 APs are using this technique, and the MAC addresses for

all the connected user devices within the LAN obtained by ARP

requests are exactly the gateway’s MAC address, indicating that

all ARP traffic within the LAN has been explicitly directed to and

managed by the AP (gateway). It is encouraging to see that no

spoofing attack was detected on any of these 3,208 APs.

3.3 Malicious Behaviors and Objectives

Our measurement collects 1.4M attack event traces, including both

transport- and application-layer responses for detailed attack behav-

ior analysis. We make several interesting observations regarding the

“semantics” of such attacks.

• First, we analyze the collected web pages, and notice that 55% of

the attack events involve web pages being injected with advertise-

ments (ad injection) mainly through TCP hijacking.

• Second, 26% are typical DoS and passive traffic monitoring

through ARP/DHCP spoofing, where attackers manage to trick

user devices into recognizing their devices as the network gateway,

thereby dropping packets or peeping at users’ network traces.

• Third, we observe DNS hijacking where users’ DNS queries re-

ceive false resolution results, leading to potential phishing attacks,

i.e., redirection to malicious websites elaborately disguised as the

originally requested ones.

• Fourth, HTTPS-targeted attacks such as SSLStrip are also identi-

fied, where HTTPS links have been surreptitiously replaced with

HTTP links to compromise users’ encryption.

The last two account for <8% of all attacks, which is much smaller

than the percentages reported in prior studies [19, 28].

Delving deep, as shown in Figure 16, we notice that APs under

LAN attacks exhibit much longer physical movements (median

of 724 m, average of 47.3 km) than APs under WAN attacks and

benign APs (median of 31 m and 21 m, average of 20.4 km and

20.5 km, respectively). Here the average is much larger than the

median due to the existence of mobile APs such as smartphone-based

hotspots, and small movements (<50 m) are mostly due to user-side

localization errors. We attribute this phenomenon to our observation

that ARP/DHCP spoofing attacks are more likely to succeed under

poor LAN environments (see Figure 14), which can be more easily

noticed by network administrators and then get fixed, compared

to the finer networks of WAN-based attacks. Thus, attackers need

to strategically relocate (similar events have been noticed in other

attacks [39]) to better success and evade detection. Notably, we find

that 10% of the APs under LAN attacks even manifest a clear pattern

of shifting around several locations, forming one or multiple loops.

Next, we go deeper into the most detected events—ad injections,

and make several intriguing findings. We discover that the injected

ads are not deliberately hidden through techniques like impression

fraud [76], although in this way adversaries can better cover them-

selves up to avoid being directly captured by users. This is probably

because advertisers require ads to be explicitly displayed for achiev-

ing real advertising effect. This suggests that there might exist an

ecosystem behind these widespread AP-based ad injection activities,

thus motivating us to dig deeper in the next section.

More surprisingly, ad injection is detected on 2.33% of the APs

using strong encryption (WPA/WPA2) while on 1% of the APs us-

ing no or weak encryption (WEP). Our investigation sheds light

on this counter-intuitive observation. WiFiManager measures the

Internet connectivity of an AP when checking its LAN connectivity

(§3.2). The result falls into four categories: Excellent, Good, Average,

Poor, representing that in monthly examinations, >90%, 70%∼90%,

50%∼70%, <50% connections can be established, respectively. Fig-

ure 12 shows that better protected APs tend to have better Internet

connectivity, thereby providing a better network environment for per-

forming ad injection. The above results probably indicate that solely

relying on strong link-layer cryptography may be ineffective against

complex real-world threats, whose mitigation requires a cross-layer

approach spanning multiple dimensions including encryption, au-

thentication, protocol verification, human factor, to name a few. For

example, mitigating the ad-injection attack requires the synergy from

secure app-layer protocol (e.g., HTTPS) and robust authentication

(e.g., dynamic authentication offered by 802.1X [16]).

3.4 Fundamental Motives Behind the Attacks

According to our results, ad injection currently accounts for the

largest portion of the detected attacks events and thus has the broad-

est impact on end users. Also, user devices being injected with ads

can fall victim of various kinds of frauds and abuses, leading to

possible severe outcomes. Therefore, in this section, we leverage our

in-situ attack event traces to understand the fundamental motives

behind the AP-based ad injections. By analyzing the injection code,

we first observe that adversaries adopt various techniques to evade

common security checks, such as domain altering that constantly

changes ads’ domains to prevent security or ad-blocking software

from recognizing them, and code obfuscation to hide the attack

logic. Clearly, the attackers are trying hard to conceal their malicious

activities while profiting by (visible) ad impression.
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Figure 18: Percentage of APs that re-

cover through reset/upgrade for each

week and our fitting curve.
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Figure 19: Percentage of recovered APs

influenced by ad injection probabilities

and our fitting curve.
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Figure 20: Our inferred profit model

that shows how the profit varies for dif-

ferent ad injection probabilities.

Meanwhile, we find that a malicious AP only probabilistically

injects ads instead of compromising all intercepted web pages. As

shown in Figure 17, for 77% of the malicious APs, the ad injection

probabilities are below the average, 17%. We believe that qualita-

tively, this is because excessive ad injection can be easily noticed

by users, henceforth incurring AP reset, firmware upgrade, or even

disconnection, causing the attacker to lose the comprised AP. Nev-

ertheless, we are more interested in the quantitative explanation:

how do attackers choose the injection probability (frequency) we

observe? Is it the result of a mature market’s selection or simply

the aggregation of random standalone cases? These are essential to

further decoding the WiFi attack ecosystem (if it exists).

To answer the above questions, we analytically model the econ-

omy behind ad-injection attacks. Instead of assuming a fixed number

of malicious APs, we notice that more realistically, malicious APs

are only under adversaries’ control for a period of time, before they

gradually recover to the benign state—a dynamic process. Intuitively,

malicious APs’ recovery can be attributed to users’ intentional de-

fense actions triggered by relatively high ad injection probabilities.

Moreover, the APs can also recover through users’ unintentional

actions, e.g., AP reset or firmware upgrade. We expect these two

factors to independently influence APs’ recovery.

To obtain the percentage of APs recovered through unintentional

actions (when ad injection probability is low), we choose to inspect

the 35,782 APs that experience the lowest ad injection probability

(0.02) during our measurement to exclude the influence of high-

probability ad injections arousing users’ vigilance. We track their

recovery process for 14 weeks, and plot the percentage of recovered

APs (P𝐹 ) for each week (𝑡) in Figure 18. As an AP’s recovery is an

independent and random event, we fit the measurement data using

Exponential distribution [10]:

P𝐹 (𝑡) = 1 − 𝑒−0.054𝑡 . (4)

We find that the coefficient of determination (𝑅2) [46] is as high as

0.89, suggesting that P𝐹 (𝑡) can well fit our data.

Recall that for all recovered APs, we divide them into two parts:

1) the APs recovered due to intentional defense actions, and 2) the

APs recovered through unintentional actions. Since we know the

number of all recovered APs (Part 1 + Part 2) for each week, we

can estimate the size of Part 1 by first approximating the size of

Part 2 with Eq. (4) and then removing it from the total size. Next,

we calculate the average ad injection probability for each week with

our dataset. Figure 19 then plots the percentage of recovered APs

(P𝐿) due to intentional defense actions for different ad injection

probabilities, which exhibits the curve of an S-function [35]. Among

common S-functions, we find that the Bertalanffy function [86] can

best fit our data with 𝑅2 being 0.99:

P𝐿 (𝑃𝑎𝑑 ) = 0.95 ∗ (1 − 1.99𝑒−10.12𝑃𝑎𝑑−0.67)3, (5)

for an injection probability 𝑃𝑎𝑑 . We therefore have the probability

for an AP’s remaining malicious (P𝑚) at time 𝑡 :

P𝑚 (𝑃𝑎𝑑 , 𝑡) = (1 − P𝐿 (𝑃𝑎𝑑 )) (1 − P𝐹 (𝑡)). (6)

Suppose there are a total number of 𝑀 APs, each AP is in-

jected with an average of 𝑁 ads, and each ad brings a unit profit of

𝑃𝑟𝑜 𝑓 𝑖𝑡𝑢𝑛𝑖𝑡 ; then the adversaries’ profit would be:

𝑃𝑟𝑜 𝑓 𝑖𝑡 (𝑃𝑎𝑑 ) =

∞
∑

𝑡=0

𝑀 ∗ 𝑁 ∗ 𝑃𝑟𝑜 𝑓 𝑖𝑡𝑢𝑛𝑖𝑡 ∗ 𝑃𝑎𝑑 ∗ P𝑚 (𝑃𝑎𝑑 , 𝑡) (7)

for injection probability 𝑃𝑎𝑑 . Although the exact values of 𝑀 , 𝑁 ,

and 𝑃𝑟𝑜 𝑓 𝑖𝑡𝑢𝑛𝑖𝑡 are unknown, we can know how 𝑃𝑟𝑜 𝑓 𝑖𝑡 (𝑃𝑎𝑑 ) varies

relative to 𝑃𝑟𝑜 𝑓 𝑖𝑡 (𝑃𝑎𝑑 = 1) for different 𝑃𝑎𝑑 values as:

𝑃𝑟𝑜 𝑓 𝑖𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (𝑃𝑎𝑑 ) =
𝑃𝑟𝑜 𝑓 𝑖𝑡 (𝑃𝑎𝑑 )

𝑃𝑟𝑜 𝑓 𝑖𝑡 (1)
=
𝑃𝑎𝑑 (1 − P𝐿 (𝑃𝑎𝑑 ))

1 − P𝐿 (1)
. (8)

We plot 𝑃𝑟𝑜 𝑓 𝑖𝑡𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (𝑃𝑎𝑑 ) for different 𝑃𝑎𝑑 values in Figure 20

to showcase how different ad injection probabilities impact adver-

saries’ profit. As shown, the maximum profit appears at 𝑃𝑎𝑑 = 15%,

which matches real-world adversaries’ choices (averaging at 17%).

With this finding, we suspect that most adversaries have carefully

tuned their behaviors to achieve maximum profit in the long run.

In summary, we notice that most adversaries carry out ad-injection

attacks in a rather mature manner through rate throttling, which can

not only prevent users from easily noticing them but also maximize

their profits. The high consistency between our analytical results

and attackers’ real-world practices suggests these attackers are both

judicious and rational, revealing a rather mature ecosystem, which

we discuss next.

4 UNDERMINING ATTACK ECOSYSTEM

In this section, we first describe how we figure out the underground

WiFi attack ecosystem. Then, we present the interplay among the
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Figure 21: Procedure of uncovering web analytics platforms in

the underground ecosystem of WiFi attacks.

various players in the ecosystem. Next, we show how we discover its

Achilles’ heel that enables our subsequent proactive counterstriking.

4.1 Uncovering the Underground Ecosystem

Our analysis in §3.4 implies that an immense, mature ecosystem

probably exists behind WiFi attacks. As shown in Figure 21, to fully

understand it, we closely examine adversaries’ code that is inserted

into the web page as external JavaScript resources. We notice that

in >99% of the recorded ad-injection attacks, the injection code

consists of two separate JavaScript files: one serves to inject ads, and

the other contains code that is inserted through a JavaScript resource

link from legitimate domains, most notably hm.baidu.com. Trac-

ing this lead, we find out that this domain name belongs to a web

analytics platform named Baidu Analytics [9]. By cross-referencing

the code with Baidu Analytics’ official documents, we know that the

code records various statistics of the advertising effect such as the

click-through rate [23] and reports them to the web analytics plat-

form. In total, we discover only four such web analytics platforms:

Baidu Analytics, UMeng [85], OeeBee [47], and 360zlzq [1].

These platforms provide traffic and user behavior analysis for a

registered link/website, so as to help developers better assess the “ef-

fectiveness” of their websites, which in our case is the effectiveness

of the injected advertising pages. The piece of code we discover is

written as the user end of their statistics collection infrastructure,

which monitors and records web traffic on the advertising pages, and

uploads corresponding data to web analytics platforms to generate

an analytical report. This is a most intriguing finding that quickly

leads us to the primary question: why do adversaries require such

services of web analytics if they simply compromise APs and inject

ads for themselves? Considering the function of these web analytics

services, their presence hints that the attackers might be interacting

with another entity of the ecosystem.

Leveraging this finding, we can now infer the panorama of the

WiFi attack ecosystem, where adversaries are not advertisers that

produce and distribute ads for marketing purposes. In fact, they

mainly act as a proxy that is only responsible for delivering ads to

end users for other advertisers. In online advertising, such a role

is termed as the ad-serving platform [22]. This is the reason why

participation of web analytics platforms is required—to provide

independent evaluation for the actual advertising effect of the ad-

serving platforms. We next detail the interplay among advertisers,

Table 3: Attackers that stop serving ads after our action.

Adversary % of All Ads Entity We Report to

t.7gg.cc 35.8% Baidu Analytics
5myr.cn 8.9% OeeBee
agtsjb.com 8.7% UMeng/Adblock Plus
103.49.209.27 1.2% 360zlzq/Adblock Plus
withad.com 0.4% UMeng/Adblock Plus
zfkmw.com 0.3% UMeng/Adblock Plus
js.union-wifi.com 0.06% 360zlzq/Adblock Plus
172.81.246.180 0.05% 360zlzq/Adblock Plus

adversaries/ad-serving platforms, and web analytics platforms to

present how the ecosystem operates, as well as a weak link within.

4.2 Interplay and Weakness

Figure 1 (early in §1) depicts the interplay within the WiFi attack

ecosystem. First, advertisers hire ad-serving platforms (adversaries)

to help distribute ads to end users. Then via malicious APs, ads

and statistics collection code are injected into users’ requested web

pages. The ads are later displayed to end users. Meanwhile, the

statistics collection code tracks users’ interactions with injected

ads, and uploads collected statistics to web analytics platforms. At

the monetization stage, adversaries use ad analytics signed by web

analytics platforms as a proof to receive payment from advertisers.

In detail, we extract the resource links of ad-injection code from

the HTML files of logged web pages, and classify them according

to the resource links’ domain names or IP addresses. As a result,

we identify a total number of 25 ad-serving platforms. In addition,

we have observed transnational activities of several adversaries. For

example, 5myr.cn’s activities involve 8 countries, the largest in

our data. Also, a major adversary t.7gg.cc (which accounts for

36% of all ads) has been detected in 6 countries across 3 continents.

Furthermore, we notice that two largest among the four analytics

platforms, Baidu Analytics and UMeng, are third-party authorita-

tive services that take 87% of the market share and participate in

distributing 80.8% of the ads. The massive participation of these

major legitimate services is surprising, though we believe that they

are involved in the ecosystem due to their public credibility. That

is, adversaries might be required by advertisers to provide credi-

ble evidence of their advertising effect to decide the final payment.

This phenomenon, on the other side, reveals the Achilles’ heel of

the attack ecosystem: it heavily relies on legitimate web analytics

platforms for the most essential monetization stage. This provides a

unique opportunity for active defense (detailed next).

4.3 Real-World Active Defense Practices

Given that the ecosystem mainly relies on only four web analytics

platforms, we take an active defense approach by contacting them

and providing our detailed findings regarding their supported adver-

saries (ad-serving platforms) in Aug. 2019. As of August 2020, we

observe that Baidu Analytics stopped serving 67% of the reported

links, resulting in 49.8% decrease of ad injections. For UMeng, we

have managed to establish communications with their teams, who

have promised to take actions towards the reported ad links in the

near future. Shortly after our complaint, OeeBee seems to be shut

down according to its website.
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While waiting for responses from 360zlzq, we report our identi-

fied illegal ad campaigns to mainstream ad blockers and observe real-

world effects as well. For example, a major adversary agtsjb.com,

which accounts for 8.7% of all the ads, has been included in the black-

list of Adblock Plus, a popular browser plugin for ad blocking [3].

Later, we find that the related ads have all become inaccessible. Ta-

ble 3 lists major adversaries that have completely stopped serving

their ads (i.e., unable to access them) after our actions.

These efforts mark the first success of active defenses against

WiFi attacks by breaking the critical chain of monetization. We real-

ize though that fully defeating the massive, well-organized ecosys-

tem requires joint efforts from other entities like browsers, ad blocks,

and OSes. We are actively pursuing this research direction.

5 RELATED WORK

WiFi Security Measurement and Analysis. There are only a lim-

ited number of studies on WiFi security, yet all of them perform

measurement or experiments in small-scale environments and/or

concerning specific topics. Hu et al. [32] study the epidemiology of

malware spreading over WiFi by simulating its propagations. Zafft et

al. [93] measure WiFi threats regarding APs’ encryption and black-

listed IP addresses. Fleck et al. [20] investigate ARP poisoning in

WiFi networks. Yin et al. [92] send test packets to uncover malicious

APs that intercept and relay users’ network traffic. Xiong et al. [91]

explore eavesdropping on WiFi signals at the physical layer. In com-

parison, we conduct to date the most large-scale, comprehensive

WiFi security analysis in the wild, and reveal several new findings

such as the prevalent WiFi AP-based ad injection and its ecosystem.

Understanding Attacks from an Ecosystem Perspective. Several

studies strive to understand different cybercriminal activities, such as

account theft [48], malware distribution [14, 81], spam [38, 59, 82],

and underground marketing [74] from an ecosystem and/or economic

perspective. In particular, Thomas et al. [80] present a large-scale

measurement on ad injection attacks in Google by embedding con-

tent modification detectors in several Google sites. Their results

reveal the landscape of the ad ecosystem that primarily consists

of ad-serving platforms, advertisers, compromised sites and vari-

ous attack vectors (e.g., browser extensions, malicious binaries, and

routers). They then approach the problem by requesting develop-

ers of related browser extensions (a major attack vector) to remove

ad injection components from their software. Pearce et al. [52] in-

stead focus on the click fraud within the ad ecosystem and complex

interplays among closely connected ad-serving platforms (which

distribute ads to each other). Different from them, we discover the

wide-spread ad injection problem when dissecting WiFi security

threats in the wild. More importantly, we disclose yet another player

in the ad ecosystem – legitimate web analytics platforms, which we

find to be in fact the bottleneck of the entire revenue chain that can

be leveraged against adversaries.

Network Protocol Security in General. There exist a large body

of researches on upper-layer (L2 to L5) network protocol security.

They use a wide range of techniques such as traffic-based analysis [8,

64, 68], formal verification [33], OS-level protection [18, 21, 75],

software engineering [57, 95], machine learning and statistical analy-

sis [73, 94]. There are also numerous studies (in terms of both attack

and defense) on securing specific protocols such as ARP [13, 42],

DHCP [36], HTTP [63, 78], SSL/TLS [30, 79], and DNS [50, 96].

Many of these techniques have been or can be applied to WiFi envi-

ronments. Our work differs from the above in that instead of focusing

on a single protocol or a standalone attack/defense technique, we

reveal the landscape of WiFi-related network protocol security. Our

measurements provide distinctive key insights for improving WiFi

security in the future.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we carry out a nationwide measurement study of WiFi

security. We develop a lightweight WiFi threat detection system

called WiSC that takes advantage of both active probing and comple-

mentary cross-layer information. We then deploy WiSC in the wild

to examine 19 million WiFi APs connected by 14 million real-world

users. With the crowdsourced data, we perform a comprehensive

analysis on state-of-the-art WiFi attacks in the wild, the adversaries’

profit-driven motives, and the interactions among multiple entities in

the WiFi attack ecosystem. We also discover the critical role played

by major web analytics platforms on monetizing the adversaries,

and leverage it to effectively combat the preponderant ad injection

attacks at the national scale.

Despite the above efforts, our dataset and analysis bear several

limitations due to real-world constraints stemming from the limited

system privileges and resources of WiSC in the large-scale context.

First, in the design of WiSC one of our critical considerations is

trading some false negatives for a low false positive rate, so as

to obtain a valid basis for the WiFi threat analysis. However, in

this way we may not be able to capture the full landscape of WiFi

threat in the wild. Second, limited by the information WiSC can

collect from end devices, some of our analyses and results lack direct

evidences and thus may deviate from the actual cause(s) due to other

possible impact factors. For them, we conduct best-effort validations

through multi-aspect correlation analysis or controlled experiments.

Third, our current dataset is inherently unable to provide a clear

picture regarding the actual attack vectors that enable adversaries to

compromise an AP, as our platform operates at the end side.
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