
Kratos: Discovering Inconsistent Security Policy
Enforcement in the Android Framework

Yuru Shao, Jason Ott†, Qi Alfred Chen, Zhiyun Qian†, Z. Morley Mao
University of Michigan, †University of California, Riverside

{yurushao, alfchen, zmao}@umich.edu, jott002@ucr.edu, zhiyunq@cs.ucr.edu

Abstract—The Android framework utilizes a permission-based
security model, which is essentially a variation of the ACL-based
access control mechanism. This security model provides con-
trolled access to various system resources. Access control systems
are known to be vulnerable to anomalies in security policies,
such as inconsistency. In this work, we focus on inconsistent
security enforcement within the Android framework, motivated
by the recent work which discovered such vulnerabilities. They
include stealthily taking pictures in the background and recording
keystrokes without any permissions, posing security and privacy
risks to Android users. Identifying such inconsistencies is gener-
ally difficult, especially in complicated and large codebases such
as the Android framework.

Our work is the first to propose a methodology to system-
atically uncover the inconsistency in security policy enforcement
in Android. We do not assume Android’s security policies are
known and focus only on inconsistent enforcement. We propose
Kratos, a tool that leverages static analysis to build a precise call
graph for identifying paths that allow third-party applications
with insufficient privilege to access sensitive resources, violating
security policies. Kratos is designed to analyze any Android sys-
tem, including vendor-customized versions. Using Kratos, we have
conservatively discovered at least fourteen inconsistent security
enforcement cases that can lead to security check circumvention
vulnerabilities across important and popular services such as
the SMS service and the Wi-Fi service, incurring impact such
as privilege escalation, denial of service, and soft reboot. Our
findings also provide useful insights on how to proactively prevent
such security enforcement inconsistency within Android.

I. INTRODUCTION

Access control is a well-known approach to prevent activ-
ities that could lead to security breach. It is widely used in
all modern operating systems. Linux inherits the core UNIX
security model — a form of Discretionary Access Control
(DAC). To provide stronger security assurance, researchers
developed Security-Enhanced Linux (SELinux) [37], which
incorporates Mandatory Access Control (MAC) into the Linux
kernel. The fundamental question that access control seeks to
answer is philosophical in nature: “who” has “what kind of
access” to “what resources.” It is from this single question
that access control policies or security policies are derived.

Android OS employs a permission-based security model,
which is a derivative of the Access Control List (ACL) based
access control mechanism [14]. In this model, an application
(commonly known as an app) or a user may request access to
a set of resources that are governed by a set of permissions,
exposed by the system or other apps.

Access control systems are known to be vulnerable to
anomalies in security policies, such as inconsistency [36].
However, security policies can be inconsistent not only in
their definitions, but also in the ways they are enforced [38].
A major challenge of supporting permission-based security
models, as well as other access control systems, is to en-
sure that all sensitive operations on all objects are correctly
protected by proper security checks in a consistent manner.
If the proper security check is missing before a sensitive
operation, an attacker with insufficient privilege may then
perform the security-sensitive operation, violating user privacy
or causing damage to the user or the system. For example, on
Linux, multiple such examples have been discovered, which
lead to unauthorized user account access [10], permanent data
loss [38], etc. More recently, on the Android platform, attacks
caused by inconsistent policy enforcement have also been
found, e.g., stealthily taking pictures in the background [18]
and stealing user passwords by recording keystrokes without
the necessary permissions [46]. Therefore, to ensure a safe
and secure platform for users and developers, it is critical to
develop a systematic approach to identify inconsistencies in
security policy enforcement.

To address this problem on MAC-based operating systems,
Tan et al. present a method and tool, AutoISES [38], that can
automatically infer security policies by statically analyzing
source code and then directly using those policies to detect
security violations. Its effectiveness has been demonstrated by
experiments with the Linux kernel and the Xen hypervisor;
however, AutoISES has several limitations that prevent it from
being applied to the Android framework. First, it does not
take into account inter-process communication (IPC) between
different processes (or threads). In Android, remote method
calls across process (or thread) boundaries are very common.
Any static analysis that fails to consider this special feature
would be hugely incomplete. Second, the Android framework
consists of conflated layers: Java and C/C++, which is not
currently supported by AutoISES. A fundamental limitation
is that AutoISES assumes that a complete list of security
check functions are given. While in Android, different types
of security checks exist, making it extremely difficult to obtain
a comprehensive list of them.

In view of these challenges, we propose Kratos, a static

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23046

/**
 * Used by device administration to set the maximum screen off timeout.
 *
 * This method must only be called by the device administration policy manager.
 */
@Override // Binder call
public void setMaximumScreenOffTimeoutFromDeviceAdmin(int timeMs) {
 final long ident = Binder.clearCallingIdentity();
 try {
 setMaximumScreenOffTimeoutFromDeviceAdminInternal(timeMs);
 } finally {
 Binder.restoreCallingIdentity(ident);
 }
}

@Override
public boolean havePassword(int userId) throws RemoteException {
 // Do we need a permissions check here?
 return new File(getLockPasswordFilename(userId)).length() > 0;
}

@Override
public boolean havePattern(int userId) throws RemoteException {
 // Do we need a permissions check here?
 return new File(getLockPatternFilename(userId)).length() > 0;
}

They know the use of this method
should be restricted but did not
apply any security checks

Android framework developers lack knowledge
of security policies that should be enforced

Fig. 1. Code snippets from PowerManagerService.java (left side) and LockSettingsService.java (right side) in AOSP 5.0.1. They show that
even Google engineers do not have accurate knowledge of security policies that should be enforced.

analysis tool for systematically detecting inconsistent security
enforcement in the Android framework. Kratos accepts Java
class files and security enforcement checks as input, and out-
puts a ranked list of inconsistencies. It first builds a precise call
graph for the codebase analyzed. This call graph comprises of
all the execution paths available to access sensitive resources.
Each node of the call graph is then annotated with security
enforcement methods that are applied to that node. For a set
of entry points, Kratos compares their sub-call graphs pairwise
to identify possible paths which can reach the same sensitive
methods but enforce different security checks (e.g., one with
checks and the other without). Kratos can be applied to both
the AOSP framework and vendor-specific frameworks.

Another thread of related work focuses on automated
authorization hook placement to mediate all security-sensitive
operations on shared resources. In work by Muthuku-
maran et al. [34], there is an implicit assumption made by
the authors: they have perfect knowledge of which functions or
pieces of code needs protection. They are able to automatically
place the policy enforcement based on metrics such as the
minimum number of checks needed. Not only do we lack
this understanding, but also any understanding that might be
inferred from the Android source code is further obfuscated
by uncertainties introduced by developers, as illustrated in the
code snippets in Figure 1.

Kratos makes no assumptions about or attempts to in-
fer what resources or operations in Android framework are
security-sensitive and should be protected. Instead, Kratos
only identifies where existing security policy enforcement
occurs based on observed security checks, and accurately infers
security-sensitive operations by identifying inconsistency in
the policy enforcement across different execution paths.

To implement Kratos, we overcome several engineering
challenges. First, to maximize the completeness of our analy-
sis, we need to cover as many system services as possible.
However, system services are scattered throughout the An-
droid framework with some implemented as private classes
nested inside outer classes, making it difficult to include all
service interfaces as analysis entry points. We address this
by generating code that calls service interfaces and handles
nested private services. Second, our analysis relies on a precise
Android framework call graph, which is non-trivial to build.
We tackle this challenge by resolving virtual method calls
using Spark [28], a tool for performing Java points-to analysis,
and applying IPC shortcuts. Third, due to the large size of
code in Android framework, it is non-trivial to make the

analysis efficient and scalable. We achieve high efficiency and
scalability by optimizing the implementation and adopting a
set of heuristics.

We run Kratos on six different Android codebases, in-
cluding 4 versions of Android frameworks, 4.4, 5.0, 5.1, and
M preview, and two customized Android versions on AT&T
HTC One and T-Mobile Samsung Galaxy Note 3 devices.
After verifying the tool output manually, we find that all six
codebases fail to ensure consistent policy enforcement with
at least 16 to 50 inconsistencies discovered. For one, the
number of inconsistencies are as high as 102. From these
inconsistencies, we are able to uncover 14 highly-exploitable
vulnerabilities spanning a wide range of distinct Android
services on the 6 codebases; 12 of them are found to affect at
least 3 codebases at the same time; 6 vulnerabilities have been
patched in the latest or earlier releases but never been revealed
to the public previously. All these exploits can be carried out
with no permission or only low-privileged permissions (e.g.,
the INTERNET permission), and lead to serious security and
privacy breaches such as crashing the entire Android runtime,
terminating mDNS daemon to make file sharing and multi-
player gaming unusable, and setting up a HTTP proxy to
intercept all web traffic on the device.

We have reported all of these vulnerabilities to the An-
droid Security Team. Among the 11 that we have received
feedback, all were confirmed as low severity vulnerabilities.
This indicates the challenging nature of enforcing consistent
policies in a complex system like Android, and the necessity
of a systematic detection tool like Kratos. Due to the lack
of an up-to-date Android malware dataset, we do not have
statistics on how many of these vulnerabilities have already
been exploited by malicious apps in the wild. More details
about the inconsistencies reported by Kratos and the vul-
nerabilities we identified are available at our results website
http://tinyurl.com/kratos15.

We summarize our key contributions as follows.

• Our work is the first to systematically uncover security
enforcement inconsistencies in the Android framework
itself, compared to previous work focusing on per-
mission use in Android apps. We design and imple-
ment Kratos, a static analysis tool that can effectively
identify inconsistent security enforcement in both the
AOSP and customized Android. We tackle several en-
gineering challenges, including automated entry point
generation, IPC edges connection, and parallelization

2

to ensure accuracy and efficiency.

• We evaluate our tool on four versions of the Android
framework: 4.4, 5.0, 5.1, and M preview, as well
as two customized: AT&T HTC One and T-Mobile
Samsung Galaxy Note 3, and find that all codebases
fail to ensure consistent policy enforcement with up to
102 inconsistencies in a single codebase. Among the
discovered inconsistencies, we are able to uncover 14
highly-exploitable vulnerabilities, which can lead to
serious security and privacy breaches such as crashing
the entire Android runtime, ending phone calls, and
setting up a HTTP proxy with no permissions or only
low-privileged permissions.

• Our analysis covers all app-accessible interfaces ex-
posed by system services implemented in Java code.
Many system service interfaces are by default invisible
and undocumented for apps. Among the 14 vulnera-
bilities we identified, 11 of them are hidden interfaces
that are rather difficult to detect. These findings sug-
gest useful ways to proactively prevent such security
enforcement inconsistency include reducing service
interfaces and restricting the use of Java reflection (for
accessing hidden interfaces).

II. BACKGROUND AND MOTIVATION

In this section, we cover background on Android’s sys-
tem services and the different types of security enforcement
adopted by the Android framework. We also present a motivat-
ing case that demonstrates inconsistent security enforcement in
Android’s Wi-Fi service.

A. System Services

System services implement the fundamental features within
Android, including display and touch screen support, tele-
phony, and network connectivity. The number of services
has slowly increased with each version: growing from 73
in Android 4.4 to 94 for M Preview. Most system services
are implemented in Java with certain foundational services
written in native code. At runtime, system services are run-
ning in several system processes, such as system_server,
mediaserver. To provide functionality to other services and
apps, each system service exposes a set of interfaces accessible
from other services and apps through remote procedure calls.
For simplicity, we define users (either another service or
an app) of a system service as its clients. From a client’s
perspective, calling remote interfaces of a system service is
equivalent to calling its local methods.

Service
Manager

WiFi Service

SMS Service

...

Client

WiFi
Service
Proxy

Register

Register

Register
Lookup

Fig. 2. System services register themselves to Service Manager and clients
call their remote interfaces with proxies.

Fig. 2 depicts how system services are managed and used.
When the Android runtime boots, system server registers
system services to the Service Manager, which runs in an inde-
pendent process servicemanager and governs all system
services. When a client wants to call a system service, e.g., Wi-
Fi Service in Fig. 2, it first queries the service index provided
by Service Manager. If the service exists, Service Manager
returns a proxy object, Wi-Fi Service Proxy, through which
the client invokes Wi-Fi Service methods. The “contract” that
both the Wi-Fi Service and the proxy agree upon is defined
by Android Interface Definition Language (AIDL). Fig. 3 uses
the Wi-Fi Service as an example and shows how the service
and its proxy use the AIDL to define consistent interfaces.

During compiling, a class IWifiManager is automati-
cally generated from the AIDL file, IWifiManager.aidl.
It has two inner classes, i.e., IWifiManager$Stub
and IWifiManager$Stub$Proxy. All interfaces defined
in the AIDL file IWifiManager.aidl are also de-
clared in IWifiManager, IWifiManager$Stub and
IWifiManager$Stub$Proxy. The service extending
IWifiManager$Stub is responsible for implement meth-
ods defined in IWifiManager.aidl. Clients who wish to
access service functionality only need to obtain a reference
to IWifiManager and invoke IWifiManager’s method.
As a result, the corresponding implementation in the service
will be called. The intermediate procedure is handle by Binder
IPC [1] and completely transparent to clients and services.

1 // Client.java
2 public class Client {
3 IWifiManager mgr = IWifiManager.Stub.asInterface(
4 ServiceManager.getService("wifi"));
5 mgr.removeNetwork(netId);
6 mgr.disableNetwork(netId);
7 ...
8 }
9

10 // WifiManager.aidl
11 interface IWifiManager {
12 boolean removeNetwork(int netId);
13 boolean disableNetwork(int netId);
14 void connect();
15 void disconnect();
16 ...
17 }
18

19 // Decompiled from IWifiManager.class
20 public interface IWifiManager extends IInterface {
21 boolean removeNetwork(int netId);
22 boolean disableNetwork(int netId);
23 void connect();
24 void disconnect();
25 ...
26 }
27

28 // WifiService.java
29 public class WifiService extends IWifiManager.Stub {
30 @override
31 public boolean removeNetwork(int netId) {
32 enforceChangePermission();
33 ...
34 }
35 @override
36 public boolean disableNetwork(int netId) {
37 enforceChangePermission();
38 ...
39 }
40 ...
41 }

Fig. 3. Code snippet that demonstrates the usage of AIDL

3

In our analysis, we focus solely on system services. More
specifically, we consider all remote interfaces exposed by
system services as application-accessible interfaces. Note that
some proxy interfaces are invisible to apps, either because
the classes are excluded from the Android SDK or because
the methods are labeled with the @hide or @SystemApi
javadoc directive in the source code. However, they still exist
in the runtime and apps can access them using Java reflection
techniques.

B. Motivating Example of Inconsistent Security Enforcement

For convenience, we use the terms security policy enforce-
ment and security enforcement interchangeably in this paper.
Security enforcement consists of a set of security checks.
Security check refers to a specific action which verifies whether
the caller satisfies particular security requirements, e.g., holds
a permission or has a specific UID. The Android framework
employs several types of security enforcement: permission
check, UID check, package name check, and thread status
check, all explained below.

Permission checking is the most fundamental and widely
used security enforcement in Android. Each app requests
a set of permissions during installation The user must al-
low all permissions requested or choose not to install the
app. When an app calls a method exposed by a system
service, the service verifies that the app holds the required
permission(s). If so, the app passes the permission check
and continues executing. Otherwise, the service immedi-
ately throws a security exception; as a result, the app can-
not access resources guarded by the service. As shown
in Fig. 3 lines 31–34, removeNetwork(int) invokes
enforceChangePermission() to check that the calling
app has the CHANGE_WIFI_STATE permission. Permission
checks are performed immediately after the code enters the
service side. This is different from other systems such as
SELinux, which places security checks right before accessing
sensitive objects [32]. We believe these different approaches
present tradeoffs in balancing the performance overhead and
access control granularity.

Despite the permission check placement, we have
observed inconsistent enforcement of permissions within the
same service and between services with similar functionality.
For example, in Fig. 4 we detail inconsistencies within
a single service, i.e., the Wi-Fi Service. It exposes
two interfaces to clients: addOrUpdateNetwork()
and getWifiStateMachineMessenger(). Both
of them can be leveraged by apps to update Wi-
Fi configurations. Though they ultimately invoke
the same underlying method WifiConfigStore.
addOrUpdateNetworkNative(), the two paths they tra-
verse are different. The method addOrUpdateNetwork()
first calls sendMessageSynchronously(), through
which it sends a CMD_ADD_OR_UPDATE_NETWORK message
to the internal Wi-Fi state machine which is able to update
Wi-Fi configurations according to current status. Meanwhile,
apps can call getWifiStateMachineMessenger()
to obtain the Wi-Fi state machine’s Messenger
object, with which they are able to directly send a
SAVE_NETWORK message to the Wi-Fi state machine to
update configurations. Surprisingly, permission checks differ

addOrUpdateNetwork()
CHANGE_WIFI_STATE

CONNECTIVITY_INTERNAL

addOrUpdateNetwork()

handleMessage()

saveNetwork()

sendMessageSynchronously()
CMD_ADD_OR_UPDATE_NETWORK

addOrUpdateNetworkNative()

WifiService

WifiStateMachine

WifiConfigStore

Application

Client

Service

getWifiStateMachineMessenger()
CHANGE_WIFI_STATE
ACCESS_WIFI_STATE

Messenger

sendMessage()
SAVE_NETWORK� �

Fig. 4. A motivating case showing inconsistent security enforcement in
the Wi-Fi Service of Android 4.4. An app can use either of the two
interfaces exposed by the Wi-Fi Service, addOrUpdateNetwork() (call
chain connected by solid lines) getWifiStateMachineMessenger()
(call chain connected by dashed lines), to update connection configurations to
a Wi-Fi access point. However, they are enforcing different permissions. Note
that actual call chains have been simplified to better demonstrate the example,
with method parameters omitted.

along these two paths. addOrUpdateNetwork() checks
three different permissions, i.e., ACCESS_WIFI_STATE,
CHANGE_WIFI_STATE, and CONNECTIVITY_INTERNAL.
However, only two of them are enforced
in getWifiStateMachineMessenger(),
i.e., ACCESS_WIFI_STATE and CHANGE_WIFI_STATE.
Considering that CONNECTIVITY_INTERNAL is a system-
level permission, it is impossible for third-party apps to
acquire it. Thus, addOrUpdateNetwork() is protected
from third-party app usage. Nevertheless, this enforcement
can be completely bypassed if an app developer, or malware
author, uses getWifiStateMachineMessenger()
instead of addOrUpdateNetwork(). Similarly, Telephony
Service and Telecom Service both provide methods to access
telephony-related functionality. While these two services are
different, they do have some overlapping functionality — they
expose different methods which provide similar underlying
functionality, see Section V for further discussion.

C. UID Check

Interfaces provided by a system service can be called by
apps, as well as other system services. For some sensitive oper-
ations the system service only allows internal uses by checking
the caller’s UID. As aforementioned, service interfaces are
invoked through the Binder IPC mechanism. For each AIDL
method call, the system keeps track of the original caller’s
identity in order to check it within the service side. Fig. 5
shows a code snippet extracted from the Keyguard Service. Its
checkPermission() method has two steps: First, it gets
UID of the caller using Binder.getCallingUid() and
verifies that the UID is equal to SYSTEM_UID. If so, the caller
is the system and no further check is required. Otherwise, the
permission check is performed.

4

1 void checkPermission() {
2 if (Binder.getCallingUid() == Process.SYSTEM_UID)
3 return;
4 // Otherwise, explicitly check for caller permission
5 if (checkCallingOrSelfPermission(PERMISSION)
6 != PERMISSION_GRANTED) {
7 ...
8 }
9 }

Fig. 5. Permission check is performed if the UID check fails.

D. Package Name Check

The package name check is another means to restrict the
capability of apps. For instance, in order to ensure that the
client can only delete widgets that belong to itself, the App
Widget Service checks whether the caller owns the given
package, by using package name check shown in Fig. 6.

1 public void enforceCallFromPackage(String packageName) {
2 mAppOpsManager.checkPackage(
3 Binder.getCallingUid(), packageName);
4 }

Fig. 6. Check to verify the caller owns a given package.

E. Thread Status Check

Many malicious apps are reported to run in the background
and stealthily jeopardize the security and privacy of end
users. This is seen through the myriad of research: stealing
sensitive photos [18], inferring keystrokes [44], discovering
web browsing habits [29], understanding speech through the
phones gyroscope [33], etc. To mitigate this, Android employs
thread status checks, which are designed to ensure that certain
sensitive operations cannot be performed by callers running in
background. In this check, the system verifies that the caller is
running in the foreground and visible to users, and considers
only the operations from the foreground as performed by the
user. One example of such checks in Android is implemented
in the Bluetooth Manager Service. It ensures that only clients
running in the foreground are able to manipulate the Bluetooth
device, by checking their running status using a dedicated
method named checkIfCallerIsForegroundUser().

III. METHODOLOGY

In this section, we present our design of Kratos. We
first give an overview of the design, followed by the key
components to achieve the design goals.

A. Overview

Kratos’ analysis flow consists of four phases, as shown
in Fig. 7. In the first phase, we retrieve Java class files of
the given Android framework, and process them to generate
entry points of services for further analysis. Kratos is able
to analyze both AOSP and customized Android versions.
Therefore, Kratos takes Java classes as input as opposed to
Java source code, since customized Android frameworks are
usually closed source. In the second phase, Kratos constructs
a precise call graph from the entry points generated from the
previous phase. Third, we annotate the framework call graph

Preprocessing

Call Graph Annotation

Inconsistency Detection

Inconsistent
Security

Enforcement

Java
Class
Files

Call Graph Construction

Relevant
Security

Check Types

Fig. 7. Kratos analysis flow. There are four major phases: (1) Preprocessing,
(2) Call Graph Construction, (3) Call Graph Annotation, and (4) Inconsistency
Detection.

by considering different types of security checks of interest,
e.g., permission check, UID check, package name check, and
thread status check. Each node of the call graph is examined to
determine which, if any, security checks exist within it. Finally,
Kratos detects inconsistencies and outputs a prioritized list of
security enforcement inconsistencies.

As we have illustrated in Fig. 4, system service interfaces
with overlap in functionality may eventually invoke the
same lower-level method(s) to complete their work.
For instance, both of addOrUpdateNetwork() and
getWifiStateMachineMessenger() exposed by the
Wi-Fi Service can be used to update the configuration of
the currently connected Wi-Fi network. Both methods invoke
WifiConfigStore.addOrUpdateNetworkNative(),
i.e., invoke the same lower-level sensitive method. Such
behaviors are expected — while it is common that similar
high-level functionality are provided for convenience, it is
not necessary for the Android framework to implement their
underlying functionality multiple times, hence the convergence
at the lower-level method. Based on this observation, using
a call graph to represent the execution path of a service
interface, we can identify where those sensitive, or lower-
level, methods are invoked by any two services. This is what
we refer to as an “overlap.” As a result, Kratos reduces
the problem of detecting security enforcement inconsistency
among system service interfaces into call graph comparisons.

B. Preprocessing

The Preprocessing step collects important information for
further phases. Our analysis emphasizes system services whose
implementations are scattered throughout the Android frame-
work codebase. We must first obtain a comprehensive list of
app-accessible system services and their corresponding Java
classes, from which we can retrieve all interfaces they expose
that could be invoked by apps.

As we mentioned in Section II, Service Manager manages
all system services. Clients are required to obtain a proxy of the
system service from Service Manager in order to invoke that
service’s interfaces remotely. System services that are visible
for apps should be registered to Service Manager. In practice,
besides a global service manager running in a dedicated
process (/system/bin/servicemanager), there exist a

5

few local service managers. System services registered to local
service managers are only accessible for other services running
within the same process. Therefore, we only care about system
services registered to the global Service Manager since only
these are accessible by apps. By looking into a service’s
implementation and its corresponding AIDL definition, we
easily distinguish which public methods of the service are
publicly accessible AIDL methods. Although apps can invoke
system services directly via low-level Binder IPC mechanism
without passing through the AIDL interfaces, those Binder IPC
endpoints that can be reached directly are exactly the same as
those exported via the AIDL methods.

In addition to AIDL methods, we observe another type
of interface exposed by system services that could be called
by apps, i.e., unprotected broadcast receivers that are dy-
namically registered. Normally, system services dynamically
register broadcast receivers in order to receive asynchronous
messages from within the system. To defend against broad-
cast spoofing [19], either receivers should be protected by
proper permissions or broadcast actions need to be protected.
However, some broadcast receivers of system services are
not protected at all. That means apps can also send crafted
broadcasts to trigger certain method calls. Therefore, we also
consider unprotected broadcast receivers in system services as
app-accessible service interfaces.

Currently, we do not cover those system services whose
main logic and security checks are all performed in native
code, e.g., Camera Service. These native services are small
in number: we manually checked the source code and only
Camera Service, Media Player Service, Audio Policy Service,
Audio Flinger and Sound Trigger Hardware Service were
found in the Android 5.1 source code. While this may intro-
duce false negatives, we believe the impact is minimal because
most system services are implemented in the Java code.

C. Call Graph Construction

A precise call graph is the foundation of discovering
inconsistent security policy enforcements in our approach.
This phase computes the call graph for the entire Android
framework. We rely on a context-insensitive call graph [27]
which is light-weight and easier to build compared to a
context-sensitive call graph, further discussion on the context-
sensitivity may be found in Section VI.

To construct the call graph, we need to know, for each
call-site, all of its possible targets. As is common for object-
oriented languages, the target of a method call depends on the
dynamic type of the receiving object. A polymorphic method,
i.e., virtual method may have multiple implementations in
descendant classes. The runtime has a dynamic dispatch mech-
anism for identifying and invoking the correct implementation.
Unfortunately, it is impossible for static analysis to collect
runtime information and identify with 100% accuracy the
callees of a virtual method. To address this problem, we use
a conservative way to compute possible methods that might
be called at a call-site. In other words, it computes an over-
estimation of the set of calls that may occur at runtime using
context information. Additionally, we connect IPC callers and
callees directly to improve the precision and conciseness of
the call graph. This is necessary because IPCs would introduce

imprecision into our call graph. They use abstract methods to
send data across process boundaries and thus in that procedure,
many levels of virtual method calls are involved.

We take advantage of the solution proposed by PScout [12]
to resolve Binder IPC calls and Message Handler IPCs.
However, PScout fails to take a few special cases into
account. For example, not all system services have an
AIDL file that defines their remote interfaces. For in-
stance, instead of using a stub class auto-generated from
AIDL file, Activity Manager Service relies on a manu-
ally implemented class, ActivityManagerNative, to de-
fine its remote interfaces. Activity Manager Service extends
ActivityManagerNative and implements these remote
interfaces. Therefore, system services like Activity Manager
Service should be handled carefully with additional logic.

Moreover, PScout does not consider another important IPC
that is widely used by system services — Messengers and
State Machines. System services expose AIDL methods that
allow callers to obtain Messenger objects of their internal state
machines. With an Messenger, an app or a system service can
send messages to the corresponding state machine. Although
in essence the communication between Messengers and State
Machines is built on top of Message Handler IPCs, we find
that PScout is unable to deal with this. We identify and connect
all such senders and receivers for messages sent through
Messenger objects.

Entry points. Like Java programs, the Android framework
has a main method SystemServer.main(), from which
system services are initialized and started. However, we cannot
use it as the entry point. All service interfaces are likely to be
called by a client app, but the construction and initialization
procedure of system services cannot cover all remote inter-
faces. As a result, the framework call graph would be incom-
plete if we use SystemServer.main() as our analysis
entry point.

Preprocessing produces a list of app-accessible service
interfaces. Since we would like to include all of them in the call
graph, one possible approach is to build call graphs from each
of the interfaces, then combine these call graphs together to
form the framework’s call graph. This is not efficient because
many call-sites would be included and computed multiple
times. To cope with this problem, for each system service we
construct a dummy main method, in which we construct the
service object and enumerate all its app-accessible interfaces.
The implementation details are described in Section IV-A.

D. Call Graph Annotation

This phase annotates the framework call graph with se-
curity check information. More specifically, given the types
of security checks that are of interest to Kratos, Kratos
automatically determines which security checks are performed
by which call graph nodes, or methods, and annotates the
nodes with security enforcement information, e.g., permissions
it enforces, UIDs it checks.

Identifying permission check methods. Android permissions
are represented as string constants in the framework source
code. When performing permission checks, a permission
string is passed as an argument to a check method.

6

According to developer comments in the Android source
code, checkPermission in Activity Manager Service
is the only public entry point for permission checking.
Therefore, methods that eventually call checkPermission
are considered as performing permission checks. We also want
to know which particular permission is checked. To achieve
this, we keep track of permission string constants passed to
permission check methods. We observe that a few naming
patterns can indicate whether a method is a permission
check method, such as checkCallingPermission,
enforceAccessPermission, and
validatePermission. Their names start with “enforce”,
“check” or ”validate”, and end with “Permission.” Essentially,
they are just wrappers of checkPermission, but we can
leverage such patterns to make permission check method
identification faster.

Identifying other security enforcements. Apart from per-
mission checks, Kratos can also identify three other types of
security checks automatically. For UID checks, they always
get caller’s UID using Binder.getCallingUid() and
compare it with a constant integer. We use def-use analysis [39]
to track which constant value the caller’s UID is compared
with. The Android framework reserves a list of UIDs and their
values are defined in android_filesystem_config.h,
from which we can identify the user that a given UID repre-
sents. Package name checks are more complicated. Besides
the method shown in Fig. 6 that uses a similar approach
to permission checks, there also exist package name checks
that are conducted like UID checks. Similarly, we employ
def-use analysis and examine if the package name returned
from Package Manager Service is compared with a string.
In summary, to detect package name checks, we use both
approaches for identifying permission checks and UID checks.
Currently there are no explicit hints that can instruct us to find
a good way to identify thread status checks. Fortunately, their
number is small, which allows us to identify them manually.

Annotating call graph nodes. After all security enforcement
methods are identified, Kratos iterates call graph nodes and
annotates them with security checks (labels) that are performed
within. Labels are propagated toward the root of each sub-call
graph with the union operator used to merge multiple labels
at a node. This annotated call graph is then used in the next
phase for detecting inconsistent security policy enforcement.

E. Inconsistency Detection

Inconsistency Detection consists of three phases. First, for
every service interface Kratos obtains its sub-call graph from
the framework-wide call graph and does forward analysis
on it to determine which security checks must be passed to
reach each node. Next, Kratos compares service interfaces’
call graphs in a pairwise fashion. Those pairs invoking the
same method but with different security enforcements are
considered as inconsistency candidates. Finally, Kratos applies
three heuristics to rule out false positives.

With the annotated framework call graph, it is easy to
obtain the sub-call graph of a service interface. For a sub-
call graph, Kratos traverses all its nodes and summarizes
the set of security enforcements required to reach each
node from the root, by accumulating security enforcements

along the path from root to that node. Note that in sys-
tem services clearCallingIdentity() is frequently
used to clear the original caller’s identity, or UID, and
set caller identity to the system service temporarily. As
Fig. 8 depicts, after certain operations, the caller’s identity
is restored by calling restoreCallingIdentity(). If
a method is called between clearCallingIdentity()
and restoreCallingIdentity, all security checks are
successfully passed because it appears as being called by
the system service, which has elevated privileges. Thus, it is
unnecessary for Kratos to perform any analysis between the
two function calls.

Now we have annotated sub-call graphs for each service
interface. Next, we use pairwise comparisons starting from
their entry points to check if they ever invoke the same
method, or converge on the same node. If such a convergence
point exists for any two service interfaces, we believe they
overlap in functionality and examine their paths that lead
to the convergence point. Specifically, we compare security
enforcements along the two paths to see if they are consistent,
i.e., one path has a security check while the other does not.

Reducing false positives. Not all methods are used to ac-
cess system resources or perform sensitive operations. If
we use arbitrary convergence between call graphs to in-
dicate they have similar functionality, there would be a
large number of false positives. For example, many meth-
ods are frequently called, such as equal(), toString(),
<init>(), <clinit>(), but they are not sensitive and do
not reflect the caller’s functionality. To reduce the number of
false positives, we investigate service interface call graphs, as
well as the Android source, and design three heuristic rules.

We observed that sensitive, low-level methods reside within
the service side and are not accessible to apps. The runtime
does not load them into an app’s execution environment.
Therefore, we can filter out methods that appear in an app’s
runtime. To achieve this, we classify classes imported by
system services into three categories: (1) classes only used by
system services, (2) classes used by both services and apps,
and (3) classes only used by apps. Methods from the last two
categories are believed to be insensitive and we discard them.

Second, we observe that many services have
paired “accessor” and “mutator” methods, whose
functionality is obviously different. For example, in
Window Manager Service, getAppOrientation and
setAppOrientation are used to get and set the
app’s orientation, respectively. Similarly, there exist
other method pairs in which the two have opposite
functionality, such as addGpsStatusListener and
removeGpsStatusListener, startBluetoothSco
and stopBluetoothSco. If such methods are found
overlapping, we are confident that it is a false positive.

Third, we prioritize service interface pairs by calculating
the sub-call graph similarity score of each pair. We also group
together system services providing similar functionality, e.g.,
the Telephony Service and the Telecom Service. Overlapping
service interfaces belong to the same group have higher priority
to be manually examined. The rationale behind this is that
if two services with no explicitly connection (e.g., the Power
Manager Service and the SMS Service) are found overlapping,

7

WindowManagerService mService;
...
// AIDL method
public void closeSystemDialogs() {
 checkPermission();

 clearCallingIdentity();

 mService.closeSystemDialogs();

 restoreCallingIdentity();
}

...
// AIDL method
public void closeSystemDialogs() {
 doRealWork();
}

Clear original
caller's identity
and set it to system

Restore original
caller's identity

ActivityManagerService.java

WindowManagerService.java

Fig. 8. Activity Manager Service calls Window Manager Service to do the real work. Since both interfaces are accessible for apps, a third-party
app without any permission can call WindowManagetService.closeSystemDialogs() to close system dialogs, bypassing security checks in
ActivityManagerService.closeSystemDialogs(). code has been simplified for brevity

it is highly likely a false positive.

IV. IMPLEMENTATION

We implement Kratos with around 15,000 lines of Java,
Bash and Python. Based on the design described in Section III,
in this section we elaborate our implementation choices of
Kratos. To ensure efficiency and scalability, we make effort to
parallelize the implementation.

Our implementation follows the logic shown in Fig. 7:
(1) Preprocessing, (2) Call Graph Construction, (3) Call Graph
Annotation, and (4) Inconsistency Detection.

ODEX

Smali

DEX

Android
Source
Code

Stock
Android

Translating

Java
Classes

Compiling

Fig. 9. Kratos can obtain Java class files from AOSP and customized Android
versions

A. Preprocessing

In the Preprocessing step, we obtain the necessary class
files for the particular Android framework version. In the case
of analyzing AOSP, it is a matter of compiling the Android
operating system from the source code and extracting the class
files.

For a vendor specific version, it takes extra effort to obtain
the class files. Because we do not have access to the source
code of the customized framework, we must dump odex files
from the device image, and translate them into corresponding
Java class files. Fig. 9 shows the three steps involved in
this process. We use baksmali [7] to convert odex into an
intermediate format, smali. Then we employ smali [7] to
assemble smali files into dex, and finally use dex2jar [8]

to get JAR files, i.e., Java classes. We notice that since
Android 5.0 the Dalvik runtime has been replaced by the
Android runtime (ART) [2], in which odex files are no longer
available. To deal with that, Dextra [3] can be used to dump
dexs from ART’s oat files.

Once the class files are obtained, we utilize the Soot
framework [40], a Java decompiler and analysis tool, to parse
any given class and its member bodies in order to iden-
tify which classes are app-accessible system services. More
specifically, those services are identified by looking for invo-
cations of publishBinderService and addService,
two methods used for registering services to the global
service manager. We exclude services registered by calling
publishLocalService, as they are only available for
system use. That means they are not accessible for third-party
apps. We then distinguish app-accessible interfaces exposed by
these app-accessible system services. For AIDL methods we
look for their AIDL definitions, either in aidl files or in a
public Java interface extending IInterface. Unprotected
broadcast receivers can be identified by analyzing calls of
registerReceiver and registerReceiverAsUser.
If they do not have a broadcastPermission argument (or
the argument is null) and intent actions the broadcast receiver
listens to are not defined as protected-broadcast in
the framework’s AndroidManifest.xml, we consider this
receiver as unprotected.

Once the identification of app-accessible system interfaces
has finished, we take one last important step. We build an artifi-
cial single entry point for further analysis that uses Spark [28],
a popular Java points-to analysis tool and call graph generator.
It was designed to start at the program’s single entry point,
look for method calls there, then take all found callees, look
at what callees call, and so on. This way, it builds a precise
graph of what method is potentially called and identifies the
methods which are reachable over all [6]. While the Android
framework does have a static main() method in the System
Server class, there is no guarantee that all methods will be
called from that point of origin, as that is only responsible for
instantiating system services. Thus, we must provide Spark a
single static entry point into the Android framework for each
class analyzed.

We use method and class instrumentation data structures
provided by Soot to dynamically build “wrapper” classes with

8

a static main method. These wrappers are a necessity to meet
Spark’s requirement of static entry points for invoking method
calls of a class. Kratos automatically builds the wrapper classes
by inferring important attributes of service interfaces. Class
access modifiers are one key piece of analysis. Once they are
understood by Kratos, it decides how to build a wrapper. In
the best case, the service is a public class; while in the worst
case, the service is a private inner class.

B. Call Graph Construction

In this phase we utilize Spark to generate a context-
insensitive call graph that encompasses all app-accessible
service interfaces. We use the dummy main method as the
single entry point. For Spark to generate the call graph, it must
operate on one thread; thus we are unable to parallelize this
phase. It is in this phase that Java virtual method resolution
occurs, by leveraging “variable-type analysis” (VTA). We also
enable the on-the-fly option, because it was reported that the
most effective call graph construction method proceeds on-the-
fly and builds the call graph at the same time as it computes
points-to set [30].

C. Inconsistency Detection

In order to discover inconsistencies within security en-
forcements, we intelligently match two call graphs of different
service interfaces in a pairwise fashion. Because this phase can
run, at worst, in O(n2) time, we use a set of heuristics in order
to reduce the total number of comparisons, which is outlined in
Section III. Once two call graphs are paired, we look for a point
of convergence — a method whereby both paths will intersect.
Once we find an intersection, we use backward analysis to
identify any other services that can reach the method. This
allows Kratos to quickly identify additional services which
may share that path in which security circumventions occur.

To prioritize the results for manual validation, we use
fast belief propagation to measure node affinity, and then
calculate sub-call graph similarity score with the Matusita
distance. Denote the final affinity score matrix as S, we have
S = [I + ϵ2D − ϵA]−1 where I is the identity matrix, D is
the degree matrix, A is the adjacency matrix, and ϵ is a small
number which we take the value of 0.02. Matusita distance
d is defined as d =

√∑n
i=1

∑n
j=1(

√
S1,ij −

√
S2,ij) where

S1,ij and S2,ij are entries of S for the subgraphs. And the
similarity score sim = 1

1+d is then calculated.

V. RESULTS

In this section, we evaluate Kratos’ effectiveness, accu-
racy, and efficiency by applying it to six different Android
frameworks. We also present vulnerabilities identified using
Kratos and analyze some of them in detail. All our experiments
are conducted on a desktop machine with a 3.60GHz 8-core
Intel Core i7 CPU and 16GB memory, running 64-bit Ubuntu
Linux 14.04.

Codebases. We target both AOSP Android and customized
Android. Since the Android framework is evolving over time,
in addition to inconsistencies within a particular Android
framework codebase, we also track inconsistencies across
different Android versions. Therefore, we choose four most

recent releases, i.e., Android 4.4, 5.0, 5.1, and 6.0. Vendors
and carriers often change existing or add new code to provide
a unique and differing experience. Previous work [43], [26]
reported security threats brought by such customizations. We
believe that they may also lead to more inconsistencies as
different parties are involved, and their engineers are likely
to have different understanding of the security policy. Specifi-
cally, we analyze two customized Android frameworks, AT&T
HTC One and T-Mobile Samsung Galaxy Note 3, both based
on Android 4.4.2.

Table I summarizes the statistics of the six Android frame-
work codebases in our evaluation. For the AOSP Android, the
number of services increases dramatically from version 4.4 to
5.0, then remains unchanged in 5.1 and M preview. However,
as the second column shows, the number of AIDL methods
exposed by system services drops by 20 in M preview. It is
obvious that Samsung and T-Mobile customize Android much
more heavily than HTC and AT&T (mostly contributed by
Samsung). Though both phones are based on the same version
of AOSP codebase, Galaxy Note 3 has 89 more system services
while HTC One only has 9 more. Moreover, customization also
increases the number of service interfaces, as well as class files.

Tool Efficiency. We measure Kratos’s efficiency and sum-
marize the results in Table II. The Preprocessing phase only
takes a few minutes. Call Graph Construction and Call Graph
Annotation are very fast, each finishing within one minute.
Even though Inconsistency Detection consumes the majority
of processing time, we can analyze a framework codebase in
less than 20 minutes.

A. Tool Effectiveness

Table V summarizes our overall analysis and detection
results on all six Android framework codebases. The first col-
umn is the number of inconsistent security policy enforcement
Kratos discovered. To evaluate true positive (TP) and false
positive (FP), we manually examine all cases of enforcement
inconsistency. The numbers of true positives and false positives
are listed in column 2 and column 3, respectively. We also
manually validate exploitable inconsistencies for each code-
base, and show the results in the last column. We consider
inconsistent enforcement cases which can be exploited by a
third-party app as exploitable, as they are more likely to result
in real-world attacks.

For the four AOSP codebases, Kratos reports more incon-
sistencies in newer versions. There are only 21 inconsistencies
in Android 4.4 framework. However, this number drastically
increases to 61 in the later version, Android 5.0. This is to be
expected, as shown in Table V, Android 5.0 introduces 19 more
system services. More interestingly, many of the new system
services seem to have similar functionality to existing ones.
For example, the RTT (round trip time) Service introduced
in Android 5.0 can be used to measure round trip time of
accessible Wi-Fi access points nearby. Incidentally, the Wi-Fi
Service also provides similar functionality. Another example is
Telecom Service, whose functionality overlaps with Telephony
Service. Meanwhile, the large number of system services
added by T-Mobile and Samsung undoubtedly introduce more
inconsistencies.

9

TABLE I. STATISTICS OF THE SIX CODEBASES IN OUR EVALUATION. WE ONLY CONSIDER SERVICES IMPLEMENTED IN JAVA.

Codebase # Services # Service Interfaces # Class Files# AIDL Methods # Broadcast Receivers
Android 4.4 70 1,010 26 14,901
Android 5.0 89 1,483 28 33,110
Android 5.1 89 1,510 31 33,433

Android M Preview 89 1,490 31 35,431
AT&T HTC One (Android 4.4.2) 85 1,868 35 17,879
T-Mobile Samsung Galaxy Note 3

(Android 4.4.2) 159 2,463 64 171,306

TABLE II. TIME CONSUMED IN EACH ANALYSIS STEP OF KRATOS (IN SECONDS)

Codebase Preprocessing CG Construction CG Annotation Inconsistency Detection
Android 4.4 95.4 23.4 8.6 470.3
Android 5.0 137.1 25.0 10.53 496.4
Android 5.1 209.0 22.2 14.6 445.9

Android M Preview 141.6 21.6 9.7 482.3
AT&T HTC One (Android 4.4.2) 110.8 29.1 16.0 655.8
T-Mobile Samsung Galaxy Note 3

(Android 4.4.2) 306.9 57.5 50.7 1273.7

TABLE III. OVERALL RESULTS OF KRATOS. THE NUMBERS OF EXPLOITABLE INCONSISTENCIES, TRUE POSITIVES AND FALSE POSITIVES ARE
CONCLUDED BY MANUAL ANALYSIS.

Codebase # Inconsistencies # TP # FP Precision # Exploitable
Android 4.4 21 16 5 76.2% 8
Android 5.0 61 50 11 82.0% 11
Android 5.1 63 49 14 77.8% 10
Android M 73 58 15 79.5% 8

AT&T HTC One (Android 4.4.2) 29 20 9 69.0% 8
T-Mobile Samsung Galaxy Note 3

(Android 4.4.2) 128 102 26 79.7% 10

True positive and false positive. For all codebases except
the one from HTC One, Kratos can achieve more than 75%
precision. We cannot measure false positive rate because
we do not have other sources of data with ground truth
of known inconsistencies. Therefore, it is not feasible for
us to calculate the number of true negatives and false neg-
atives. We further analyze false positive cases and try to
understand why they occur. We find that most false positives
are caused by the three limitations of Kratos. First, two
service interfaces are not equivalent in functionality, yet they
invoke the same underlying sensitive method, which is invoked
with different arguments. Since Kratos uses path-insensitive
analysis, it cannot discern the impact differing arguments
has on the execution path. For example, Account Manager
Service has two public interfaces: getAccounts() and
getAccountsForPackage(). The former can list all ac-
counts of any type registered on the device, while the latter re-
turns the list of accounts that the calling packages is authorized
to use. They eventually call getAccountsAsUser() with
different arguments, and getAccountsForPackage()
has one more security check — a UID check which ensures
that the caller is an authorized user.

The second limitation is the inaccuracy of the overlapping
service interfaces reported by Kratos. As we have mentioned in
Section III, the over-estimated call graph could introduce false
positives. Spark utilizes point-to analysis, which makes every
effort to resolve virtual method calls according to context.
Nevertheless, it cannot resolve all virtual methods with 100%
accuracy.

The third limitation also comes from service interfaces
with similar but not equivalent functionality. One might
be more capable than the other one, and the service with
more capability is guarded by stricter security enforcement.

For example, deleteHost() and deleteAllHosts()
from App Widget Service are able to delete host records.
They both call deleteHostLocked(). The difference is
deleteHost() calls deleteHostLocked() only once,
while deleteAllHosts() calls it multiple times in a loop.
The latter appears to be more powerful, as it can delete all
host records while the former can only delete one record per
call. Compared to deteleHost(), deleteAllHosts()
checks a caller’s UID. Kratos is not able to recognize method
body semantics in order to evaluate a service interface’s
capability.

Not all inconsistencies are exploitable. Note that among all
true inconsistency cases, only a small portion of them (18.3%)
are exploitable by a third party. The reason is threefold. First,
they may both require system-level permissions. Our attack
model assumes that an attacker builds a third-party app and
manages to have it installed on a victim’s Android device.
While it is possible for the methods to be invoked, system-level
permissions are inaccessible by third-party apps. Two services
in the “HTC One” code base provide telephony functionality,
i.e., HtcTelephony Service and HtcTelephonyInternal Service.
They both expose an interface setUserDataEnabled()
for enabling and disabling cellular data connection, and both
invoke Phone.setUserDataEanbled() to finish the re-
quest. Kratos reports that permissions used in the enforcement
are different. HtcTelephony only enforces APP_SHARED, but
HtcTelephonyInternal enforces APP_SHARED together with
CHANGE_PHONE_STATE. We cannot exploit this inconsis-
tency, because APP_SHARED is a system-level permission.

The second reason that an identified inconsistency
is not exploitable stems from the difficulty to construct
valid arguments for calling a service interface without
a required permission, even though the interface has a

10

weaker security enforcement than another service interface
providing the same functionality. For instance, Connectivity
Service exposes isActiveNetworkMetered()
and Network Policy Management Service defines
isNetworkMetered(NetworkState) to allow
callers to query if the active network is metered.
Kratos reports that isActiveNetworkMetered()
enforces a permission ACCESS_NETWORK_STATE,
but isNetworkMetered(NetworkState) does
not. This is a true inconsistency. However, to invoke
isNetworkMetered(NetworkState), one must obtain
or instantiate a NetworkState object, which requires the
ACCESS_NETWORK_STATE permission. In the end, the
same permission is required in order to successfully invoke
these two interfaces.

Third, the existence of feature checking logics makes it
difficult to reach to particular methods. Some resources could
be accessed only when a certain feature is satisfied. Sometimes,
a security checking function is not directly called, and instead
an object (could either be a flag or instance of another class) is
verified where the object itself will only be valid if a security
check is passed.

Characteristics of the vulnerabilities. Interestingly, we find
many vulnerabilities are discovered only when we analyze
hidden interfaces. In fact, 11 of them are exploitable through
hidden interfaces that are not directly visible to apps. The-
oretically, these hidden interfaces are not expected to be
used by developers, but Android does not restrict apps to
access them through Java reflection. This finding suggests
that hidden interfaces are not carefully scrutinized. Perhaps
disabling reflection would be one way to reduce such attack
surface.

In addition, we find 3 vulnerabilities are discovered by ana-
lyzing two different services which performed the same sensi-
tive operation, which shows that functionalities are sometimes
redundant across services. Besides, we find 4 vulnerabilities
where a system permission is bypassed, allowing a third-party
app to perform operations that are absolutely disallowed by
Android.

In summary, these results demonstrate that although human
efforts are indispensable, Kratos is effective at automatically
detecting a variety of inconsistent security enforcement. Based
on the cases identified, Kratos is able to uncover previously
unknown vulnerabilities.

B. Case Studies

By analyzing security enforcement inconsistencies reported
by Kratos, we have discovered 14 vulnerabilities, summarized
in Table IV. Items in Column 1 labeled with † indicate
the inconsistency occurs between two services. Permissions
labeled with ∗ are system permissions that cannot be used
by third-party apps. Specific UIDs that can be bypassed are
parenthesized. N/A means the vulnerability only exists in
customized Android and does not affect other frameworks.

We have filed 8 security reports regarding these vulnera-
bilities to the Android security team. All of the vulnerabilities
we reported have been acknowledged and confirmed. Among
them, the mDNS daemon vulnerability was originally classified

as a high severity vulnerability, but then rated as low severity.
The ones in Wi-Fi Service and Power Manager Service had
been fixed before we reported it. Note that we are very
conservative about the results, which means those confirmed
in code but have not been validated in real devices are not
counted.

In this section we select several vulnerabilities shown in
Table IV and explain them in detail. Due to space constraints,
we cannot provide code-level details, and refer to the reviewers
to visit our anonymized result website http://tinyurl.com/
kratos15 [4] for more information.

Starting/Terminating mDNS daemon (denial of service).
The multicast Domain Name System (mDNS) provides the
ability to perform DNS-like operations on the local area
network in the absence of any conventional Unicast DNS
server [5]. Android starts an mDNS daemon mdnsd when
the system boots up. This daemon is used and controlled by
the Network Service Discovery (NSD) service, which allows
an app to identify other devices on the local network that
support the services it requests [9]. It is useful for a variety
of peer-to-peer apps such as file sharing and multiplayer
gaming. NSD Service exposes an interface that is able to
start and terminate mdnsd. Considering the importance of the
mDNS daemon, that interface is protected by a system-level
permission, CONNECTIVITY_INTERNAL, which cannot be
acquired by third-party apps. Therefore, by design, all attempts
made by third-party apps to start or terminate the mDNS
daemon is thwarted.

However, another interface exposed by the NSD Service,
getMessenger(), could be used to achieve the exact same
functionality. By calling getMessenger(), the caller ob-
tains a reference of the Messenger object from NsdStateMa-
chine that manages the communication with mdnsd, then can
send messages to it. Compared to the interface protected by
the CONNECTIVITY_INTERNAL permission, this interface
only checks the INTERNET permission, which is one of the
most frequently requested permissions [42]. Considering that
the INTERNET permission is so commonly used and low-
privilege, apps that request it do not raise a user’s attention.
NsdStateMachine distinguishes different types of incoming
messages by examining their what field. A malicious app
with only INTERNET permission can easily craft a message,
set its what field to NsdManager.DISABLE, and send it to
NsdStateMachine, to terminate the mDNS daemon. As a result,
users can no longer use apps that rely on the NSD Service.

Ending phone calls (privilege escalation). Both
Telephony Service and Telecom Service provide a
method endCall() that allows caller apps to reject
incoming phone calls and end ongoing phone calls.
According to Android’s source code, their corresponding
wrappers, TelephonyManager.endCall() and
TelecomManager.endCall(), are annotated with
@hide and @SystemApi, respectively. That means both
should only be used by the system. In fact, Telecom
Service’s endCall() indeed enforces a system permission,
MODIFY_PHONE_STATE, ensuring that only the system is
able to use it. However, Telephony Service’s endCall()
only checks the CALL_PHONE permission, which can be
acquired by third-party apps. More interestingly, a component
of Telephony Service registers a broadcast receiver in which

11

TABLE IV. SUMMARY OF INCONSISTENT SECURITY ENFORCEMENT THAT CAN LEAD TO SECURITY POLICY VIOLATIONS.

Service Affected Framework Description Security
Implication

Bypassed Security
EnforcementAT&T

HTC
T-Mobile
Samsung 4.4 5.0 5.1 M

Preview

SMS ✓ ✓ ✓ ✓ ✓ ✗
Clear all SMS notifications
showing in the status bar Privilege escalation Package Name (SMS)

Wi-Fi ✓ ✓ ✓ ✗ ✗ ✗
Set up an HTTP proxy

that works in PAC mode Privilege escalation CONNECTIVITY INTERNAL*

NSD ✓ ✓ ✓ ✓ ✓ ✓
Enable/Disable mDNS daemon

with only INTERNET permission DoS CONNECTIVITY INTERNAL*

RTT ✗ ✗ ✗ ✓ ✓ ✓ Crash the Android runtime Soft reboot ACCESS WIFI STATE
Wi-Fi Scanning ✗ ✗ ✗ ✓ ✓ ✓ Crash the Android runtime Soft reboot ACCESS WIFI STATE

GPS ✓ ✓ ✓ ✓ ✓ ✗
(1) Send raw data to GPS’s native

interface (2) Crash the Android runtime
Privilege escalation,

Soft reboot ACCESS FINE LOCATION

GPS ✓ ✓ ✓ ✓ ✓ ✓
Get GPS providers that

meet given criteria Privilege escalation ACCESS COARSE LOCATION
ACCESS FINE LOCATION

Input Method
Management ✓ ✓ ✓ ✓ ✓ ✓ Dismiss input method selection dialog DoS UID (SYSTEM)

Telephony/Telecom† ✗ ✗ ✗ ✓ ✓ ✓
End phone calls

without any permissions Privilege escalation MODIFY PHONE STATE*
CALL PHONE

Telecom ✗ ✗ ✗ ✓ ✓ ✓
Get phone state

without any permissions Privilege escalation READ PHONE STATE

Activity Manager/
Window Manager† ✓ ✓ ✓ ✓ ✓ ✓ Close system dialogs DoS UID (SYSTEM)

Power Manager/
Persona Manager† ✓ ✓ ✓ ✓ ✗ ✗ Set maximum screen timeout Draining battery UID (ADMIN, SYSTEM)

Device Info N/A ✓ N/A N/A N/A N/A Save MMS to audit database Privilege escalation UID (PHONE)
Phone Interface

Manager Ext N/A ✓ N/A N/A N/A N/A Send raw request to radio
interface layer (RIL) Not clear MODIFY PHONE STATE*

phone calls are ended when a specific broadcast comes in.
Unfortunately, this broadcast receiver is not protected at
all, making it possible for an app without any permissions
to end phone calls. This inconsistent security enforcement
allows an attacker to create denial of service attacks
against compromised devices. It could also be exploited by
ransomware to make victims’ phones unusable.

Dismissing all SMS notifications (privilege escalation).
A MessagingNotification object instantiated in SMS
Service registers a broadcast receiver to listen to message
deleting broadcast. If such broadcast is received, it clears all
SMS notifications showing in the status bar. Kratos reports
that this receiver is not protected by any permission, and it
has similar functionality to Notification Service. By design,
notifications can only be dismissed by their owners or the
system, enforced by package name check. However, we can
bypass this enforcement by sending the broadcast to SMS
Service. This bug only affects Android 5.1 and earlier versions
because “the MMS app no longer ships with latest versions of
the OS.”

Crashing the Android runtime (soft reboot). Wi-Fi Scanning
Service provides a way to scan the Wi-Fi universe around
the device. Similar functionality is provided by Wi-Fi Ser-
vice as well. They both leverage the WifiNative class
that is responsible for communicating with the native bi-
nary wpa_supplicant, from which Wi-Fi scanning results
can be obtained. Kratos reports that Wi-Fi Service checks
ACCESS_WIFI_STATE permission, while Wi-Fi Scanning
Service has no permission enforcement. We attempt to exploit
this inconsistency to query Wi-Fi scanning reports without
declaring any permissions. It turns out due to implementation
issues of the Wi-Fi Scanning Service, it causes crash of the
entire Android runtime.

We further analyze the source code and crash log.
In fact, we could successfully trigger the invocation of
WifiNative.startScanNative. Since we have

to stop the scanning before reading the results, we
attempt to call WifiNative.stopScanNative, in
which a runtime exception is thrown out at line 65 of
art/runtime/check_jni.cc. The exception is not
handled, therefore the runtime crashes, causing a soft reboot.

Setting maximum screen timeout (draining battery).
In T-Mobile’s Samsung Galaxy Note 3, Kratos
uncovered two service interfaces with exactly the same
name but different security enforcement for calling
setMaximumScreenOffTimeoutFromDeviceAdmin().
One is exposed by Power Manager Service from the AOSP
codebase based on which customization was made; another
is exposed by Persona Manager Service from customized
portion. These two methods implement the same functionality
but their security enforcement is inconsistent. Power
Manager Service does not apply any security checks on its
setMaximumScreenOffTimeoutFromDeviceAdmin(),
however, Persona Manager Service checks the caller’s UID.

The name of the method implies that it should only be used
by the device administrator, but Kratos did not find any checks.
We further analyze the AOSP source code and confirm that it is
a real inconsistency in security enforcement. In the comments,
the developer made it very clear that this method should only
be called by a device administrator (as shown in left side
of Fig. 1). But surprisingly, they did not apply any security
checks to secure it. By invoking Power Manager Service’s
setMaximumScreenOffTimeoutFromDeviceAdmin(),
an app without the proper permissions can set the screen
timeout to a very large value in order to drain the battery. Past
studies [45], [16], [35] have shown that display is a major
contributor to the battery consumption of smartphone users.

In this case, the inconsistency occurs between two code-
bases — the original AOSP code and customization code.
This case also demonstrates that though customization is often
blamed for introducing more security threats, it is also possible
that customizations are more secure than AOSP.

12

Sending raw requests to RIL. We found two system services
in the Samsung Galaxy Note 3 that provide very similar
telephony-related functionality. These two services are im-
plemented in two classes, PhoneInterfaceManager and
PhoneInterfaceManagerExt. Kratos reports that the
app-accessible interface invokeOemRilRequestRaw()
exposed by PhoneInterfaceManager and another interface
sendRequestRawToRIL() exposed by PhoneInterfaceM-
anagerExt mirror in functionality. Specifically, they both in-
voke Phone.invokeOemRilRequestRaw() to send raw
requests to radio link layer (RIL).

Nevertheless, their security enforcement is different.
invokeOemRilRequestRaw() checks the CALL_PHONE
permission, while sendRequestRawToRIL() has no secu-
rity checks. As a result, using sendRequestRawToRIL(),
an attacker can send arbitrary data to RIL without requesting
any permissions. Note that attackers can only control data, but
cannot alter the request type. sendRequestRawToRIL()
restricts request types to RIL_REQUEST_OEM_HOOK_RAW.
We monitor all RIL requests sent by a test-phone and confirm
that this request type is used. We have not managed to craft
malicious data to take control of RIL or attack base stations,
because of the difficulty involved in reverse engineering the
protocol. However, we believe this unprotected service inter-
face can be exploited by sophisticated attackers who have
more knowledge of cellular networks, especially the use of
RIL_REQUEST_OEM_HOOK_RAW request.

Interestingly, our further analysis of AOSP Android 5.0
source code reveals that invokeOemRilRequestRaw() is
protected by a system permission MODIFY_PHONE_STATE,
which is higher-privileged than CALL_PHONE that this T-
Mobile Samsung phone’s invokeOemRilRequestRaw()
enforces. This implies that vendors/carries and Google engi-
neers do have different understanding of how to protect certain
sensitive operations.

VI. DISCUSSION AND LIMITATIONS

False negatives. Similar to previous static analysis work, our
approach can miss security enforcement inconsistencies. First,
Kratos is not able to deal with implicit control flow transitions,
e.g., callbacks. To address this problem, we could implement
some principles found in EdgeMiner [15] and FlowDroid [11].
Namely, their implicit control flow and context/flow/lifecycle
analysis principles, respectively. While this would help identify
another security check present within the Android framework,
it doesn’t completely solve our false negative problem.

Because we use heuristics to reduce computation time for
identifying security enforcement circumventions, there is the
potential that a heuristic may rule out a true positive. As with
all heuristics, they come at a cost of introducing false negatives
or false positives. This very tradeoff is one we work hard to
balance; keep the runtime fast and minimize the false positive
and false negatives. Moreover, vendors/carriers may introduce
new means for enforcing their security policies besides the
four we have considered.

Kratos currently does not handle the native code (C/C++)
that comprises the lower levels of Android and some small
portion of the service code base, leading to false negatives. To
address this, additional work is needed to build and analyze

a control flow graph at the native layer, which is part of our
future work.

Difficulty in verifying violations. Currently, Kratos is unable
to automatically verify the presence of a circumvention. To
decide if a violation is exploitable, one needs to understand
the semantics of the code. In most cases, a review of the actual
source code is the only way to ascertain the semantics. One
must know what operations are able to interact with untrusted
space and also design a feasible way to mount the attack. This
is the most time consuming portion of Kratos.

Context-insensitive and path-insensitive analysis. Kratos de-
pends on Spark to build a context-insensitive call graph, which
could introduce false negatives or positives. It is understood,
through work conducted by Lhoták and Hendren [31] , that
a context-insensitive call graph may impact the call graphs
accuracy. However, Lhoták and Hendren go on to prove that the
improvements context-sensitivity provide to the accuracy are
minimal. Through these findings, we justify our optimization
for a context-insensitive call graph; the memory and com-
putational overhead of a context-aware call graph analysis
does not improve the accuracy enough relative to its costs.
Path-insensitivity is not applicable here because we are not
interested in how branching affects a call chain. We are only
interested in security enforcement circumvention, which does
not depend on branching. Thus, we are able to safely ignore
utilizing this analysis for our call graph.

Scalability. While we have made every effort to allow Kratos
to be scalable at every facet, there is one specific place in
which we cannot run a parallelized computation — our use of
Spark. Spark has significant limitations in scalability. Because
of the reliance on Spark, the “Call Graph Construction” phase
is unable to be threaded. Even in spite of this limitation, the
IV-B phase completes in minimal time (see results in Table II).
Every other aspect of Kratos leverages threading in an effort
to reduce run time.

Native System Interfaces. We also observe an interesting case
where an app can get the MAC address of a network interface
card (NIC) using three different ways, guarded by different
security enforcement. The first approach is to call the Con-
nectivity Service’s getLinkProperties(), which checks
ACCESS_NETWORK_STATE permission. Second, an app can
run the command line tool /system/bin/netcfg to obtain
a list of available NICs and information, including MAC
addresses. This requires the app owns INTERNET permission.
However, the third approach, reading MAC address directly
from the file /sys/class/net/[nic]/address, does
not require any permissions. This motivates our future im-
provement of Kratos — to handle inconsistencies across dif-
ferent layers of Android.

VII. RELATED WORK

Security policy violation detection and verification.
Quite a few of program analysis and verification tools have
been proposed to verify security properties or detect security
vulnerabilities caused by policy violation [13], [17], [20], [23],
[38]. All of them, except AutoISES [38], require developers
or users to provide code-level security policies. AutoISES [38]
can automatically infer security specifications with the input

13

of a security check function list, and leverage inferred speci-
fications to automatically detect security violations. Our tool
also supports security policy inference like AutoISES, freeing
users from providing specification manually. AutoISES works
effectively on Linux kernel and Xen, but compared to Kratos,
its design may suffer from several limitations when applied
to code bases like Android. First, it assumes that security
checks are placed just before accessing sensitive objects, while
in Android they are placed earlier. In our design, we solve
this by using function calls to represent sensitive operations
instead of sensitive objects. Second, AutoISES needs a security
check function list as input, while in Android it is difficult to
enumerate all possible ones due to the existence of different
security check types. In contrast, in Kratos only security policy
types are needed as input. Last but not least, AutoISES cannot
handle Android-specific features like conflated layers (Java and
C/C++) and IPCs.

Android permission check circumvention. Felt et al. [21]
propose the notion of permission re-delegation in the gener-
alized contexts applicable for both web and smartphone apps.
They identified vulnerabilities in Android applications that can
be exploited by malware to access privileged functionality
without having corresponding permissions. Wu et al. [43] also
study this problem but focus on vendor customized Android.
Woodpecker [26] is a tool for systematically detecting capa-
bility leaks in stock Android smartphones. Our work differs
from them in two major aspects. First, we target Android
services instead of applications. Second, we are detecting
security enforcement inconsistencies that can lead to direct
security policy bypass without the need of another app (e.g.,
a delegate).

Automated security policy enforcement. To date, a few
automated solutions have been proposed to address inconsis-
tencies in security policy enforcement. Ganapathy et al. [22]
present a technique for automatic placement of authorization
hooks, and apply it to the Linux security modules (LSM)
framework. Muthukumaran et al. [34] propose an automated
hook placement approach that is motivated by a novel observa-
tion that the deliberate choices made by clients for objects from
server collections and for processing those objects must all
be authorized. These solutions cannot be directly adopted by
Android for distributing security enforcement as they require
perfect knowledge about the security policies that need to be
enforced. In Android, this is unlikely the case as (1) Android
has multiple layers and its policies are implemented in different
layers using different code, e.g., Java and C/C++, and (2)
multiple parties (e.g., vendors, carriers) are involved in the
customization and each of them may have their own policies.
Although automatic hook placement is promising and we
should encourage automatic hook placement, it is still highly
desirable to seek solutions like Kratos that can automatically
detect security vulnerabilities from existing or legacy source
code.

Static analysis tools on Android. There has been signif-
icant work in using static analysis techniques combined with
call graphs to map the Android framework, understand the
permission specification, understand how data is disseminated
within the Android framework, and enable the functionality
of gleaning information from avenues that are unassuming.
PScout [12] uses static analysis tools to enumerate all per-

mission checks within the Android framework. They are able
to map all permission usages to their appropriate methods
and understand the utility of permission usage within the
framework. While PScout identifies permissions, they don’t
look at paths through the framework which would allow
the invocation of the permissions they discover. Static taint
analysis tools such as FlowDroid [11], AndroidLeaks [24],
DroidSafe [25], and Amandroid [41] work to understand
how, why, where, and what data travels through the Android
framework as a user uses an app in order to perform privacy
leakage detection. They track this data from source to sink and
watch how and what uses the data they wish to observe. Their
use of static analysis techniques and source/sink flow control
is an important concept in our work, but in comparison, we
identify how and where security enforcement occurs instead
of watching data flow. In our case, our sources are specific
entry points in the AIDL services provided by Android and
our sinks are the convergence point of two APIs.

VIII. CONCLUSION

In this work, we propose Kratos, a static analysis tool for
systematic discovering inconsistencies in security enforcement
which can lead to security enforcement circumvention vulner-
abilities within the Android framework. We have demonstrated
the effectiveness of our approach by applying our tool to four
versions of Android AOSP frameworks as well as two cus-
tomized Android versions, conservatively uncovering at least
14 highly-exploitable vulnerabilities that can lead to security
and privacy breaches such as crashing the entire Android
runtime, arbitrarily ending phone calls, and setting up a HTTP
proxy with no permissions or only low-privileged permis-
sions. Interestingly, many of these identified inconsistencies are
caused by the use of hidden interfaces of system services. Our
findings suggest that some potentially promising directions to
proactively prevent such security enforcement inconsistencies
include reducing service interfaces and restricting the use of
Java reflection (for accessing hidden interfaces).

We have shown that security enforcement circumvention
is a systemic problem in Android. Our work demonstrates
the benefit of an automatic tool to systematically discover
anomalies for security enforcement in large codebases such
as Android. We expect Kratos to be useful for both Android
developers as well as vendors who offer customized Android
codebases.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful feedback, as well as Shichang Xu and Ashkan
Nikravesh for their proofreading efforts. This material is based
upon work supported in part by the National Science Foun-
dation under grants CNS-1345226, CNS-1318306 and CNS-
1526455, and by the Office of Naval Research under grant
N00014-14-1-0440. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation and the Office of Naval Research.

REFERENCES

[1] Android Binder. https://www.nds.rub.de/media/attachments/files/2012/
03/binder.pdf.

14

[2] ART and Dalvik. https://source.android.com/devices/tech/dalvik/.
[3] Dextra - A tool for DEX and OAT dumping, decompilation. http://

newandroidbook.com/tools/dextra.html.
[4] Kratos Results Website. http://tinyurl.com/kratos15.
[5] Multicast DNS. https://tools.ietf.org/html/rfc6762.
[6] Problem in Making Call Flow Graph from Class or Java files. https:

//mailman.cs.mcgill.ca/pipermail/soot-list/2014-May/006815.html.
[7] Smali An assembler/disassembler for Android’s dex format. https://

code.google.com/p/smali/.
[8] Tools to work with android .dex and java .class files. https://github.

com/pxb1988/dex2jar.
[9] Using Network Service Discovery. http://developer.android.com/

training/connect-devices-wirelessly/nsd.html.
[10] Vulnerability summary CVE-2006-1856. http://nvd.nist.gov/nvd.cfm?

cvename=CVE-2006-1856.
[11] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le

Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android
apps. In Proc. of ACM PLDI, 2014.

[12] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the
android permission specification. In Proc. of ACM CCS, 2012.

[13] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. In Proc. of ACM POPL, 2002.

[14] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji. A
methodology for empirical analysis of permission-based security models
and its application to android. In Proc. of ACM CCS, 2010.

[15] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and
Y. Chen. EdgeMiner: Automatically Detecting Implicit Control Flow
Transitions through the Android Framework. In Proc. of ISOC NDSS,
2015.

[16] A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. In Proc. USENIX ATC, 2010.

[17] H. Chen and D. Wagner. MOPS: an infrastructure for examining
security properties of software. In Proc. of ACM CCS, 2002.

[18] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without
actually seeing it: Ui state inference and novel android attacks. In Proc.
of USENIX Security, 2014.

[19] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in Android. In Proc. of ACM MobiSys,
2011.

[20] A. Edwards, T. Jaeger, and X. Zhang. Runtime verification of autho-
rization hook placement for the Linux security modules framework. In
Proc. of ACM CCS, 2002.

[21] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
Re-Delegation: Attacks and Defenses. In Proc. of USENIX Security,
2011.

[22] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement of authoriza-
tion hooks in the Linux security modules framework. In Proc. of ACM
CCS, 2005.

[23] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer
overrun detection using linear programming and static analysis. In Proc.
of ACM CCS, 2003.

[24] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: Au-
tomatically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale. In Proc. of TRUST, 2012.

[25] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard.

Information-flow Analysis of Android Applications in DroidSafe. In
Proc. of ISOC NDSS, 2015.

[26] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic Detection
of Capability Leaks in Stock Android Smartphones. In Proc. of ISOC
NDSS, 2012.

[27] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages. In Proc. of ACM OOPSLA,
1997.

[28] L. Hendren. Scaling Java points-to analysis using Spark. In Proc. of
Compiler Construction, 12th International Conference, volume 2622 of
LNCS, 2003.

[29] S. Jana and V. Shmatikov. Memento: Learning secrets from process
footprints. In IEEE Symposium on Security and Privacy, 2012.

[30] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework
for Java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

[31] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it
worth it? In Compiler Construction, pages 47–64. Springer, 2006.

[32] P. Loscocco. Integrating flexible support for security policies into the
Linux operating system. In Proc. of the USENIX ATC, 2001.

[33] Y. Michalevsky, D. Boneh, and G. Nakibly. Gyrophone: Recognizing
speech from gyroscope signals. In USENIX Security Symposium, 2014.

[34] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging ”choice” to
automate authorization hook placement. In Proc. of ACM CCS, 2012.

[35] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures.
In Proc. IEEE/ACM MICRO, 2009.

[36] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the incoherencies
in web browser access control policies. In Proc. of IEEE Symposium
on Security and Privacy, 2010.

[37] S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a
Linux security module. NAI Labs Report, 1(43):139, 2001.

[38] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES:
Automatically Inferring Security Specification and Detecting Violations.
In Proc. of USENIX Security, 2008.

[39] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, And Tools (2nd Edition). Addison Wesley, 2006.

[40] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a Java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collab-
orative research, page 13. IBM Press, 1999.

[41] F. Wei, S. Roy, X. Ou, et al. Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android
apps. In Proc. of ACM CCS, 2014.

[42] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov. Android Permissions Remystified: A Field Study on
Contextual Integrity. In Proc. of USENIX Security, 2015.

[43] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor
customizations on android security. In Proc. of ACM CCS, 2013.

[44] Z. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors. In Proc. of
ACM WiSec, 2012.

[45] L. Zhang, B. Tiwana, R. Dick, and Z. M. Mao. Accurate Online
Power Estimation and Automatic Battery Behavior Based Power Model
Generation for Smartphones. In Proc. of ACM CODES+ISSS, 2010.

[46] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril of
fragmentation: Security hazards in android device driver customizations.
In Proc. of IEEE Symposium on Security and Privacy, 2014.

15

