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INTRODUCTION 

The development of connected vehicles (CVs) provides a great opportunity for new vehicle-to-

infrastructure applications, such as CV-based adaptive signal control algorithms (1-9). Intelligent 

Traffic Signal System (I-SIG) (9-11), as one of them, will be deployed in the USDOT CV 

deployment projects for real world implementation. However, such connectivity at transportation 

infrastructure also introduce potential vulnerabilities for cyber-attacks (12). Feng et al. (13) 

showed that attacking CV-based adaptive signal control can cause 33.66% more delay. Chen et al. 

(14) performed a systematic analysis of vulnerability of I-SIG. They found that by adding only 

one falsified Basic Safety Message (BSM), the average delay was increased by 68% and the benefit 

of I-SIG could be completely reversed. 

 To overcome the cyber security issue and protect transportation infrastructures, some 

defense strategies have been proposed. In this study, indirect cyber-attacks, which refer to using 

falsified data to influence the decisions of infrastructure related applications are considered. An 

attack event is defined as a series of attacks (sending falsified BSMs) being launched over a period 

of time under the same CV identity. To make the data spoofing attack more realistic, it is assumed 

that with the protection of the Security Credential Management System (15), the attacker is not 

able to send falsified data with multiple vehicle identities. Only one attack event can be launched 

at the same time. Typically, the objectives of attackers are unknown to defenders. Thus, as a 

defender, the objective is to design a generic defense framework that can identify each individual 

falsified trajectory data and remove it in real-time such that reliable CV data can be used for 

transportation infrastructure applications. This study, based on the knowledge of vehicle dynamics 

and trajectory cross-validation, proposes a generic, privacy-respecting and upgradable trajectory-

based hierarchical defense (TBHD) framework to transportation cybersecurity. TBHD consists of 

three hierarchies. Level 1 is a pointwise checking that checks if data elements in the received 

BSMs fall within their feasible ranges. Level 2 is a multiple-point checking that checks if the 

consecutive BSMs of one CV obey the laws of physics. Level 3 is a multiple-trajectory checking 

that checks if two CVs’ trajectories overlap with each other. Three sets of simulation studies were 

conducted to evaluate the performance of the defense framework at each level with different traffic 

demands and defense frequencies (DF). Results reveal that the proposed defense framework can 

detect most of the data spoofing attacks. 

 

METHODOLOGY 
The TBHD framework consists of three levels of defense. The three levels can be categorized as 

pointwise (Level 1), multiple-point (Level 2) and multiple-trajectory checking (Level 3). 

 Level 1 defense is designed based on the physical boundaries of vehicle dynamics, which 

checks if each element in the received BSMs of all the CVs falls within its feasible range. The 

location of a CV, (x, y), must fall within the road of interest (RoI) with a stretched boundary 

tolerance with a width of τRoI. The speed, v, must be between zero minus a small tolerance, τv and 

the free-flow speed, vf, plus a small tolerance, τv. The acceleration, a, should fall into the range 

between minimum acceleration, amin, minus a small tolerance, τa, and maximum acceleration, amax, 

plus a small tolerance, τa. The heading of a CV, θ, must be in direction of its travelling approach, 

ϕi, ∀𝑖 = 1, 2, 3 𝑎𝑛𝑑 4, plus or minus a tolerance, τϕ. The small tolerances, which are determined 

by users, account for the measurement errors of the GPS tracker, speedometer and accelerometer. 

A BSM violates any of these conditions will be categorized as an “attack”; otherwise a “non-

attack”. 

Level 2 defense is developed based on equations of motion and the definitional equations 

of speed and acceleration, which checks if the consecutive BSMs of a CV obey the laws of physics. 
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Based on two consecutive snapshots (Δt = 0.1seconds), any consecutive BSMs of a CV do not 

follow these rules will be identified as an “attack”; otherwise a “non-attack”. For instance, using 

the location information of a CV at time 𝑡 − 1  and 𝑡 , the speed of that CV at time 𝑡  can be 

estimated based on the definitional equations. The absolute difference between the estimated speed 

and the measured speed should be less than a threshold. The acceleration of a CV at time 𝑡 can be 

checked in a similar manner. Assuming a constant acceleration in small time period ∆𝑡, the location, 

speed and acceleration information of a CV at time 𝑡 − 1 can be input into the equations of motion 

to predict the location of the CV at time 𝑡. The absolute difference between the predicted and 

measured location should be smaller than a threshold. Similarly, the predicted speed of a CV at 

time 𝑡 can be checked in a similar manner. The values of the thresholds can be determined by users. 

They can be set to the values of 99% or 99.9% percentiles of the histograms constituted by the 

absolute differences of the predicted and measured quantities based on historical data or 

experiment.  

Level 3 defense is formulated based on cross-validation of multiple CV trajectories, which 

checks if two CVs overlap with each other. A trajectory is classified into four bins: real-vehicle, 

unclassified, suspicious-fake-vehicle and identified-fake-vehicle. When a snapshot is taken, all the 

new CVs entering the communication range will first be placed in the unclassified bin. Each CV 

is checked if it overlaps with other CVs and re-distributed to the four bins according to a set of 

redistribution rules. A CV moved to the identified-fake-vehicle bin is identified as an “attack”; and 

a CV moved to the real-vehicle bin is identified as a “non-attack”. In contrast, both the identities 

of CVs in the unclassified and suspicious-fake-vehicle bins are uncertain. To keep sufficient CV 

information while avoiding potential cyber-attacks, CV data from the unclassified and real-vehicle 

bins will be passed to applications, and CV data from both the suspicious-fake-vehicle and 

identified-fake-vehicle bins will be blocked. 

 

FINDINGS  
A random attack model that consists three levels of attacks, which are level 0.5 attack, level 1.5 

attack and level 2.5 attack are introduced. Level 0.5 attack is the most generic random attack model 

that randomly generates BSMs based on a set of distributions. Level 1.5 attack randomly generates 

BSMs that can pass level 1 defense, while level 2.5 attack randomly generates BSMs that can pass 

levels 1 and 2 defense. Three sets of independent simulations (i.e., level 0.5 attack vs. level 1 

defense, level 1.5 attack vs. level 2 defense, and level 2.5 attack vs. level 3 defense) are conducted 

to evaluate the performance of each of the three levels of defenses. Four different metrics, detection 

rate (DR), false alarm rate (FAR), false negative rate (FNR), and mean time to detection (MTTD), 

are adopted for the evaluation. 

 Simulation results for level 0.5 attack vs. level 1 defense with varying demand at fixed 

DF revealed that the DR, FAR and FNE were almost 100%, 0% and 0%, respectively, across 

different demands. The approximately constant MTTD of 0.45 sec at different traffic volume 

suggested that the MTTD should be independent of traffic demand. The almost 100% DR, 0% 

FAR and 0% FNR across different DF at a fixed demand demonstrated that the level 1 defense 

could accurately identify “attacks” for any defense frequency. The decreasing relationship between 

MTTD and DF suggested that the higher the DF the more responsive the level 1 defense would be. 

Simulation results for level 1.5 attack vs. level 2 defense at fixed DF showed that the DR 

and FNR were extremely close to 100% and 0% for all the traffic demands, respectively. The FARs 

were about 0.4%. Nevertheless, such a small FAR is usually not damaging to a system. In return, 

the small sacrifice in efficiency could suppress the relatively damaging FNR to 0%. The MTTD, 

remaining at about 0.55 seconds for all traffic demand, was insensitive to the change of traffic 
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volume. The DR and FNR were almost 100% and 0%, respectively, for varying DF at fixed demand. 

The FARs were approximately 0.4% with different traffic volumes. The decreasing relationship 

between MTTD and DF suggested that the higher the DF the more responsive the level 2 defense 

would be.  

 Simulation results for level 2.5 attack vs. level 3 defense at fixed DF demonstrated that 

level 3 defense performed better at a higher traffic volume. The DR increased with volume from 

around 40% to 66%. The FNRs decreased from about 2.3% to 0.04% were minimal. The FARs 

decreased from about 4.4% to 1.9%.  The MTTD also dropped steadily from about 12.5 seconds 

at 200 veh/hour/lane to 8.6 seconds at 500 veh/hour/lane. For the simulation series with varying 

DF at fixed demand, it was found that as the DF increased from 0.1Hz to 10Hz, the DR increased 

sharply from about 22% to 62%, and the FNR and MTTD dropped from around 2.3% to 0.4% and 

from about 15 seconds to 9 seconds, respectively. Though the FAR fluctuated slightly between 1% 

and 3%, it kept a general decreasing trend with DF. These suggested that the DF should always be 

set as high as possible to maximize the performance of level 3 defense.  

 

CONCLUSIONS 

This study proposes a generic defense framework for detecting and filtering trajectory data 

spoofing cyber-attacks of any objective and protecting the infrastructure related applications of 

any type to its greatest extent. The TBHD framework consists of three levels of defense. Level 1 

defense is a pointwise checking that checks if data elements in the received BSMs fall within their 

feasible ranges. Level 2 defense is a multiple-point checking that checks if the consecutive BSMs 

of a CV obey the laws of physics. Level 3 defense is a multiple-trajectory checking that checks if 

two CVs overlap with each other. Comprehensive simulation studies revealed that the proposed 

TBHD framework is able to filter most of the data spoofing attacks.  

This study assumed that an attacker has a limited budget and can initiate an attack event 

once at a time. However, it is possible that an attacker can afford a higher budget to launch multiple 

attack events simultaneously. Thus, one possible future research direction is to upgrade the TBHD 

framework to defense multiple falsified vehicle attacks.  
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