CS 134
Elements of Cryptography and Computer & Network Security
Fall 2019

Instructor: Qi Alfred Chen

https://www.ics.uci.edu/~alfchen/teaching/cs134-2019-Fall

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]
Today

• Administrative Stuff
• Course Organization
• Course Topics
• Gentle Introduction
• Basics of Cryptography (Crypto)
CS 134 Background

- Classes: Tu/Th 2-3:20pm @ HSLH 100A
 - 4 discussion sessions:
 - W 8-8:50 AM SH 128
 - W 9-9:50 AM SH 128
 - W 1-1:50 PM PSCB 140
 - W 2-2:50 PM PSCB 140
- Senior-level undergraduate course
- Some overlap with CS 203 / NetSYS 240 (graduate)
- Offered yearly since 2002
- Last time offered Spring 2019
Why (not) take this course?

• Difficult course material
• There will be some unusual math
 • e.g., number theory, group theory
• Tough grading
 • might work hard and still wind up with a “C”
• Mean instructor
• Lecture slides may not available ahead of class
• No drop after second week
• No [Pass/No-Pass] option
Contact Information

• Instructor: Qi Alfred Chen -- Just call me “Alfred”
 – Email: alfchen@uci.edu
 – Assistant Prof. in CS
 – Research area: **Cybersecurity**
 – Most interested in the attack side
 – Breaking things, especially real-world systems, are fun!
 – Past: Smartphone, network protocols, GUI, access control, ...
 – Recent: Smart home, self-driving cars, smart traffic light, ...
 – My attack demo videos on YouTube attracted > 90,000 views (as of this year) from all over the world (daily peak of > 17,000 views 😊)
 – Also work on the defense side
 – Fixing problems are bigger contributions!
 – More details in my website: https://www.ics.uci.edu/~alfchen/

• Office Hours:
 • Wednesdays, 4-5 PM, DBH 3204
 • More if needed, e.g., before midterm and/or final
 • Otherwise, by appointment: contact by email but try TA-s first
Contact Information

TAs:
- Yoshimichi Nakatsuka
 Contact: nakatsuy@uci.edu
- Samuel Pangestu
 Contact: spangest@uci.edu

Readers:
- Takami Sato
 Contact: takamis@uci.edu
- Ziwen Wan
 Contact: ziwen.wan@uci.edu

OFFICE HOURS: Thursday 5-6 PM (starting next week), DBH 4011ICS2 214, 215, 216, 217

Please **only use Piazza** for questions to TA/readers; emails above are only for emergency use.
Prerequisites

Ideally, at least 2 of:

- Operating Systems (CS 143A)
- Distributed Systems (CS 131)
- Computer Networks (CS 132)

AND:

- Design/Analysis of Algorithms (CS 161)
Class Info

• Lecture format
 – lecture slides (not always posted before class)
 – ~19 lectures total (including midterm)
 – possibly some guest lectures
 – Classes I will most likely miss
 – Oct 29: Security PI meeting
 – Nov 21: CPS PI meeting

• Course website:
 • check it regularly
 • news, assignments, grades and lecture notes (PDF) will all be posted there

• Read your email often
Class Info

• Course space: Canvas
 • https://canvas.eee.uci.edu/courses/19896
 • Only for email-based announcements
• Q&A space: Piazza
 • https://piazza.com/uci/fall2019/compsci134
 • Post all your questions here
• Grading: Gradescope
 • https://www.gradescope.com/courses/66307
 • Entry code in Piazza
 • Homeworks will be turned in here
Course Textbooks/Readings

OPTIONAL (BUT RECOMMENDED):

Charlie Kaufman, Radia Perlman, Mike Speciner

OPTIONAL:

Cryptography : Theory and Practice, 3rd edition
Douglas R. Stinson

Also:

Cryptography and Network Security, 4th edition
William Stallings
Course Grading

• Midterm (26%)
 • Time (tentative): Oct 31 Thursday, in class

• Final (26%)
 • Time: Dec 12 Thursday, 1:30-3:30pm

• 3 Homeworks (16% each)

BTW:
• I may or may not grade on a curve
• I do not hesitate assigning “C”-s and worse ...
• This is a large class (>150 students)
• ~10% didn’t pass in previous years, so study hard
Student Expectations

• Keep up with material covered in lectures!
 – browse lecture slides
 • Slides will be on-line the same day
• Attend all lectures
• No excuses for not reading your email!
• Exams and homework:
 – No collaboration of any sort
 – Violators will be dealt with harshly
 – An F in the course is guaranteed if caught
 – A note in your file
Drop Policy

• No late drops except for documented emergencies

• Incompletes to be avoided at all costs

• But, what if: I have to graduate this quarter!
 • Should have planned better.
And remember:

- This is not an easy course and you do not have to be here
- This is a big class and some of you will get unpleasant grades
However:

• You might have fun ... security and crypto are very "interesting" topics (require a special mindset)

• I will certainly make mistakes – point them out!

• I want your constructive feedback

• Please ask questions and challenge (within reason) me and TAs
Complaints about:

- Course content: to me
- Course grading: to me
- TAs/Readers: to me
- Instructor, i.e., me:
 - ICS Associate Dean of Student Affairs (M. Gopi)
 or
 - Computer Science Department Chair (A. Nicolau)
Course Topics – Tentative and Unsorted

Will be covered

• Security attacks/services
• Conventional Cryptography
• Public Key Cryptography
• Key Management
• Digital Signatures
• Secure Hash Functions
• Authentication & Identification
• Certification/Revocation

We may also touch upon

• Wireless/Mobile Net security
• DDOS attacks and trace-back
• Internet Protocol (IP) security
• Firewalls
• SSL/TLS
• Kerberos, X.509
• Access Control (RBAC)
• E-cash, secure e-commerce
• RFID security
• Trojans/Worms/Viruses
• Intrusion Detection
Focus of the Class

• Recognize security attacks/threats
• Learn basic defense mechanisms
 • cryptographic and other techniques
• Appreciate how much remains to be learned after this course

BTW:
• You certainly won’t become an expert (or a Mr. Robot-type)
• You might be interested to study the subject further
Bird’s eye view

This course

Network Security

CRYPTO

Computer Security
Outline

• Players/actors/entities
• Terminology
• Attacks, services and mechanisms
• Security attacks
• Security services
• Methods of defense
• Model for network security
Computer Security: The Cast of Characters

Attacker or Adversary

Can be: individuals, organizations, nations ...
(including software or even hardware acting on their behalf)

Your Computer/Phone/Tablet

Your data: financial, health records, intellectual property ...
Network Security: The Cast of Characters

Alice communication channel Bob

Eve(sdropper)
Terminology (Cryptography)

- Cryptology, Cryptography, Cryptanalysis
- Cipher, Cryptosystem, Encryption scheme
- Encryption/Decryption, Encipher/Decipher
- Privacy/Confidentiality, Authentication, Identification
- Integrity
- Non-repudiation
- Freshness, Timeliness, Causality
- Intruder, Adversary, Interloper, Attacker
- Anonymity, Unlinkability/Untraceability
Terminology (Security)

- Access Control & Authorization
- Accountability
- Intrusion Detection
- Physical Security
- Tamper-Resistance
- Certification & Revocation
Attacks, Services and Mechanisms

• **Security Attack:** an action (or event) that aims to compromise (undermine) security of information or resource

• **Security Mechanism:** a measure (technique or method) designed to detect, prevent, or recover from, a security attack

• **Security Service:** something that enhances security. A “security service” makes use of one or more “security mechanisms”

• Examples:
 - **Security Attack:** Eavesdropping (aka Interception)
 - **Security Mechanism:** Encryption
 - **Security Service:** Confidentiality
Some Classes of Security Attacks

(a) Normal flow

(b) Interruption

(c) Interception

(d) Modification

(e) Fabrication
Security Attacks

• **Interruption**: attack on availability

• **Interception**: attack on confidentiality

• **Modification**: attack on integrity

• **Fabrication**: attack on authenticity
Main Security Goals

- Authenticity
- Integrity
- Confidentiality
- Availability
Security Threats: Threat vs Attack?

- **Passive Threats**
 - Release of message contents
 - Traffic analysis

- **Active Threats**
 - Masquerade
 - Replay
 - Modification of message contents
 - Denial of service

 - By Injection
 - By Deletion
Example Security Services

• **Confidentiality**: to assure information privacy and secrecy
• **Authentication**: who created or sent data
• **Integrity**: data has not been altered
• **Access control**: prevent misuse of resources
• **Availability**: offer access to resources, permanence, non-erasure

Examples of attacks on Availability:

- Denial of Service (DoS) Attacks
 - e.g., against a DNS name server or Bank Web server
- Malware (ransomware) that deletes or encrypts files
Attacker/Adversary

Principals

Message
Secret information
Security-related transformation

Information Channel

Message
Secret information
Security-related transformation

Trusted third party (e.g., arbiter, distributor of secret information)
Some Security Mechanisms

- **Cryptography** → confidentiality, authentication, identification, integrity, etc.
- **Software Controls** (e.g., in databases, operating systems) → protect system from users and users from each other
- **Hardware Controls** (e.g., smartcards, badges, biometrics) → authenticate holders (users)
- **Policies** (e.g., frequent password changes, separation of duty rules) → prevent insider attacks
- **Physical Controls** (doors, guards, moats, etc.) → physical access controls
End of Lecture 1

Any urgent questions?