
1

About Homework 1
• Available on the course website

• If you cannot see it, it could be due to caching --- so try
refreshing the webpage

• Due in two weeks: 10/22/19 11:59pm

• Submit through GradeScope

Announcements

Rijndael

Detailed view of round n

• Each round performs the following operations:
• Non-linear Layer: No linear relationship between the input and output of a round
• Linear Mixing Layer: Guarantees high diffusion over multiple rounds

• Very small correlation between bytes of the round input and the bytes of the
output

• Key Addition Layer: Bytes of the input are simply XOR’ed with the expanded round
key

ByteSub ShiftRow MixColumn AddRoundKey

Kn

Result from
round n-1

Pass to
round n+1

60

Rijndael: ByteSub

Each byte at the input of a round undergoes a
non-linear byte substitution according to the following transform:

Substitution (“S”)-box

62

Rijndael: ShiftRow

Depending on the block length, each “row” of the
block is cyclically shifted according to the above table

63

Rijndael: MixColumn

Each column is multiplied by a fixed polynomial
C(x) = ’03’*X3 + ’01’*X2 + ’01’*X + ’02’

This corresponds to matrix multiplication b(x) = c(x) ⊗ a(x):

Not XOR

64

Rijndael: Implementations
Well-suited for software implementations on 8-bit

processors (important for “Smart Cards”)
Atomic operations focus on bytes and nibbles, not 32- or 64-bit

integers
Layers such as ByteSub can be efficiently implemented using

small tables in ROM (e.g., < 256 bytes).
No special instructions are required to speed up operation, e.g.,

barrel-shifting registers on some embedded device
microprocessors

For 32-bit implementations:
An entire round can be implemented via a fast table lookup

routine on machines with 32-bit or higher word lengths
Considerable parallelism exists in the algorithm
 Each layer of Rijndael operates in a parallel manner on the bytes of

the round state, all four component transforms act on individual
parts of the block

Although the Key expansion is complicated and cannot benefit much
from parallelism, it only needs to be performed once when the two
parties switch keys.

66

Rijndael: Implementations
Hardware Implementations
Rijndael performs very well in software, but there are cases

when better performance is required (e.g., server and VPN
applications).

Multiple S-Box engines, round-key XORs, and byte shifts can all
be implemented efficiently in hardware when absolute speed is
required

Small amount of hardware can vastly speed up 8-bit
implementations

Inverse Cipher
Except for the non-linear ByteSub step, each part of Rijndael

has a straightforward inverse and the operations simply need to
be undone in the reverse order.

However, Rijndael was specially written so that the same code
that encrypts a block can also decrypt the same block simply by
changing certain tables and polynomials for each layer. The rest
of the operation remains identical.

67

Conclusions and The Future

Rijndael is an extremely fast, state-of-the-
art, highly secure algorithm

Amenable to efficient implementation in both
hw and sw; requires no special instructions to
obtain good performance on any computing
platform

Triple-DES: officially being retired by NIST.

68

9

Lecture 5
Cryptographic Hash Functions

Read: Chapter 5 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Purpose
• CHF – one of the most important tools in modern

cryptography and security

• CHF-s are used for many authentication, integrity,
digital signatures and non-repudiation purposes

• Not the same as “hashing” used in DB or CRCs in
communications

10

11

Cryptographic HASH Functions
Purpose: produce a fixed-size “fingerprint” or digest of arbitrarily long
input data

Why? To guarantee integrity of input

Properties of a “good” cryptographic HASH function H():

1. Takes on input of any size
2. Produces fixed-length output
3. Easy to compute (efficient)
4. Given any h, computationally infeasible to find any x such that H(x) = h
5. For a given x, computationally infeasible to find y: H(y) = H(x) and y≠x
6. Computationally infeasible to find any (x, y) such that H(x) = H(y) and x ≠ y

12

Same Properties Re-stated:

• Cryptographic properties of a “good” HASH function:
• One-Way-ness (#4)
• Weak Collision-Resistance (#5)
• Strong Collision-Resistance (#6)

• Non-cryptographic properties of a “ good ” HASH
function
• Efficiency (#3)
• Fixed Output (#2)
• Arbitrary-Length Input (#1)

13

Simple Hash Functions
• Bitwise-XOR

• Not secure, e.g., for English text (ASCII<128) the high-order bit is almost
always zero

• Can be improved by rotating the hash code after each block is XOR-ed into it
• If message itself is not encrypted, it is easy to modify the message and

append one block that would set the hash code as needed
• Another weak hash example: IP Header CRC

Another Example
• IPv4 header checksum
• One’s complement of the one’s complement sum of the IP

header's 16-bit words

14

15

Construction
• A hash function is typically based on an internal compression function

f() that works on fixed-size input blocks (Mi)
• Merkle-Damgard construction:
• A fixed-size “compression function”.
• Each iteration mixes an input block with the previous block’s output

• Sort of like a Chained Block Cipher

• Produces a hash value for each fixed-size block based on (1) its content
and (2) hash value for the previous block

• “Avalanche” effect: 1-bit change in input produces “catastrophic” and
unpredictable changes in output

fIV

M1

f f
h1 h

M2 Mn

h2 hn-1…

16

The Birthday Paradox

• probability of no collisions:
• P0=1*(1-1/n)*(1-2/n)*…*(1-(k-1)/n)) <= e(k(1-k)/2n)

(use 1-x <= e-x)
• probability of at least one:

• P1=1-P0
• Set P1 to be at least 0.5 and solve for k:

• k == 1.17 * SQRT(n)
• k = 22.3 for n=365

Surprisingly small!

• Example hash function: y=H(x) where: x=person and H() is Bday()
• y ranges over set Y=[1…365], let n = size of Y, i.e., number of distinct values in

the range of H()
• How many people do we need to ‘hash’ to have a collision?
• Or: what is the probability of selecting at random k DISTINCT numbers from Y?

17

“Birthday Paradox”

Example: N = 106

18

The Birthday Paradox

19

How Long Should a Hash be?

• Many input messages yield the same hash
• e.g., 1024-bit message, 128-bit hash
• On average, 2896 messages map into one hash

• With m-bit hash, it takes about 2m/2 trials to find
a collision (with ≥ 0.5 probability)

• When m=64, it takes 232 trials to find a collision
(doable in very little time)

• Today, need at least m=160, requiring about 280

trials (180 is better)

20

CHF from a Block Cipher

One direct option:

Split input into a sequence of keys: M1,…Mp

Encrypt a constant plaintext (e.g., block of
zeros) with this sequence of keys:

Hi = E (Mi, Hi-1), Mo= 0

Final ciphertext Hp is the hash output
Secure?

21

CHF from a Block Cipher

Davies-Meyer CHF:

 Hi = Hi-1 ⊕ E(Mi,Hi-1), Ho=0

 Compression function is secure if E
is a secure block cipher

22

Hash Function Examples
MD5
(defunct)

SHA-1
(weak)

SHA-256
(SHA-2 family,
used today)

Digest length 128 bits 160 bits 256 bits

Block size 512 bits 512 bits 512 bits

of steps 64 80 64

Max msg size 264-1 bits 264-1 bits

Security against
collision attacks

<=18 bits <= 63 bits 128 bits

23

Latest standard: SHA-3

 Public competition by NIST, similar to AES:
 NIST request for proposals (2007)
 51 submissions (2008)
 14 semi-finalists (2009)
 5 finalists (2010)
 Winner: Keccak (2012)
 Designed by Bertoni, Daemen, Peeters, Van Assche.
 Based on “sponge construction”, a completely

different structure from prior CHF-s.

24

What are hash functions good for
(besides integrity)?

25

Message Authentication Using a Hash
Function

Use symmetric encryption (AES or 3-DES) and a hash function

• Given message M
• Compute H(M)
• Encrypt H(M) in ECB or CBC mode
• Result is: EK(H(M)) = MAC
• Alice sends to Bob: MAC, M
• Bob receives MAC’,M’ decrypts MAC’ with K, hashes result and

checks if: DK(MAC‘) =?= H(M’)

Collision MAC forgery!

26

Using Hash for Authentication

Alice and Bob share a secret key KAB

1.Alice Bob: random challenge rA

2.Bob Alice: H(K||rA), random challenge rB

3.Alice Bob: H(K||rB)

Only need to compare H() results

27

Using Hash to Compute a MAC: message
integrity and authentication

• Just computing and appending H(m) to m is enough for integrity but
not for authenticity

• Need a “Keyed Hash”:
• Prefix:

• MAC: H(K || m), almost works, but …
• Allows concatenation with arbitrary message:

H(K || m || m’)

fIV

M1

f f
h1 h

M2 Mn

h2 hn-1… f h’

m’

28

Using Hash to Compute a MAC: message
integrity and authentication

• Just computing and appending H(m) to m is enough for integrity but
not for authenticity

• Need a “Keyed Hash”:
• Prefix:

• MAC: H(K || m), almost works, but …
• Allows concatenation with arbitrary message:

H(K || m || m’)
• Suffix:

• MAC: H(m || K)
• Works better, but what if m’ is found such that H(m)=H(m’)?

• HMAC:
• H (K || H (K || m))

29

Hash Function-based Keyed MAC (HMAC)

• Main Idea: Use a MAC derived from any CHF
• hash functions do not use a key, therefore cannot be used directly as a

MAC

• Motivations for HMAC:
• Cryptographic hash functions run faster in software than many

encryption algorithms such as 3-DES
• No need for the function to be reversible
• No US Government export restrictions (was important in the past)

• Status: designated as mandatory for IP security
• Also used in TLS, IPSec, etc.

30

HMAC Algorithm

• Compute H1 = H() of the
concatenation of M and K1

• To prevent an “additional
block” attack, compute again
H2= H() of the concatenation
of H1 and K2

• Notation:
• K+ = K padded with 0’s
• ipad=00110110 x b/8
• opad=01011100 x b/8

• Execution:
• Same as H(M), plus 2 blocks

31

Hash Function Examples
MD5
(defunct)

SHA-1
(weak)

SHA-256
(SHA-2 family,
used today)

Digest length 128 bits 160 bits 256 bits

Block size 512 bits 512 bits 512 bits

of steps 64 80 64

Max msg size 264-1 bits 264-1 bits

Security against
collision attacks

<=18 bits
(2013)

<= 63 bits
(2005)

128 bits

	Slide Number 1
	Rijndael
	Rijndael: ByteSub
	Rijndael: ShiftRow
	Rijndael: MixColumn
	Rijndael: Implementations
	Rijndael: Implementations
	Conclusions and The Future
	Lecture 5
	Purpose
	Cryptographic HASH Functions
	Same Properties Re-stated:
	Simple Hash Functions
	Another Example	
	Construction
	The Birthday Paradox
	“Birthday Paradox”
	The Birthday Paradox
	How Long Should a Hash be?
	CHF from a Block Cipher
	CHF from a Block Cipher
	Hash Function Examples
	Latest standard: SHA-3
	What are hash functions good for�(besides integrity)?
	Message Authentication Using a Hash Function
	Using Hash for Authentication
	Using Hash to Compute a MAC: message integrity and authentication
	Using Hash to Compute a MAC: message integrity and authentication
	Hash Function-based Keyed MAC (HMAC)
	HMAC Algorithm
	Hash Function Examples

