Announcements

About Homework 1

- Available on the **course website**
 - If you cannot see it, it could be due to caching --- so try *refreshing the webpage*
- Due in **two weeks**: 10/22/19 11:59pm
- Submit through **GradeScope**
Each round performs the following operations:

- **Non-linear Layer:** No linear relationship between the input and output of a round
- **Linear Mixing Layer:** Guarantees high diffusion over multiple rounds
 - Very small correlation between bytes of the round input and the bytes of the output
- **Key Addition Layer:** Bytes of the input are simply XOR’ed with the expanded round key
Rijndael: ByteSub

Each byte at the input of a round undergoes a non-linear byte substitution according to the following transform:

Substitution ("S")-box
Rijndael: ShiftRow

Depending on the block length, each “row” of the block is cyclically shifted according to the above table.
Rijndael: MixColumn

Each column is multiplied by a fixed polynomial

\[C(x) = '03'\cdot x^3 + '01'\cdot x^2 + '01'\cdot x + '02' \]

This corresponds to matrix multiplication \(b(x) = c(x) \otimes a(x) \):

\[
\begin{bmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
 b_3
\end{bmatrix} =
\begin{bmatrix}
 02 & 03 & 01 & 01 \\
 01 & 02 & 03 & 01 \\
 01 & 01 & 02 & 03 \\
 03 & 01 & 01 & 02
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3
\end{bmatrix}
\]

Not XOR
Rijndael: Implementations

- Well-suited for software implementations on 8-bit processors (important for “Smart Cards”)
 - Atomic operations focus on bytes and nibbles, not 32- or 64-bit integers
 - Layers such as ByteSub can be efficiently implemented using small tables in ROM (e.g., < 256 bytes).
 - No special instructions are required to speed up operation, e.g., barrel-shifting registers on some embedded device microprocessors

- For 32-bit implementations:
 - An entire round can be implemented via a fast table lookup routine on machines with 32-bit or higher word lengths
 - Considerable parallelism exists in the algorithm
 - Each layer of Rijndael operates in a parallel manner on the bytes of the round state, all four component transforms act on individual parts of the block
 - Although the Key expansion is complicated and cannot benefit much from parallelism, it only needs to be performed once when the two parties switch keys.
Rijndael: Implementations

Hardware Implementations

- Rijndael performs very well in software, but there are cases when better performance is required (e.g., server and VPN applications).
- Multiple S-Box engines, round-key XORs, and byte shifts can all be implemented efficiently in hardware when absolute speed is required.
- Small amount of hardware can vastly speed up 8-bit implementations

Inverse Cipher

- Except for the non-linear ByteSub step, each part of Rijndael has a straightforward inverse and the operations simply need to be undone in the reverse order.
- However, Rijndael was specially written so that the same code that encrypts a block can also decrypt the same block simply by changing certain tables and polynomials for each layer. The rest of the operation remains identical.
Conclusions and The Future

- Rijndael is an extremely fast, state-of-the-art, highly secure algorithm

- Amenable to efficient implementation in both hw and sw; requires no special instructions to obtain good performance on any computing platform

- Triple-DES: officially being retired by NIST.
Lecture 5

Cryptographic Hash Functions

Read: Chapter 5 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]
Purpose

• CHF – one of the most important tools in modern cryptography and security

• CHF-s are used for many authentication, integrity, digital signatures and non-repudiation purposes

• Not the same as “hashing” used in DB or CRCs in communications
Cryptographic HASH Functions

Purpose: produce a fixed-size “fingerprint” or digest of arbitrarily long input data

Why? To guarantee integrity of input

Properties of a “good” cryptographic HASH function H():

1. Takes on input of any size
2. Produces fixed-length output
3. Easy to compute (efficient)
4. Given any h, computationally infeasible to find any x such that $H(x) = h$
5. For a given x, computationally infeasible to find y: $H(y) = H(x)$ and $y \neq x$
6. Computationally infeasible to find any (x, y) such that $H(x) = H(y)$ and $x \neq y$
Same Properties Re-stated:

• **Cryptographic** properties of a “good” HASH function:
 • One-Way-ness (#4)
 • Weak Collision-Resistance (#5)
 • Strong Collision-Resistance (#6)

• **Non-cryptographic** properties of a “good” HASH function
 • Efficiency (#3)
 • Fixed Output (#2)
 • Arbitrary-Length Input (#1)
Simple Hash Functions

- **Bitwise-XOR**

 Not secure, e.g., for English text (ASCII<128) the high-order bit is almost always zero

 Can be improved by rotating the hash code after each block is XOR-ed into it

 If message itself is not encrypted, it is easy to modify the message and append one block that would set the hash code as needed

 Another weak hash example: IP Header CRC

<table>
<thead>
<tr>
<th></th>
<th>bit 1</th>
<th>bit 2</th>
<th></th>
<th>bit n</th>
</tr>
</thead>
<tbody>
<tr>
<td>block 1</td>
<td>b_{11}</td>
<td>b_{21}</td>
<td></td>
<td>b_{n1}</td>
</tr>
<tr>
<td>block 2</td>
<td>b_{12}</td>
<td>b_{22}</td>
<td></td>
<td>b_{n2}</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>block m</td>
<td>b_{1m}</td>
<td>b_{2m}</td>
<td></td>
<td>b_{nm}</td>
</tr>
<tr>
<td>hash code</td>
<td>C_1</td>
<td>C_2</td>
<td></td>
<td>C_n</td>
</tr>
</tbody>
</table>
Another Example

- IPv4 header checksum
- One’s complement of the one’s complement sum of the IP header's 16-bit words
Construction

• A hash function is typically based on an internal compression function $f()$ that works on fixed-size input blocks (M_i)
 • Merkle-Damgard construction:
 • A fixed-size “compression function”.
 • Each iteration mixes an input block with the previous block’s output

```
IV    M_1    M_2    M_n
  ↓     ↓      ↓      ↓
  f     f       f
  h_1   h_2    ...    h_{n-1}
  ↓     ↓      ↓      ↓
  f     f       f
  h
```

• Sort of like a Chained Block Cipher

• Produces a hash value for each fixed-size block based on (1) its content and (2) hash value for the previous block

• “Avalanche” effect: 1-bit change in input produces “catastrophic” and unpredictable changes in output
The Birthday Paradox

- Example hash function: \(y = H(x) \) where: \(x \) = person and \(H() \) is Bday()
- \(y \) ranges over set \(Y = [1...365] \), let \(n \) = size of \(Y \), i.e., number of distinct values in the range of \(H() \)
- How many people do we need to ‘hash’ to have a collision?
- Or: what is the probability of selecting at random \(k \) DISTINCT numbers from \(Y \)?

- probability of no collisions:
 - \(P_0 = 1 \cdot (1 - 1/n) \cdot (1 - 2/n) \cdot \ldots \cdot (1 - (k-1)/n) \leq e^{(k(1-k)/2n)} \)
 (use \(1-x \leq e^{-x} \))
- probability of at least one:
 - \(P_1 = 1 - P_0 \)
 - Set \(P_1 \) to be at least 0.5 and solve for \(k \):
 - \(k = 1.17 \cdot \sqrt{n} \)
 - \(k = 22.3 \) for \(n = 365 \)

Surprisingly small!
“Birthday Paradox”

Example: $N = 10^6$
The Birthday Paradox

\[m = \log(n) = \text{size of } H() \]

\[\sqrt{2^m} = 2^{m/2} \text{ trials must be computationally infeasible! Otherwise, finding collisions is easy.} \]
How Long Should a Hash be?

• Many input messages yield the same hash
 • e.g., 1024-bit message, 128-bit hash
 • On average, 2^{896} messages map into one hash
• With m-bit hash, it takes about $2^{m/2}$ trials to find a collision (with ≥ 0.5 probability)
• When $m=64$, it takes 2^{32} trials to find a collision (doable in very little time)
• Today, need at least $m=160$, requiring about 2^{80} trials (180 is better)
CHF from a Block Cipher

One direct option:

- Split input into a sequence of keys: M_1, \ldots, M_p
- Encrypt a constant plaintext (e.g., block of zeros) with this sequence of keys:

 $$H_i = E(M_i, H_{i-1}), \quad M_0 = 0$$

- Final ciphertext H_p is the hash output
- Secure?
CHF from a Block Cipher

Davies-Meyer CHF:

- $H_i = H_{i-1} \oplus E(M_i, H_{i-1})$, $H_0 = 0$

- Compression function is secure if E is a secure block cipher
Hash Function Examples

<table>
<thead>
<tr>
<th></th>
<th>MD5 (defunct)</th>
<th>SHA-1 (weak)</th>
<th>SHA-256 (SHA-2 family, used today)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digest length</td>
<td>128 bits</td>
<td>160 bits</td>
<td>256 bits</td>
</tr>
<tr>
<td>Block size</td>
<td>512 bits</td>
<td>512 bits</td>
<td>512 bits</td>
</tr>
<tr>
<td># of steps</td>
<td>64</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>Max msg size</td>
<td>∞</td>
<td>$2^{64} - 1$ bits</td>
<td>$2^{64} - 1$ bits</td>
</tr>
<tr>
<td>Security against collision attacks</td>
<td><=18 bits</td>
<td><=63 bits</td>
<td>128 bits</td>
</tr>
</tbody>
</table>
Latest standard: SHA-3

- Public competition by NIST, similar to AES:
- NIST request for proposals (2007)
- 51 submissions (2008)
- 14 semi-finalists (2009)
- 5 finalists (2010)
- Winner: Keccak (2012)
 - Designed by Bertoni, Daemen, Peeters, Van Assche.
 - Based on “sponge construction”, a completely different structure from prior CHF-s.
What are hash functions good for (besides integrity)?
Message Authentication Using a Hash Function

Use symmetric encryption (AES or 3-DES) and a hash function

- Given message M
- Compute $H(M)$
- Encrypt $H(M)$ in ECB or CBC mode
- Result is: $E_K(H(M)) = \text{MAC}$
- Alice sends to Bob: MAC, M
- Bob receives MAC', M' decrypts MAC' with K, hashes result and checks if: $D_K(\text{MAC}') = ?= H(M')$

Collision \Rightarrow MAC forgery!
Using Hash for Authentication

Alice and Bob share a secret key K_{AB}

1. Alice \rightarrow Bob: random challenge r_A

2. Bob \rightarrow Alice: $H(K || r_A)$, random challenge r_B

3. Alice \rightarrow Bob: $H(K || r_B)$

Only need to compare $H()$ results
Using Hash to Compute a MAC: message integrity and authentication

• Just computing and appending H(m) to m is enough for integrity but not for authenticity
• Need a “Keyed Hash”:
 • Prefix:
 • MAC: H(K || m), almost works, but ...
 • Allows concatenation with arbitrary message:
 \[H(K \ || \ m \ || \ m') \]
Using Hash to Compute a MAC: message integrity and authentication

• Just computing and appending $H(m)$ to m is enough for integrity but not for authenticity

• Need a “Keyed Hash”:
 • Prefix:
 • MAC: $H(K \| m)$, almost works, but ...
 • Allows concatenation with arbitrary message:
 $$H(K \| m \| m')$$
 • Suffix:
 • MAC: $H(m \| K)$
 • Works better, but what if m' is found such that $H(m)=H(m')$?

• HMAC:
 • $H(K \| H(K \| m))$
Hash Function-based Keyed MAC (HMAC)

- **Main Idea**: Use a MAC derived from any CHF
 - hash functions do not use a key, therefore cannot be used directly as a MAC

- **Motivations for HMAC**:
 - Cryptographic hash functions run faster in software than many encryption algorithms such as 3-DES
 - No need for the function to be reversible
 - No US Government export restrictions (was important in the past)

- **Status**: designated as mandatory for IP security
 - Also used in TLS, IPSec, etc.
HMAC Algorithm

- Compute $H_1 = H()$ of the concatenation of M and K_1
- To prevent an “additional block” attack, compute again $H_2 = H()$ of the concatenation of H_1 and K_2
- Notation:
 - $K^+ = K$ padded with 0’s
 - $ipad=00110110 \times b/8$
 - $opad=01011100 \times b/8$
- Execution:
 - Same as $H(M)$, plus 2 blocks
Hash Function Examples

<table>
<thead>
<tr>
<th></th>
<th>MD5 (defunct)</th>
<th>SHA-1 (weak)</th>
<th>SHA-256 (SHA-2 family, used today)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digest length</td>
<td>128 bits</td>
<td>160 bits</td>
<td>256 bits</td>
</tr>
<tr>
<td>Block size</td>
<td>512 bits</td>
<td>512 bits</td>
<td>512 bits</td>
</tr>
<tr>
<td># of steps</td>
<td>64</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>Max msg size</td>
<td>∞</td>
<td>$2^{64}-1$ bits</td>
<td>$2^{64}-1$ bits</td>
</tr>
<tr>
<td>Security against collision attacks</td>
<td><=18 bits (2013)</td>
<td><= 63 bits (2005)</td>
<td>128 bits</td>
</tr>
</tbody>
</table>