Announcements

About Homework 1
e Available on the course website

e |fyou cannot see it, it could be due to caching --- so try
refreshing the webpage
e Duein two weeks: 10/22/19 11:59pm
e Submit through GradeScope

Rijndael

K

n

AddRoundKey —
Result from Pass to

round n-1 round n+1

Detailed view of round n

- Each round performs the following operations:
« Non-linear Layer: No linear relationship between the input and output of a round
« Linear Mixing Layer: Guarantees high diffusion over multiple rounds

« Very small correlation between bytes of the round input and the bytes of the
output

- Key Addition Layer: Bytes of the input are simply XOR’ed with the expanded round
key

60

Rijndael: ByteSub

8p.0 | 90,1 SG.J—EM 8p.4 f_u_j..-- S-box | meeilbyq | by s IE:'u.iJ—b'm-1-—’bn.4 by s
e

dyp | 910 | 94, aﬂ_f (a5 by | b4 h.B.F bu s | D15

830 | 921|922 | 823 | 824|825 byy | Byy| Byn | Doy byy|bys

830|931 | 832 |Fa3| 934|935 byg | Dyq|Bys|bys|Dyy|bys

Each byte at the input of a round undergoes a
non-linear byte substitution according to the following transform:

(v 1 [T 00 0 1 1 1 1x] [1]
vl ft 1t 0001 1 1x| |1
vl lt 1100001 1]x] o
vl {1t 111000 1fx] o
vl 00 ofx]|T]o
vl o1t 1111 0 0fx| |
vl oo 11111 ofx| |
v, 0001 111 1fx] |0

Substitution (“S”)-box

62

Rijndael: ShiftRow

Nb C1 o C3
4 1 2 3
1 2 3

1 4

Depending on the block length, each “row” of the
block is cyclically shifted according to the above table

no ghifl

yE

cyclic shitl by

cwclic shift by EE_I._”ﬂ
|

o | p
/
f
y | z

CYCIC SNITE DY Ga (d)

63

Rijndael: MixColumn

0.0 | Fos dpa 904|905
a T ® c(x)
104 1, ‘fpﬂ" 14|95
20824 az*j dy 30924 | 925
30| &34 2 a3 0934|915
3

Each column is multiplied by a fixed polynomial

C(x) =03’*X3 + "01’*X2 + '01"*X +'02’

This corresponds to matrix multiplication b(x) = ¢(x) ® a(x):

—

b,

—_

02
01
01
(3

03
02
01
01

01
03
02
01

b, | b by b.. b . |b
0.0 | Y04 o3 Y4 | Y5
th""'-?-l.h b1-i bis|bis]bis
byo by b?i P P T
byg|bay b bya | 0ys|Pas
3]
01 a,
01 a,
03 | a, Not XOR
02 | a,

64

Rijndael: Implementations

» Well-suited for software implementations on 8-bit
processors (important for "Smart Cards")
“»Atomic operations focus on bytes and nibbles, not 32- or 64-bit
Integers
*Layers such as ByteSub can be efficiently implemented using
small tables in ROM (e.g., < 256 bytes).

“*No special instructions are required to speed up operation, e.g.,
barrel-shifting registers on some embedded device
microprocessors

» For 32-bit implementations:

“*An entire round can be implemented via a fast table lookup
routine on machines with 32-bit or higher word lengths

“»Considerable parallelism exists in the algorithm

» Each layer of Rijndael operates in a parallel manner on the bytes of
the round state, all four component transforms act on individual
parts of the block

> Although the Key expansion is complicated and cannot benefit much
from parallelism, it only needs to be performed once when the twab
nartiec switch keve

Rijndael: Implementations

» Hardware Implementations

“*Rijndael performs very well in software, but there are cases
when better performance is required (e.g., server and VPN
applications).

“»Multiple S-Box engines, round-key XORs, and byte shifts can all
be implemented efficiently in hardware when absolute speed is
required

»Small amount of hardware can vastly speed up 8-bit
implementations

» Inverse Cipher

“*»Except for the non-linear ByteSub step, each part of Rijndael
has a straightforward inverse and the operations simply need to
be undone in the reverse order.

“*However, Rijndael was specially written so that the same code
that encrypts a block can also decrypt the same block simply by
changing certain tables and polynomials for each layer. The rest

of the operation remains identical. .
7

Conclusions and The Future

»Rijndael is an ex‘rremelz‘ fast, state-of-the-
art, highly secure algorithm

»Amenable to efficient implementation in both
hw and sw; requires no special instructions to
obtain good performance on any computing
platform

> Triple-DES: officially being retired by NIST.

68

Lecture 5

Cryptographic Hash Functions

Read: Chapter 5 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Purpose

* CHF — one of the most important tools in modern
cryptography and security

* CHF-s are used for many authentication, integrity,
digital signatures and non-repudiation purposes

* Not the same as “hashing” used in DB or CRCs in
communications

10

Cryptographic HASH Functions

Purpose: produce a fixed-size “fingerprint” or digest of arbitrarily long
input data

Why? To guarantee integrity of input

Properties of a “good” cryptographic HASH function H():

Takes on input of any size

Produces fixed-length output

Easy to compute (efficient)

Given any h, computationally infeasible to find any x such that H(x) = h
For a given x, computationally infeasible to find y: H(y) = H(x) and y#x
Computationally infeasible to find any (x, y) such that H(x) = H(y) and x #y

o vk wbhE

11

Same Properties Re-stated:

 Cryptographic properties of a “good” HASH function:
 One-Way-ness (#4)
 Weak Collision-Resistance (#5)

» Strong Collision-Resistance (#6)

* Non-cryptographic properties of a “good” HASH
function
e Efficiency (#3)
* Fixed Output (#2)
e Arbitrary-Length Input (#1)

12

Simple Hash Functions

* Bitwise-XOR
bit 1 bit 2 bit n
block 1 by, ba b
block 2 bya baa by
block m by, b2, B
hash code 7y Co Cy

* Not secure, e.g., for English text (ASClI<128) the high-order bit is almost
always zero

 Can be improved by rotating the hash code after each block is XOR-ed into it

* If message itself is not encrypted, it is easy to modify the message and
append one block that would set the hash code as needed

* Another weak hash example: IP Header CRC 3

Another Example

 |Pv4 header checksum

* One’s complement of the one’s complement sum of the IP
header's 16-bit words

10 4 bytes 31
version| 1ihl ([type of service total length
identification flags fragment offset
time to live header checksum

source address

destination address

options padding

data

Construction

A hash function is typically based on an internal
f() that works on fixed-size input blocks (Mi)

* Merkle-Damgard construction:
e Afixed-size “compression function”.
e Each iteration mixes an input block with the previous block’s output

M, M, M

n

h1 hn-l

IV

Sort of like a Chained Block Cipher

* Produces a hash value for each fixed-size block based on (1) its content
and (2) hash value for the previous block

* “Avalanche” effect: 1-bit change in input produces “catastrophic” and
unpredictable changes in output

15

B ?_E.T_ H h Y " B !_F{,T_ H [y
"R The Birthday Paradox e

Example hash function: y=H(x) where: x=person and H() is Bday() |

* yranges over set Y=[1...365], let n = size of Y, i.e., number of distinct values in
the range of H()

* How many people do we need to ‘hash’ to have a collision?

Or: what is the probability of selecting at random k DISTINCT numbers from Y?

e probability of no collisions:
e PO=1*(1-1/n)*(1-2/n)*...*(1-(k-1)/n)) <= elkil-k)/zn)
(use 1-x <= e™)
e probability of at least one:
« P1=1-PO
 Set P1to be at least 0.5 and solve for k:
e k== 1.17 * SQRT(n)

e k=22.3 for n=365
o o 16
Surprisingly small!

“Birthday Paradox”
Example: N = 106

1

0.9 |

0.8

0.7 |

0.6 |

0.5

Colksion probability

0.4

03 F

0.2 |

01

0]]]] i i 1 1 [
0 &00 1000 1500 2000 2500 3000 2500 4000 4500 000

The Birthday Paradox
m = log(n)=size of H()

2™ =2"2 trials must

be computationally
infeasible! Otherwise, finding

collisions 1s easy.

How Long Should a Hash be?

* Many input messages yield the same hash
e e.g., 1024-bit message, 128-bit hash
* On average, 2%°° messages map into one hash

« With m-bit hash, it takes about 2™/2 trials to find
a collision (with = 0.5 probability)

* When m=64, it takes 232 trials to find a collision
(doable in very little time)

* Today, need at least m=160, requiring about 230
trials (180 is better)

19

CHF from a Block Cipher

One direct option:

=Split input into a sequence of keys: M,,..M,

"Encrypt a constant plaintext (e.g., block of
zeros) with this sequence of keys:

Hi=E(M H,), M=0

"Final ciphertext H is the hash output
=Secure?

20

CHF from a Block Cipher

Davies-Meyer CHF:

Hi.1
" H,=H,, ®E(M,H,,), H,=0 i

m;
"ag
= Compression function is secure if

is a secure block cipher %"_
H;

21

Hash Function Examples

MD5 SHA-1 SHA-256
(defunct) (weak) (SHA-2 family,
used today)
Digest length 128 bits 160 bits 256 bits
Block size 512 bits 512 bits 512 bits
of steps 64 80 64
Max msg size o0 2%4-1 bits 254-1 bits
Security against | <=18 bits <= 63 bits 128 bits

collision attacks

22

Latest standard: SHA-3

Public competition by NIST, similar to AES:
NIST request for proposals (2007)

51 submissions (2008)

14 semi-finalists (2009)

5 finalists (2010)

Winner: Keccak (2012)

" Designed by Bertoni, Daemen, Peeters, Van Assche.

" Based on “sponge construction”, a completely
different structure from prior CHF-s.

23

What are hash functions good for
(besides integrity)?

24

Message Authentication Using a Hash
Function

Use symmetric encryption (AES or 3-DES) and a hash function

e @Given message M

e Compute H(M)

e Encrypt H(M) in ECB or CBC mode
e Resultis: E(H(M)) = MAC

e Alice sends to Bob: MAC, M

e Bobreceives MAC',M’ decrypts MAC” with K, hashes result and
checks if: D.(MAC) =?= H(M’)

Collision =» MAC forgery! 25

Using Hash for Authentication

Alice and Bob share a secret key K,

1.Alice =» Bob: random challenger,

2.Bob =» Alice: H(K] |r,), random challenge ry
3.Alice =» Bob: H(K] |rg)

Only need to compare H() results

26

Using Hash to Compute a MAC: message
integrity and authentication

e Just computing and appending H(m) to m is enough for integrity but
not for authenticity

* Need a “Keyed Hash”:
* Prefix:

e MAC: H(K | | m), almost works, but ...
e Allows concatenation with arbitrary message:
HIK [m[[m")

27

Using Hash to Compute a MAC: message
integrity and authentication

e Just computing and appending H(m) to m is enough for integrity but
not for authenticity

* Need a “Keyed Hash”:
e Prefix:
e MAC: H(K | | m), almost works, but ...
e Allows concatenation with arbitrary message:
HOK [m [m")
e Suffix:
e MAC: H(m || K)
* Works better, but what if m’ is found such that H(m)=H(m’)?
e HMAC:
* H(K || H(K]] m)) 28

Hash Function-based Keyed MAC (HMAC)

 Main ldea: Use a MAC derived from any CHF

* hash functions do not use a key, therefore cannot be used directly as a
MAC

e Motivations for HMAC:

* Cryptographic hash functions run faster in software than many
encryption algorithms such as 3-DES

* No need for the function to be reversible

* No US Government export restrictions (was important in the past)
e Status: designated as mandatory for IP security

* Also used in TLS, IPSec, etc.

29

HMAC Algorithm

Compute H1 = H() of the
concatenation of M and K1

To prevent an “additional
block” attack, compute again
H2= H() of the concatenation
of H1 and K2
Notation:
« K*=K padded with 0’s
* ipad=00110110x b/8
 0pad=01011100 x b/8

Execution:
 Same as H(M), plus 2 blocks

+ L]
K ipad
< b hits ot b hitls > l b hils I
ﬂi V" ‘:1 . = @ YL—I
h
Iv—""___pl Hash
K+ ﬂp-ﬂd i hils

s

Y

pad to & bils

b 4

.}
h“

. hils

IV

v

Hash

i hils

I
HMAC (M)

30

Hash Function Examples

MD5 SHA-1 SHA-256
(defunct) (weak) (SHA-2 family,
used today)
Digest length 128 bits 160 bits 256 bits
Block size 512 bits 512 bits 512 bits
of steps 64 80 64
Max msg size o0 2%4-1 bits 254-1 bits
Security against | <=18 bits <= 63 bits 128 bits
collision attacks | (2013) (2005)

51

	Slide Number 1
	Rijndael
	Rijndael: ByteSub
	Rijndael: ShiftRow
	Rijndael: MixColumn
	Rijndael: Implementations
	Rijndael: Implementations
	Conclusions and The Future
	Lecture 5
	Purpose
	Cryptographic HASH Functions
	Same Properties Re-stated:
	Simple Hash Functions
	Another Example	
	Construction
	The Birthday Paradox
	“Birthday Paradox”
	The Birthday Paradox
	How Long Should a Hash be?
	CHF from a Block Cipher
	CHF from a Block Cipher
	Hash Function Examples
	Latest standard: SHA-3
	What are hash functions good for�(besides integrity)?
	Message Authentication Using a Hash Function
	Using Hash for Authentication
	Using Hash to Compute a MAC: message integrity and authentication
	Using Hash to Compute a MAC: message integrity and authentication
	Hash Function-based Keyed MAC (HMAC)
	HMAC Algorithm
	Hash Function Examples

