Announcements

About Homework 1

- Available on the course website
- If you cannot see it, it could be due to caching --- so try refreshing the webpage
- Due in two weeks: 10/22/19 11:59pm
- Submit through GradeScope

Rijndael

Detailed view of round n

- Each round performs the following operations:
- Non-linear Layer: No linear relationship between the input and output of a round
- Linear Mixing Layer: Guarantees high diffusion over multiple rounds
- Very small correlation between bytes of the round input and the bytes of the output
- Key Addition Layer: Bytes of the input are simply XOR’ed with the expanded round key

Rijndael: ByteSub

$a_{0,0}$	$a_{0,1}$	a_{0}	$a_{i, j}$	$a_{0,4}$	$\frac{a_{0,5}}{a_{1,5}}$	S-box	$b_{0,0}$	$b_{0,1}$			$b_{0,4}$	$b_{0,5}$
$a_{1,0}$	$a_{1,1}$	a_{1}		1,4			$b_{1,0}$	$b_{1,1}$		$b_{i, j}$	1,4	$b_{1,5}$
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$		$b_{2,0}$	$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$
$a_{3,0}$	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$		$b_{3,0}$	$b_{3,1}$	$b_{3,2}$	$b_{3,3}$	$b_{3,4}$	$b_{3,5}$

Each byte at the input of a round undergoes a non-linear byte substitution according to the following transform:

$$
\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

Substitution ("S")-box

Rijndael: ShiftRow

Nb	C 1	C 2	C 3
4	1	2	3
6	1	2	3
8	1	3	4

Depending on the block length, each "row" of the block is cyclically shifted according to the above table

m	n	0	p	...	no shift	m	n	0	p	...		
j	k	I	...		cyc	zhif by	(1				j	j
d	e	f	...		cyclic sh	by C2				d	ϵ	
w	x	y	z	...	cyclic shifit by	C3(3)			w	x	y	l

Rijndael: MixColumn

Each column is multiplied by a fixed polynomial

$$
C(x)={ }^{\prime} 03^{\prime} * X^{3}+\prime 01^{\prime} * X^{2}+{ }^{\prime} 01^{\prime} * X+{ }^{\prime} 02^{\prime}
$$

This corresponds to matrix multiplication $b(x)=c(x) \otimes a(x):$

$$
\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

Rijndael: Implementations

> Well-suited for software implementations on 8-bit processors (important for "Smart Cards")
*Atomic operations focus on bytes and nibbles, not 32 - or 64-bit integers
*Layers such as ByteSub can be efficiently implemented using small tables in ROM (e.g., < 256 bytes).

* No special instructions are required to speed up operation, e.g., barrel-shifting registers on some embedded device microprocessors
>For 32-bit implementations:
* An entire round can be implemented via a fast table lookup routine on machines with 32-bit or higher word lengths
*Considerable parallelism exists in the algorithm
> Each layer of Rijndael operates in a parallel manner on the bytes of the round state, all four component transforms act on individual parts of the block
> Although the Key expansion is complicated and cannot benefit much from parallelism, it only needs to be performed once when the twor parties switch kevs

Rijndael: Implementations

>Hardware Implementations
*Rijndael performs very well in software, but there are cases when better performance is required (e.g., server and VPN applications).
*Multiple S-Box engines, round-key XORs, and byte shifts can all be implemented efficiently in hardware when absolute speed is required

* Small amount of hardware can vastly speed up 8-bit implementations
$>$ Inverse Cipher
* Except for the non-linear ByteSub step, each part of Rijndael has a straightforward inverse and the operations simply need to be undone in the reverse order.
* However, Rijndael was specially written so that the same code that encrypts a block can also decrypt the same block simply by changing certain tables and polynomials for each layer. The rest of the operation remains identical.

Conclusions and The Future

$>$ Rijndael is an extremely fast, state-of-theart, highly secure algorithm
>Amenable to efficient implementation in both hw and sw: requires no special instructions to obtain good performance on any computing platform
>Triple-DES: officially being retired by NIST.

Lecture 5

Cryptographic Hash Functions

Read: Chapter 5 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Purpose

- CHF - one of the most important tools in modern cryptography and security
- CHF-s are used for many authentication, integrity, digital signatures and non-repudiation purposes
- Not the same as "hashing" used in DB or CRCs in communications

Cryptographic HASH Functions

Purpose: produce a fixed-size "fingerprint" or digest of arbitrarily long input data

Why? To guarantee integrity of input
Properties of a "good" cryptographic HASH function H() :

1. Takes on input of any size
2. Produces fixed-length output
3. Easy to compute (efficient)
4. Given any h, computationally infeasible to find any x such that $H(x)=h$
5. For a given x, computationally infeasible to find $y: H(y)=H(x)$ and $y \neq x$
6. Computationally infeasible to find any (x, y) such that $H(x)=H(y)$ and $x \neq y$

Same Properties Re-stated:

- Cryptographic properties of a "good" HASH function:
- One-Way-ness (\#4)
- Weak Collision-Resistance (\#5)
- Strong Collision-Resistance (\#6)
- Non-cryptographic properties of a "good" HASH function
- Efficiency (\#3)
- Fixed Output (\#2)
- Arbitrary-Length Input (\#1)

Simple Hash Functions

- Bitwise-XOR

- Not secure, e.g., for English text (ASCII<128) the high-order bit is almost always zero
- Can be improved by rotating the hash code after each block is XOR-ed into it
- If message itself is not encrypted, it is easy to modify the message and append one block that would set the hash code as needed
- Another weak hash example: IP Header CRC

Another Example

- IPv4 header checksum
- One's complement of the one's complement sum of the IP header's 16-bit words

version	ihl	type of service	total length	
identification		flags	fragment offset	
time to live	protocol	header checksum		
source address				
destination address				
options				
data				

Construction

- A hash function is typically based on an internal compression function $f()$ that works on fixed-size input blocks (Mi)
- Merkle-Damgard construction:
- A fixed-size "compression function".
- Each iteration mixes an input block with the previous block's output

- Sort of like a Chained Block Cipher
- Produces a hash value for each fixed-size block based on (1) its content and (2) hash value for the previous block
- "Avalanche" effect: 1-bit change in input produces "catastrophic" and unpredictable changes in output

The Birthday Paradox

- Example hash function: $\mathbf{y = H} \mathbf{(x)}$ where: $\mathbf{x}=$ person and H() is Bday()
- y ranges over set $Y=[1 . . .365]$, let $n=$ size of Y, i.e., number of distinct values in the range of H()
- How many people do we need to 'hash' to have a collision?
- Or: what is the probability of selecting at random k DISTINCT numbers from Y ?
- probability of no collisions:
- $\left.P O=1^{*}(1-1 / n)^{*}(1-2 / n)^{*} \ldots *(1-(k-1) / n)\right)<=e^{(k(1-k) / 2 n)}$ (use $1-\mathrm{x}<=\mathrm{e}^{-\mathrm{x}}$)
- probability of at least one:
- P1=1-P0
- Set P1 to be at least 0.5 and solve for k :
- $k==1.17$ * SQRT(n)
- $k=22.3$ for $n=365$

"Birthday Paradox"

Example: $\mathrm{N}=10^{6}$

The Birthday Paradox

$$
m=\log (n)=\text { size of } H()
$$

$\sqrt{2^{m}}=2^{m / 2}$ trials must
be computationally
infeasible! Otherwise, finding
collisions is easy.

How Long Should a Hash be?

- Many input messages yield the same hash
- e.g., 1024-bit message, 128 -bit hash
- On average, 2^{896} messages map into one hash
- With m-bit hash, it takes about $2^{\mathrm{m} / 2}$ trials to find a collision (with ≥ 0.5 probability)
- When $m=64$, it takes 2^{32} trials to find a collision (doable in very little time)
- Today, need at least $m=160$, requiring about 2^{80} trials (180 is better)

CHF from a Block Cipher

One direct option:
-Split input into a sequence of keys: $\mathrm{M}_{1}, \ldots \mathrm{M}_{\mathrm{p}}$ -Encrypt a constant plaintext (e.g., block of zeros) with this sequence of keys:

$$
H_{i}=E\left(M_{i}, H_{i-1}\right), \quad M_{0}=0
$$

-Final ciphertext H_{p} is the hash output -Secure?

CHF from a Block Cipher

Davies-Meyer CHF:

- $\mathrm{H}_{\mathrm{i}}=\mathrm{H}_{\mathrm{i}-1} \oplus \mathrm{E}\left(\mathrm{M}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}-1}\right), \mathrm{H}_{\mathrm{o}}=0$
- Compression function is secure if is a secure block cipher

Hash Function Examples

	MD5 (defunct)	SHA-1 (weak)	SHA-256 (SHA-2 family, used today)
Digest length	128 bits	160 bits	256 bits
Block size	512 bits	512 bits	512 bits
\# of steps	64	80	64
Max msg size	OO	2^{64-1} bits	2^{64-1} bits
Security against collision attacks	$<=18$ bits	$<=63$ bits	128 bits

Latest standard: SHA-3

- Public competition by NIST, similar to AES:
- NIST request for proposals (2007)
- 51 submissions (2008)
- 14 semi-finalists (2009)
- 5 finalists (2010)
- Winner: Keccak (2012)
- Designed by Bertoni, Daemen, Peeters, Van Assche.
- Based on "sponge construction", a completely different structure from prior CHF-s.

What are hash functions good for (besides integrity)?

Message Authentication Using a Hash

Function

Use symmetric encryption (AES or 3-DES) and a hash function

- Given message M
- Compute H(M)
- Encrypt H(M) in ECB or CBC mode
- Result is: $E_{K}(H(M))=M A C$
- Alice sends to Bob: MAC, M
- Bob receives $M A C^{\prime}, M^{\prime}$ decrypts MAC' with K, hashes result and checks if: $\quad D_{K}\left(M A C^{\prime}\right)=?=H\left(M^{\prime}\right)$

Using Hash for Authentication

Alice and Bob share a secret key K_{AB}

1. Alice \rightarrow Bob: random challenge r_{A}
2.Bob \rightarrow Alice: $H\left(K\left|\mid r_{A}\right)\right.$, random challenge r_{B}
3.Alice \rightarrow Bob: $\mathrm{H}\left(\mathrm{K} \| \mathrm{r}_{\mathrm{B}}\right)$

Only need to compare H() results

Using Hash to Compute a MAC: message integrity and authentication

- Just computing and appending $\mathrm{H}(\mathrm{m})$ to m is enough for integrity but not for authenticity
- Need a "Keyed Hash":
- Prefix:
- MAC: H(K || m), almost works, but ...
- Allows concatenation with arbitrary message:

$$
\mathrm{H}\left(\mathrm{~K}\|\mathrm{~m}\| \mathrm{m}^{\prime}\right)
$$

Using Hash to Compute a MAC: message integrity and authentication

- Just computing and appending $\mathrm{H}(\mathrm{m})$ to m is enough for integrity but not for authenticity
- Need a "Keyed Hash":
- Prefix:
- MAC: H(K || m), almost works, but ...
- Allows concatenation with arbitrary message:

$$
\mathrm{H}\left(\mathrm{~K}\|\mathrm{~m}\| \mathrm{m}^{\prime}\right)
$$

- Suffix:
- MAC: $\mathrm{H}(\mathrm{m}|\mid K)$
- Works better, but what if m^{\prime} is found such that $\mathrm{H}(\mathrm{m})=\mathrm{H}\left(\mathrm{m}^{\prime}\right)$?
- HMAC:
- H(K || H (K || m))

Hash Function-based Keyed MAC (HMAC)

- Main Idea: Use a MAC derived from any CHF
- hash functions do not use a key, therefore cannot be used directly as a MAC
- Motivations for HMAC:
- Cryptographic hash functions run faster in software than many encryption algorithms such as 3-DES
- No need for the function to be reversible
- No US Government export restrictions (was important in the past)
- Status: designated as mandatory for IP security
- Also used in TLS, IPSec, etc.

HMAC Algorithm

- Compute $\mathrm{H} 1=\mathrm{H}()$ of the concatenation of M and K1
- To prevent an "additional block" attack, compute again $\mathrm{H} 2=\mathrm{H}()$ of the concatenation of H 1 and K2
- Notation:
- $\mathrm{K}^{+}=\mathrm{K}$ padded with $\mathrm{O}^{\prime} \mathrm{s}$
- ipad=00110110 xb/8
- opad=01011100 xb/8
- Execution:
- Same as $H(M)$, plus 2 blocks

Hash Function Examples

	MD5 (defunct)	SHA-1 (weak)	SHA-256 (SHA-2 family, used today)
Digest length	128 bits	160 bits	256 bits
Block size	512 bits	512 bits	512 bits
\# of steps	64	80	64
Max msg size	OO	2^{64-1} bits	2^{64-1} bits
Security against collision attacks	$<=18$ bits (2013)	$<=63$ bits (2005)	128 bits

