
1

About Homework 1
• Available on the course website

• If you cannot see it, it could be due to caching --- so try
refreshing the webpage

• Due in two weeks: 10/22/19 11:59pm

• Submit through GradeScope

Announcements

Rijndael

Detailed view of round n

• Each round performs the following operations:
• Non-linear Layer: No linear relationship between the input and output of a round
• Linear Mixing Layer: Guarantees high diffusion over multiple rounds

• Very small correlation between bytes of the round input and the bytes of the
output

• Key Addition Layer: Bytes of the input are simply XOR’ed with the expanded round
key

ByteSub ShiftRow MixColumn AddRoundKey

Kn

Result from
round n-1

Pass to
round n+1

60

Rijndael: ByteSub

Each byte at the input of a round undergoes a
non-linear byte substitution according to the following transform:

Substitution (“S”)-box

62

Rijndael: ShiftRow

Depending on the block length, each “row” of the
block is cyclically shifted according to the above table

63

Rijndael: MixColumn

Each column is multiplied by a fixed polynomial
C(x) = ’03’*X3 + ’01’*X2 + ’01’*X + ’02’

This corresponds to matrix multiplication b(x) = c(x) ⊗ a(x):

Not XOR

64

Rijndael: Implementations
Well-suited for software implementations on 8-bit

processors (important for “Smart Cards”)
Atomic operations focus on bytes and nibbles, not 32- or 64-bit

integers
Layers such as ByteSub can be efficiently implemented using

small tables in ROM (e.g., < 256 bytes).
No special instructions are required to speed up operation, e.g.,

barrel-shifting registers on some embedded device
microprocessors

For 32-bit implementations:
An entire round can be implemented via a fast table lookup

routine on machines with 32-bit or higher word lengths
Considerable parallelism exists in the algorithm
 Each layer of Rijndael operates in a parallel manner on the bytes of

the round state, all four component transforms act on individual
parts of the block

Although the Key expansion is complicated and cannot benefit much
from parallelism, it only needs to be performed once when the two
parties switch keys.

66

Rijndael: Implementations
Hardware Implementations
Rijndael performs very well in software, but there are cases

when better performance is required (e.g., server and VPN
applications).

Multiple S-Box engines, round-key XORs, and byte shifts can all
be implemented efficiently in hardware when absolute speed is
required

Small amount of hardware can vastly speed up 8-bit
implementations

Inverse Cipher
Except for the non-linear ByteSub step, each part of Rijndael

has a straightforward inverse and the operations simply need to
be undone in the reverse order.

However, Rijndael was specially written so that the same code
that encrypts a block can also decrypt the same block simply by
changing certain tables and polynomials for each layer. The rest
of the operation remains identical.

67

Conclusions and The Future

Rijndael is an extremely fast, state-of-the-
art, highly secure algorithm

Amenable to efficient implementation in both
hw and sw; requires no special instructions to
obtain good performance on any computing
platform

Triple-DES: officially being retired by NIST.

68

9

Lecture 5
Cryptographic Hash Functions

Read: Chapter 5 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Purpose
• CHF – one of the most important tools in modern

cryptography and security

• CHF-s are used for many authentication, integrity,
digital signatures and non-repudiation purposes

• Not the same as “hashing” used in DB or CRCs in
communications

10

11

Cryptographic HASH Functions
Purpose: produce a fixed-size “fingerprint” or digest of arbitrarily long
input data

Why? To guarantee integrity of input

Properties of a “good” cryptographic HASH function H():

1. Takes on input of any size
2. Produces fixed-length output
3. Easy to compute (efficient)
4. Given any h, computationally infeasible to find any x such that H(x) = h
5. For a given x, computationally infeasible to find y: H(y) = H(x) and y≠x
6. Computationally infeasible to find any (x, y) such that H(x) = H(y) and x ≠ y

12

Same Properties Re-stated:

• Cryptographic properties of a “good” HASH function:
• One-Way-ness (#4)
• Weak Collision-Resistance (#5)
• Strong Collision-Resistance (#6)

• Non-cryptographic properties of a “ good ” HASH
function
• Efficiency (#3)
• Fixed Output (#2)
• Arbitrary-Length Input (#1)

13

Simple Hash Functions
• Bitwise-XOR

• Not secure, e.g., for English text (ASCII<128) the high-order bit is almost
always zero

• Can be improved by rotating the hash code after each block is XOR-ed into it
• If message itself is not encrypted, it is easy to modify the message and

append one block that would set the hash code as needed
• Another weak hash example: IP Header CRC

Another Example
• IPv4 header checksum
• One’s complement of the one’s complement sum of the IP

header's 16-bit words

14

15

Construction
• A hash function is typically based on an internal compression function

f() that works on fixed-size input blocks (Mi)
• Merkle-Damgard construction:
• A fixed-size “compression function”.
• Each iteration mixes an input block with the previous block’s output

• Sort of like a Chained Block Cipher

• Produces a hash value for each fixed-size block based on (1) its content
and (2) hash value for the previous block

• “Avalanche” effect: 1-bit change in input produces “catastrophic” and
unpredictable changes in output

fIV

M1

f f
h1 h

M2 Mn

h2 hn-1…

16

The Birthday Paradox

• probability of no collisions:
• P0=1*(1-1/n)*(1-2/n)*…*(1-(k-1)/n)) <= e(k(1-k)/2n)

(use 1-x <= e-x)
• probability of at least one:

• P1=1-P0
• Set P1 to be at least 0.5 and solve for k:

• k == 1.17 * SQRT(n)
• k = 22.3 for n=365

Surprisingly small!

• Example hash function: y=H(x) where: x=person and H() is Bday()
• y ranges over set Y=[1…365], let n = size of Y, i.e., number of distinct values in

the range of H()
• How many people do we need to ‘hash’ to have a collision?
• Or: what is the probability of selecting at random k DISTINCT numbers from Y?

17

“Birthday Paradox”

Example: N = 106

18

The Birthday Paradox

19

How Long Should a Hash be?

• Many input messages yield the same hash
• e.g., 1024-bit message, 128-bit hash
• On average, 2896 messages map into one hash

• With m-bit hash, it takes about 2m/2 trials to find
a collision (with ≥ 0.5 probability)

• When m=64, it takes 232 trials to find a collision
(doable in very little time)

• Today, need at least m=160, requiring about 280

trials (180 is better)

20

CHF from a Block Cipher

One direct option:

Split input into a sequence of keys: M1,…Mp

Encrypt a constant plaintext (e.g., block of
zeros) with this sequence of keys:

Hi = E (Mi, Hi-1), Mo= 0

Final ciphertext Hp is the hash output
Secure?

21

CHF from a Block Cipher

Davies-Meyer CHF:

 Hi = Hi-1 ⊕ E(Mi,Hi-1), Ho=0

 Compression function is secure if E
is a secure block cipher

22

Hash Function Examples
MD5
(defunct)

SHA-1
(weak)

SHA-256
(SHA-2 family,
used today)

Digest length 128 bits 160 bits 256 bits

Block size 512 bits 512 bits 512 bits

of steps 64 80 64

Max msg size 264-1 bits 264-1 bits

Security against
collision attacks

<=18 bits <= 63 bits 128 bits

23

Latest standard: SHA-3

 Public competition by NIST, similar to AES:
 NIST request for proposals (2007)
 51 submissions (2008)
 14 semi-finalists (2009)
 5 finalists (2010)
 Winner: Keccak (2012)
 Designed by Bertoni, Daemen, Peeters, Van Assche.
 Based on “sponge construction”, a completely

different structure from prior CHF-s.

24

What are hash functions good for
(besides integrity)?

25

Message Authentication Using a Hash
Function

Use symmetric encryption (AES or 3-DES) and a hash function

• Given message M
• Compute H(M)
• Encrypt H(M) in ECB or CBC mode
• Result is: EK(H(M)) = MAC
• Alice sends to Bob: MAC, M
• Bob receives MAC’,M’ decrypts MAC’ with K, hashes result and

checks if: DK(MAC‘) =?= H(M’)

Collision MAC forgery!

26

Using Hash for Authentication

Alice and Bob share a secret key KAB

1.Alice  Bob: random challenge rA

2.Bob  Alice: H(K||rA), random challenge rB

3.Alice  Bob: H(K||rB)

Only need to compare H() results

27

Using Hash to Compute a MAC: message
integrity and authentication

• Just computing and appending H(m) to m is enough for integrity but
not for authenticity

• Need a “Keyed Hash”:
• Prefix:

• MAC: H(K || m), almost works, but …
• Allows concatenation with arbitrary message:

H(K || m || m’)

fIV

M1

f f
h1 h

M2 Mn

h2 hn-1… f h’

m’

28

Using Hash to Compute a MAC: message
integrity and authentication

• Just computing and appending H(m) to m is enough for integrity but
not for authenticity

• Need a “Keyed Hash”:
• Prefix:

• MAC: H(K || m), almost works, but …
• Allows concatenation with arbitrary message:

H(K || m || m’)
• Suffix:

• MAC: H(m || K)
• Works better, but what if m’ is found such that H(m)=H(m’)?

• HMAC:
• H (K || H (K || m))

29

Hash Function-based Keyed MAC (HMAC)

• Main Idea: Use a MAC derived from any CHF
• hash functions do not use a key, therefore cannot be used directly as a

MAC

• Motivations for HMAC:
• Cryptographic hash functions run faster in software than many

encryption algorithms such as 3-DES
• No need for the function to be reversible
• No US Government export restrictions (was important in the past)

• Status: designated as mandatory for IP security
• Also used in TLS, IPSec, etc.

30

HMAC Algorithm

• Compute H1 = H() of the
concatenation of M and K1

• To prevent an “additional
block” attack, compute again
H2= H() of the concatenation
of H1 and K2

• Notation:
• K+ = K padded with 0’s
• ipad=00110110 x b/8
• opad=01011100 x b/8

• Execution:
• Same as H(M), plus 2 blocks

31

Hash Function Examples
MD5
(defunct)

SHA-1
(weak)

SHA-256
(SHA-2 family,
used today)

Digest length 128 bits 160 bits 256 bits

Block size 512 bits 512 bits 512 bits

of steps 64 80 64

Max msg size 264-1 bits 264-1 bits

Security against
collision attacks

<=18 bits
(2013)

<= 63 bits
(2005)

128 bits

	Slide Number 1
	Rijndael
	Rijndael: ByteSub
	Rijndael: ShiftRow
	Rijndael: MixColumn
	Rijndael: Implementations
	Rijndael: Implementations
	Conclusions and The Future
	Lecture 5
	Purpose
	Cryptographic HASH Functions
	Same Properties Re-stated:
	Simple Hash Functions
	Another Example	
	Construction
	The Birthday Paradox
	“Birthday Paradox”
	The Birthday Paradox
	How Long Should a Hash be?
	CHF from a Block Cipher
	CHF from a Block Cipher
	Hash Function Examples
	Latest standard: SHA-3
	What are hash functions good for�(besides integrity)?
	Message Authentication Using a Hash Function
	Using Hash for Authentication
	Using Hash to Compute a MAC: message integrity and authentication
	Using Hash to Compute a MAC: message integrity and authentication
	Hash Function-based Keyed MAC (HMAC)
	HMAC Algorithm
	Hash Function Examples

