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Lecture 7
Algebraic Structures 

(Groups, Rings, Fields) 
and Some Basic Number Theory

Read: Chapter 7 and 8 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]
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Finite Algebraic Structures
• Groups

• Abelian
• Cyclic
• Generator
• Group Order

• Rings
• Fields
• Subgroups
• Euclidean Algorithm
• CRT (Chinese Remainder Theorem)
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GROUPs
DEFINITION: A nonempty set G and operator @, (G,@), is a group if:

•CLOSURE: for all x, y in G:

• (x @ y) is also in G

•ASSOCIATIVITY: for all x, y, z in G:

• (x @ y) @ z = x @ (y @ z) 

•IDENTITY: there exists identity element I in G, such that, for all x in G:

• I @ x = x   and    x @ I = x

•INVERSE: for all x in G, there exist inverse element x-1 in G, such that:

• x-1 @ x  =  I  =  x @ x-1

DEFINITION: A group (G,@) is ABELIAN if:

•COMMUTATIVITY:  for all x, y in G:

• x @ y = y @ x 
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Groups (contd)
DEFINITION: An element g in G is a group generator of group (G,@) if: 
for all x in G,  there exists i ≥ 0, such that:         

x = gi = g @ g @ g @ … @ g  (i times) 
This means every element of the group can be generated by g using @.
In other words, G=<g>

DEFINITION: A group (G,@) is cyclic if a group generator exists!

DEFINITION: Group order of a group (G,@) is the size of set G, i.e., |G| or #{G} or ord(G)

DEFINITION: Group (G,@) is finite if ord(G) is finite.
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Rings and Fields
DEFINITION: A structure (R,+,*) is a Ring if (R,+) is an Abelian group (usually with 

identity element denoted by 0) and the following properties hold:
• CLOSURE: for all x, y in R, (x*y) in R
• ASSOCIATIVITY: for all x, y, z in R, (x*y)*z = x*(y*z)
• IDENTITY: there exists 1 ≠ 0 in R, s.t., for all x in R, 1*x = x
• DISTRIBUTION: for all x, y, z in R, (x+y)*z = x*z + y*z 

In other words (R,+) is an Abelian group with identity element 0 and (R,*) is a Monoid
with identity element 1≠0.  A Monoid is a set with a single associative binary 
operation and an identity element.

The Ring is commutative Ring if 

• COMMUTATIVITY:  for all x, y in R, x*y=y*x
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Rings and Fields

DEFINITION: A structure (F,+,*) is a Field if (F,+,*) is a 
commutative Ring and:

•INVERSE: all non-zero x in R, have multiplicative inverse.
i.e., there exists an inverse element x-1 in R,  such that:  
x * x-1 = 1. 
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Example: Integers Under Addition

G = Z = integers = { … -3, -2, -1, 0 , 1 , 2 …}

the group operator is “+”, ordinary addition

• integers are closed under addition
• identity element with respect to addition is 0 (x+0=x)
• inverse of x is -x (because x + (-x) = 0)
• addition of integers is associative
• addition of integers is commutative (the group is Abelian)
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Non-Zero Rationals under Multiplication

G = Q - {0}  = {a/b} where a, b in Z*

the group operator is “*”, ordinary multiplication

• if a/b, c/d in Q-{0}, then: a/b * c/d = (ac/bd) in Q-{0}
• the identity element is 1
• the inverse of a/b is b/a
• multiplication of rationals is associative
• multiplication of rationals is commutative (the group is Abelian)
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Non-Zero Reals under Multiplication

G = R - {0}
the group operator is “*”, ordinary multiplication

• if a, b in R - {0}, then a*b in R-{0}
• the identity is 1
• the inverse of a is 1/a
• multiplication of reals is associative
• multiplication of reals is commutative 

(the group is Abelian)

Remember:
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Positive Integers under Exponentiation?

G = {0, 1, 2, 3…}
the group operator is “^”, exponentiation

• closed under exponentiation
• the identity is 1, x^1=x
• the inverse of x is always 0, x^0=1
• exponentiation of integers is NOT commutative,   
x^y ≠ y^x (non-Abelian) 
• exponentiation of integers is NOT associative,        
(x^y)^z   ≠   x^(y^z) 
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Integers mod N Under Addition

G = Z+
N = positive integers mod N = {0 … N-1}

the group operator is “+”, modular addition

• integers modulo N are closed under addition
• identity is 0
• inverse of x is -x (=N-x)
• addition of integers modulo N is associative
• addition integers modulo N is commutative 

(the group is Abelian)
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Integers mod(p) (where p is Prime) 
under Multiplication

G = Z*
p non-zero integers mod p = {1 … p-1}

the group operator is “*”, modular multiplication

 integers mod p are closed under the * operator:
 because if GCD(x, p) =1 and GCD(y, p) = 1 (GCD = Greatest Common Divisor)

 then GCD(xy, p) = 1
 Note that x is in Z*

P iff GCD(x, p)=1
 the identity is 1
 the inverse of x is u such that ux (mod p)=1

 u can be found either by Extended Euclidean Algorithm
 ux + vp = GCD(x, p) = 1
 or by using Fermat’s little theorem xp-1 = 1 (mod p),  u = x-1 = xp-2

 * is associative
 * is commutative (so the group is Abelian)
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Z*
N : Non-zero Integers mod(N) 

Relatively Prime to N

• Group operator is “*”, modular multiplication
• Group order ord(Z*

N) = number of integers relatively prime (or co-prime) to 
N denoted by phi(N), or Ф (N)

• integers mod N are closed under multiplication: 
if GCD(x, N) =1 and GCD(y,N) = 1, GCD(x*y,N) = 1

• identity is 1
• inverse of x is from Euclidean algorithm:
ux + vN = 1 (mod N) = GCD(x,N)
so, x-1 = u (= x phi(N)-1)
• multiplication is associative
• multiplication is commutative (so the group is Abelian)

G = Z*
N

non-zero integers mod N = {1 …, x, … n-1} such that GCD(x, N)=1
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Subgroups

DEFINITION: (H,@) is a subgroup of (G,@) if:

• H is a subset of G

• (H,@) is a group
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Subgroup Example

Let (G,*), G = Z*7 = {1, 2, 3, 4, 5, 6} 
Let H = {1, 2, 4} (mod 7) 

Note that:
• H is closed under multiplication mod 7
• 1 is still the identity
• 1 is 1’s inverse, 2 and 4 are inverses of each other
• Associativity holds
• Commutativity holds (H is Abelian)
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Let (G,*), G = R-{0} = non-zero reals
Let (H,*), Q-{0} = non-zero rationals 

H is a subset of G and both G and H are groups
in their own right

Subgroup Example
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Order of a Group Element

Let x be an element of a (multiplicative) finite integer group G. 
The order of x is the smallest positive number k such that xk= 1

Notation:  ord(x)
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Example:  Z*7: multiplicative group mod 7

Note that: Z*
7=Z7

ord(1) = 1 because 11 = 1
ord(2) = 3 because 23 = 8 = 1
ord(3) = 6 because 36 = 93 = 23 =1
ord(4) = 3 because 43 = 64 = 1 
ord(5) = 6 because 56 = 253 = 43 = 1 
ord(6) = 2 because 62 = 36 = 1 

Order of an Element



19

Theorem (Lagrange)

Theorem (Lagrange): Let G be a multiplicative group 
of order n. For any g in G, ord(g) divides ord(G).
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Example: in Z*
13

primitive elements are:
{2, 6, 7, 11}
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Euclidean Algorithm 
Purpose: compute GCD(x,y)

GCD = Greatest Common Divisor
Recall that:
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Euclidean Algorithm (contd) 

Example: x=24, y=15

1. 1  9
2. 1  6
3. 1  3
4. 2  0

Example: x=23, y=14

1. 1  9
2. 1  5
3. 1  4
4. 1  1
5. 4  0
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Extended Euclidean Algorithm 
Purpose: compute GCD(x,y) and inverse of y (if it exists)



24

Extended Euclidean Algorithm (contd)

I       R T Q

0 87 0 --

1 11 1 7

2 10 80 1

3 1 8 --

Example: x=87 y=11
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I       R T Q__

0 93 0 --

1 87 1 1

2     6   92 14 

3 3   15 2

4      0   62 --

Example: x=93 y=87

Extended Euclidean Algorithm 
(contd)
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Chinese Remainder Theorem (CRT)

The following system of n modular equations (congruences)

Has a unique solution:

(all mi-s relatively prime).
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CRT Example
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