Lecture 7

Algebraic Structures (Groups, Rings, Fields)
 and Some Basic Number Theory

Read: Chapter 7 and 8 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Finite Algebraic Structures

- Groups
- Abelian
- Cyclic
- Generator
- Group Order
- Rings
- Fields
- Subgroups
- Euclidean Algorithm
- CRT (Chinese Remainder Theorem)

GROUPs

DEFINITION: A nonempty set G and operator @, (G,@), is a group if:

-CLOSURE: for all x, y in G :

- (x @ y) is also in G
-ASSOCIATIVITY: for all x, y, z in G :
- (x @ y) @ z = x @ (y @ z)
-IDENTITY: there exists identity element I in G , such that, for all x in G :
- 1 @ $x=x$ and x @ $=x$
-INVERSE: for all x in G , there exist inverse element x^{-1} in G , such that:
- $\mathrm{x}^{-1} @ \mathrm{x}=\mathrm{I}=\mathrm{x} @ \mathrm{x}^{-1}$

DEFINITION: A group (G,@) is ABELIAN if:
-COMMUTATIVITY: for all x, y in G :

$$
x @ y=y @ x
$$

Groups (contd)

DEFINITION: An element g in G is a group generator of group $(G, @)$ if: for all x in G, there exists $i \geq 0$, such that:

$$
x=g^{i}=g @ g @ g @ \ldots .
$$

This means every element of the group can be generated by g using @. In other words, G=<g>

DEFINITION: A group (G,@) is cyclic if a group generator exists!

DEFINITION: Group order of a group (G,@) is the size of set G, i.e., $|\mathrm{G}|$ or \#\{G\} or ord(G)

DEFINITION: Group (G,@) is finite if ord(G) is finite.

Rings and Fields

DEFINITION: A structure ($R,+,{ }^{*}$) is a Ring if ($R,+$) is an Abelian group (usually with identity element denoted by 0) and the following properties hold:

- CLOSURE: for all x, y in $R,\left(x^{*} y\right)$ in R
- ASSOCIATIVITY: for all x, y, z in $R,\left(x^{*} y\right)^{*} z=x^{*}\left(y^{*} z\right)$
- IDENTITY: there exists $1 \neq 0$ in R, s.t., for all x in $R, 1^{*} x=x$
- DISTRIBUTION: for all x, y, z in $R,(x+y)^{*} z=x^{*} z+y^{*} z$

In other words ($\mathrm{R},+$) is an Abelian group with identity element 0 and $(\mathrm{R}, *)$ is a Monoid with identity element $1 \neq 0$. A Monoid is a set with a single associative binary operation and an identity element.

The Ring is commutative Ring if

- COMMUTATIVITY: for all x, y in $R, x^{*} y=y^{*} x$

Rings and Fields

DEFINITION: A structure $\left(\mathrm{F},+{ }^{*}\right)$ is a Field if $\left(\mathrm{F},+,{ }^{*}\right)$ is a commutative Ring and:
-INVERSE: all non-zero x in R , have multiplicative inverse.
i.e., there exists an inverse element x^{-1} in R , such that:
$x^{*} x^{-1}=1$.

Example: Integers Under Addition

$G=Z=$ integers $=\{\ldots-3,-2,-1,0,1,2 \ldots\}$
the group operator is " + ", ordinary addition

- integers are closed under addition
- identity element with respect to addition is $0(x+0=x)$
- inverse of x is $-x$ (because $x+(-x)=0$)
- addition of integers is associative
- addition of integers is commutative (the group is Abelian)

Non-Zero Rationals under Multiplication

$$
G=\mathbf{Q}-\{0\}=\{a / b\} \text { where } a, b \text { in } Z^{*}
$$

the group operator is "*", ordinary multiplication

- if $a / b, c / d$ in $Q-\{0\}$, then: $a / b * c / d=(a c / b d)$ in $Q-\{0\}$
- the identity element is 1
- the inverse of a / b is b / a
- multiplication of rationals is associative
- multiplication of rationals is commutative (the group is Abelian)

Non-Zero Reals under Multiplication

$$
G=\mathbf{R}-\{0\}
$$

the group operator is "*", ordinary multiplication

- if a, b in $R-\{0\}$, then $a * b$ in $R-\{0\}$

Remember:

- the identity is 1
- the inverse of a is $1 / a$
- multiplication of reals is associative
- multiplication of reals is commutative (the group is Abelian)

Positive Integers under Exponentiation?

$$
G=\{0,1,2,3 . . .\}
$$

the group operator is " \wedge ", exponentiation

- closed under exponentiation
- the identity is $1, x^{\wedge} 1=x$
- the inverse of x is always $0, x^{\wedge} 0=1$
- exponentiation of integers is NOT commutative, $x^{\wedge} y \neq y^{\wedge} x$ (non-Abelian)
- exponentiation of integers is NOT associative, $\left(x^{\wedge} y\right)^{\wedge} z \neq x^{\wedge}\left(y^{\wedge} z\right)$

Integers mod N Under Addition

$\mathrm{G}=\mathrm{Z}^{+}{ }_{\mathrm{N}}=$ positive integers $\bmod \mathrm{N}=\{0 \ldots \mathrm{~N}-1\}$ the group operator is " + ", modular addition

- integers modulo N are closed under addition
- identity is 0
- inverse of x is $-x(=N-x)$
- addition of integers modulo N is associative
- addition integers modulo N is commutative (the group is Abelian)

Integers $\bmod (p)$ (where p is Prime) under Multiplication
$G=Z_{p}^{*} \quad$ non-zero integers $\bmod p=\{1 \ldots p-1\}$
the group operator is "*", modular multiplication
\diamond integers mod p are closed under the * operator:

$$
\text { because if } \operatorname{GCD}(x, p)=1 \text { and } \operatorname{GCD}(y, p)=1 \quad(G C D=\text { Greatest Common Divisor })
$$

then $\operatorname{GCD}(x y, p)=1$
Note that x is in Z^{*} piff $\operatorname{GCD}(x, p)=1$
the identity is 1
the inverse of x is u such that $u x(\bmod p)=1$
$\diamond u$ can be found either by Extended Euclidean Algorithm
$\diamond u x+v p=G C D(x, p)=1$
\diamond or by using Fermat's little theorem $x^{p-1}=1(\bmod p), u=x^{-1}=x^{p-2}$

* is associative
* is commutative (so the group is Abelian)

$Z_{N}^{*}:$ Non-zero Integers $\bmod (N)$ Relatively Prime to N

$\mathrm{G}=\mathrm{Z}^{*}$
non-zero integers $\bmod N=\{1 \ldots, x, \ldots n-1\}$ such that $G C D(x, N)=1$

- Group operator is "*", modular multiplication
- Group order $\operatorname{ord}\left(\mathrm{Z}^{*}\right)=$ number of integers relatively prime (or co-prime) to N denoted by phi(N), or $\boldsymbol{\Phi}(\mathbf{N})$
- integers $\bmod N$ are closed under multiplication:

$$
\text { if } \operatorname{GCD}(x, N)=1 \text { and } \operatorname{GCD}(y, N)=1, \operatorname{GCD}\left(x^{*} y, N\right)=1
$$

- identity is 1
- inverse of x is from Euclidean algorithm:
$u x+v N=1(\bmod N)=G C D(x, N)$
so, $x^{-1}=u\left(=x^{\text {phi(N)-1 }}\right)$
- multiplication is associative
- multiplication is commutative (so the group is Abelian)

Subgroups

DEFINITION: (H,@) is a subgroup of (G,@) if:

- H is a subset of G
- $(\mathrm{H}, @)$ is a group

Subgroup Example

$$
\begin{aligned}
& \text { Let }\left(G,{ }^{*}\right), G=Z^{*}{ }_{7}=\{1,2,3,4,5,6\} \\
& \text { Let } H=\{1,2,4\}(\bmod 7)
\end{aligned}
$$

Note that:

- H is closed under multiplication mod 7
- 1 is still the identity
- 1 is 1's inverse, 2 and 4 are inverses of each other
- Associativity holds
- Commutativity holds (H is Abelian)

Subgroup Example

Let $\left(\mathrm{G},{ }^{*}\right), \mathrm{G}=\mathrm{R}-\{0\}=$ non-zero reals
Let $\left(H,{ }^{*}\right), \mathrm{Q}-\{0\}=$ non-zero rationals
H is a subset of G and both G and H are groups in their own right

Order of a Group Element

Let \mathbf{X} be an element of a (multiplicative) finite integer group G. The order of \mathbf{x} is the smallest positive number k such that $\mathbf{x}^{k}=1$

Notation: ord(x)

Order of an Element

Example: $Z^{*}{ }_{7}$: multiplicative group mod 7

Note that: $\mathrm{Z}_{7}{ }_{7}=\mathrm{Z}_{7}$

$$
\begin{aligned}
& \operatorname{ord}(1)=1 \text { because } 1^{1}=1 \\
& \operatorname{crd}(2)=3 \text { because } 2^{3}=8=1 \\
& \operatorname{crd}(3)=6 \text { because } 3^{6}=9^{3}=2^{3}=1 \\
& \operatorname{crd}(4)=3 \text { because } 4^{3}=64=1 \\
& \operatorname{crd}(5)=6 \text { because } 5^{6}=25^{3}=4^{3}=1 \\
& \operatorname{crd}(6)=2 \text { because } 6^{2}=36=1
\end{aligned}
$$

Theorem (Lagrange)

\section*{$\Phi(n)$ - order of $\mathrm{G}_{\mathrm{n}}^{*}$ largest order of any element!} | order of $g:$ smallest |
| :--- |
| integer m such that |
| $g^{m} \equiv 1 \bmod n$ |

Theorem (Lagrange): Let G be a multiplicative group of order n. For any g in G, ord(g) divides ord(G).

$$
\begin{aligned}
& \text { COROLLARY 1: } \\
& b^{\Phi(n)} \equiv 1 \bmod n \forall b \in Z_{n}^{*} \\
& \text { because : } \Phi(n)=\operatorname{ord}\left(Z_{n}^{*}\right) \\
& \operatorname{ord}(b)=\operatorname{ord}\left(Z_{n}^{*}\right) / k=\Phi(n) / k \\
& \text { thus : } b^{\Phi(n)}=b^{\Phi(n) / k * k}=1^{k}=1 \\
& \hline
\end{aligned}
$$

> | COROLLARY 2: |
| :--- |
| if p is prime then |
| $\forall b \in Z_{p}^{*}$ |
| 1) $b^{p} \equiv b \bmod p$ |
| and |
| 2) $\exists a \in Z_{p} \ni \operatorname{ord}(a)=p-1$ |
| $a-$ primitive element |

Example: in $\mathrm{Z}^{*}{ }_{13}$
primitive elements are:

$$
\{2,6,7,11\}
$$

Euclidean Algorithm

Purpose: compute GCD (x,y) GCD $=$ Greatest Common Divisor Recall that:

$$
\begin{aligned}
& b^{-1}-\text { multiplicative inverse of } b, \\
& b^{*} b^{-1} \equiv 1 \bmod n \\
& \forall b \in Z_{n} \exists b^{-1} \Leftrightarrow \operatorname{gcd}(b, n)=1
\end{aligned}
$$

$$
\text { Euclidian }(n, b)=1 \Rightarrow \exists b^{-1}
$$

Euclidean Algorithm (contd)

$$
\begin{aligned}
& \text { init }: r_{0}=x \quad r_{1}=y \\
& q_{1}=\left\lfloor r_{0} / r_{1}\right\rfloor \quad r_{2}=r_{0} \bmod r_{1} \\
& \ldots=\ldots \\
& q_{i}=\left\lfloor r_{i-1} / r_{i}\right\rfloor \quad r_{i+1}=r_{i-1} \bmod r_{i} \\
& \ldots=\ldots \\
& q_{m-1}=\left\lfloor r_{m-2} / r_{m-1}\right\rfloor \quad r_{m}=r_{m-2} \bmod r_{m-1} \\
& \left(\begin{array}{l}
\left(r_{m}=\right. \\
\\
\\
\\
\quad \text { OUTPUT })
\end{array}\right.
\end{aligned}
$$

Example: $x=24, y=15$

1. 19
2. 16
3. 13
4. 20

Example: $x=23, y=14$
$\begin{array}{lll}\text { 1. } & 1 & 9 \\ \text { 2. } & 1 & 5 \\ \text { 3. } & 1 & 4 \\ \text { 4. } & 1 & 1 \\ \text { 5. } & 4 & 0\end{array}$

Extended Euclidean Algorithm

Purpose: compute $\operatorname{GCD}(x, y)$ and inverse of y (if it exists)

$$
\begin{aligned}
\text { init }: & r_{0}=x \quad r_{1}=y \quad t_{0}=0 \quad t_{1}=1 \\
q_{1} & =\left\lfloor r_{0} / r_{1}\right\rfloor \quad r_{2}=r_{0} \bmod r_{1} \quad t_{1}=1 \\
\ldots & =\ldots \\
q_{i} & =\left\lfloor r_{i-1} / r_{i}\right\rfloor \quad r_{i+1}=r_{i-1} \bmod r_{i} \quad t_{i}=t_{i-2}-q_{i-1} t_{i-1} \bmod r_{0} \\
\ldots & =\ldots \\
q_{m-1} & =\left\lfloor r_{m-2} / r_{m-1}\right\rfloor \quad r_{m}=r_{m-2} \bmod r_{m-1} \quad t_{m}=t_{m-2}-q_{m-1} t_{m-1} \bmod r_{0}
\end{aligned} \quad \begin{aligned}
& \text { if }\left(r_{m}=1\right) \text { OUTPUT } t_{m} \text { else if }(r m=0) \text { OUTPUT "no inverse }{ }^{\prime \prime}
\end{aligned}
$$

$$
q_{i}=\left\lfloor r_{i-1} / r_{i}\right\rfloor \quad r_{i+1}=r_{i-1} \bmod r_{i} \quad t_{i}=t_{i-2}-q_{i-1} t_{i-1} \bmod r_{0}
$$

Example: $x=87 y=11$

I	R	T	Q
0	87	0	--
1	11	1	7
2	10	80	1
3	1	8	--

Extended Euclidean Algorithm (contd)

Example: $x=93 \mathrm{y}=87$

$$
q_{i}=\left\lfloor r_{i-1} / r_{i}\right\rfloor \quad r_{i+1}=r_{i-1} \bmod r_{i} \quad t_{i}=t_{i-2}-q_{i-1} t_{i-1} \bmod r_{0}
$$

I	R	T	Q
0	93	0	--
1	87	1	1
2	6	92	14
3	3	15	2
4	0	62	--

Chinese Remainder Theorem (CRT)

The following system of \boldsymbol{n} modular equations (congruences)

$$
\begin{aligned}
& x \equiv a_{1} \bmod m_{1} \\
& \cdots \\
& x \equiv a_{n} \bmod m_{n}
\end{aligned}
$$

(all $\boldsymbol{m}_{\boldsymbol{i}}$-s relatively prime).

Has a unique solution:

$$
\begin{aligned}
& x=\sum_{i=1}^{n} a_{i}\left(\frac{M}{m_{i}}\right) y_{i} \bmod M \\
& \text { where }: \\
& M=m_{l} * \ldots * m_{n} \\
& y_{i}=\left(\frac{M}{m_{i}}\right)^{-1} \bmod m_{i}
\end{aligned}
$$

CRT Example

$x \equiv 5 \bmod 7$ $x \equiv 3 \bmod 11$

$x=\left[5\left(M / m_{1}\right) y_{1}+3\left(M / m_{2}\right) y_{2}\right] \bmod M$
$M=77$
$M / m_{1}=11$
$M / m_{2}=7$
$y_{1}=11^{-1} \bmod 7=4^{-1} \bmod 7=2$
$y_{2}=7^{-1} \bmod 11=8$
$x=(5 * 11 * 2+3 * 7 * 8) \bmod 77=47$

