Lecture 7

Algebraic Structures (Groups, Rings, Fields) and Some Basic Number Theory

Read: Chapter 7 and 8 in KPS

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Finite Algebraic Structures

- Groups
 - Abelian
 - Cyclic
 - Generator
 - Group Order
- Rings
- Fields
- Subgroups
- Euclidean Algorithm
- CRT (Chinese Remainder Theorem)

GROUPs

<u>DEFINITION</u>: A nonempty set G and *operator* @, (G,@), is a *group* if:

•CLOSURE: for all x, y in G:

- (x @ y) is also in G
- •ASSOCIATIVITY: for all x, y, z in G:
 - (x @ y) @ z = x @ (y @ z)

•IDENTITY: there exists *identity element* I in G, such that, for all x in G:

• I @ x = x and x @ I = x

•INVERSE: for all x in G, there exist *inverse element* x⁻¹ in G, such that:

• $x^{-1} @ x = 1 = x @ x^{-1}$

<u>DEFINITION</u>: A group (G,@) is **ABELIAN** if:

•COMMUTATIVITY: for all x, y in G:

• x @ y = y @ x

Groups (contd)

DEFINITION: An element g in G is a group generator of group (G,@) if: for all x in G, there exists $i \ge 0$, such that:

 $x = g^{i} = g @ g @ g @ ... @ g (i times)$

This means every element of the group can be generated by g using @. In other words, G=<g>

DEFINITION: A group (G,@) is *cyclic* if a group generator exists!

DEFINITION: Group *order* of a group (G,@) is *the size of set G*, i.e., |G| or #{G} or ord(G)

DEFINITION: Group (G,@) is **finite** if ord(G) is finite.

Rings and Fields

DEFINITION: A structure (R,+,*) is a *Ring* if (R,+) is an Abelian group (usually with identity element denoted by 0) and the following properties hold:

- **CLOSURE**: for all x, y in R, (x*y) in R
- **ASSOCIATIVITY**: for all x, y, z in R, $(x^*y)^*z = x^*(y^*z)$
- **IDENTITY**: there exists $1 \neq 0$ in R, s.t., for all x in R, $1^*x = x$
- **DISTRIBUTION**: for all x, y, z in R, (x+y)*z = x*z + y*z

In other words (R,+) is an Abelian group with identity element 0 and (R,*) is a *Monoid* with identity element 1≠0. A *Monoid* is a set with a single associative binary operation and an identity element.

The Ring is *commutative Ring* if

• **COMMUTATIVITY**: for all x, y in R, x*y=y*x

Rings and Fields

DEFINITION: A structure (F,+,*) is a **Field** if (F,+,*) is a commutative Ring and:

•INVERSE: all *non-zero* x in R, have multiplicative inverse. i.e., there exists an *inverse element* x⁻¹ in R, such that: x * x⁻¹ = 1.

Example: Integers Under Addition

G = Z = integers = { ... -3, -2, -1, 0, 1, 2 ...}

the group operator is "+", ordinary addition

- integers are closed under addition
- identity element with respect to addition is 0 (x+0=x)
- inverse of x is -x (because x + (-x) = 0)
- addition of integers is associative
- addition of integers is commutative (the group is **Abelian**)

Non-Zero Rationals under Multiplication

$$G = \mathbf{Q} - \{0\} = \{a/b\}$$
 where a, b in \mathbf{Z}^*

the group operator is "*", ordinary multiplication

- if a/b, c/d in Q-{0}, then: a/b * c/d = (ac/bd) in Q-{0}
- the identity element is 1
- the inverse of a/b is b/a
- multiplication of rationals is associative
- multiplication of rationals is commutative (the group is Abelian)

Non-Zero Reals under Multiplication

the group operator is "*", ordinary multiplication

- if a, b in R {0}, then a*b in R-{0}
- the identity is 1
- the inverse of a is 1/a
- multiplication of reals is associative
- multiplication of reals is commutative (the group is Abelian)

Remember:

Positive Integers under Exponentiation?

 $G = \{0, 1, 2, 3...\}$

the group operator is "^", exponentiation

- closed under exponentiation
- the identity is 1, x^1=x
- the inverse of x is always 0, x^0=1
- exponentiation of integers is NOT commutative,

x^y ≠ y^x (non-Abelian)

exponentiation of integers is NOT associative,
 (x^y)^z ≠ x^(y^z)

Integers mod N Under Addition

 $G = Z_N^+ = positive integers mod N = \{0 ... N-1\}$ the group operator is "+", modular addition

- integers modulo N are closed under addition
- identity is 0
- inverse of x is -x (=N-x)
- addition of integers modulo N is associative
- addition integers modulo N is commutative (the group is Abelian)

Integers mod(p) (where p is Prime) under Multiplication

 $G = Z_{p}^{*}$ non-zero integers mod $p = \{1 ... p-1\}$

the group operator is "*", modular multiplication

- \diamond integers mod p are closed under the * operator:
- \diamond because if GCD(x, p) =1 and GCD(y, p) = 1
 - (GCD = Greatest Common Divisor)

- $\Leftrightarrow \qquad \text{then GCD(xy, p) = 1}$
- \diamond Note that x is in Z_{P}^{*} iff GCD(x, p)=1
- \diamond the identity is 1
- \diamond the inverse of x is u such that ux (mod p)=1
 - \diamond u can be found either by Extended Euclidean Algorithm
 - $\Rightarrow ux + vp = GCD(x, p) = 1$
 - ♦ or by using Fermat's little theorem $x^{p-1} = 1 \pmod{p}$, $u = x^{-1} = x^{p-2}$
- ♦ * is associative
- \diamond * is commutative (so the group is **Abelian**)

Z^{*}_N : Non-zero Integers mod(N) Relatively Prime to N

 $G = Z_N^*$

non-zero integers mod N = {1 ..., x, ... n-1} such that GCD(x, N)=1

- Group operator is "*", modular multiplication
- Group order ord(Z^{*}_N) = number of integers relatively prime (or co-prime) to N denoted by phi(N), or Φ (N)
- integers mod N are closed under multiplication:
 if GCD(x, N) =1 and GCD(y,N) = 1, GCD(x*y,N) = 1
- identity is 1
- inverse of x is from Euclidean algorithm:

 $ux + vN = 1 \pmod{N} = GCD(x,N)$

so, x⁻¹ = u (= x ^{phi(N)-1})

- multiplication is associative
- multiplication is commutative (so the group is **Abelian**)

DEFINITION: (H,@) is a **subgroup** of (G,@) if:

- H is a subset of G
- (H,@) is a group

Subgroup Example

Let (G,*), G =
$$Z_7^* = \{1, 2, 3, 4, 5, 6\}$$

Let H = $\{1, 2, 4\}$ (mod 7)

Note that:

- H is closed under multiplication mod 7
- 1 is still the identity
- 1 is 1's inverse, 2 and 4 are inverses of each other
- Associativity holds
- Commutativity holds (H is Abelian)

Subgroup Example

Let (G, *), $G = R-\{0\} = non-zero reals$ Let (H, *), $Q-\{0\} = non-zero rationals$

H is a subset of G and both G and H are groups in their own right

Order of a Group Element

Let **X** be an element of a (multiplicative) finite integer group G. The *order* of **X** is the smallest positive number k such that $\mathbf{X}^{k} = 1$

Notation: ord(x)

Order of an Element

Example: Z_{7}^{*} : multiplicative group mod 7

Note that: $Z_{7}^{*}=Z_{7}$

ord(1) = 1 because
$$1^1 = 1$$

ord(2) = 3 because $2^3 = 8 = 1$
ord(3) = 6 because $3^6 = 9^3 = 2^3 = 1$
ord(4) = 3 because $4^3 = 64 = 1$
ord(5) = 6 because $5^6 = 25^3 = 4^3 = 1$
ord(6) = 2 because $6^2 = 36 = 1$

Theorem (Lagrange)

 $\Phi(n)$ - order of G_n^* largest order of any element!

order of g:smallest integer *m* such that

$$g^m \equiv 1 mod n$$

Theorem (Lagrange): Let G be a multiplicative group

of order n. For any g in G, ord(g) divides ord(G).

COROLLARY 1: $b^{\Phi(n)} \equiv 1 \mod n \forall b \in Z_n^*$ because : $\Phi(n) = \operatorname{ord}(Z_n^*)$ $\operatorname{ord}(b) = \operatorname{ord}(Z_n^*) / k = \Phi(n) / k$ thus : $b^{\Phi(n)} = b^{\Phi(n)/k * k} = 1^k = 1$

COROLLARY 2: if p is prime then $\forall b \in Z_p^*$ 1) $b^p \equiv b \mod p$ and 2) $\exists a \in Z_p \Rightarrow ord(a) = p - 1$ a - primitive element

Example: in Z^{*}₁₃ primitive elements are: {2, 6, 7, 11}

Euclidean Algorithm

Purpose: compute GCD(x,y) GCD = Greatest Common Divisor Recall that:

 b^{-1} – multiplicative inverse of b, $b * b^{-1} \equiv 1 \mod n$ $\forall b \in \mathbb{Z}_n \exists b^{-1} \Leftrightarrow \gcd(b, n) = 1$ Euclidian $(n,b) = 1 \Longrightarrow \exists b^{-1}$

Euclidean Algorithm (contd)

$$\begin{bmatrix} init: r_{0} = x & r_{1} = y \\ q_{1} = \lfloor r_{0} / r_{1} \rfloor & r_{2} = r_{0} \mod r_{1} \\ \dots = \dots \\ q_{i} = \lfloor r_{i-1} / r_{i} \rfloor & r_{i+1} = r_{i-1} \mod r_{i} \\ \dots = \dots \\ q_{m-1} = \lfloor r_{m-2} / r_{m-1} \rfloor & r_{m} = r_{m-2} \mod r_{m-1} \\ (r_{m} == 0)? \\ OUTPUT r_{m-1} \end{bmatrix} \qquad F_{m} = r_{m-2} \mod r_{m-1} \\ = r_{m-2} \mod r_{m-1} = r_{m-2} \mod r_{m-1} \\ = r_{m-2} \mod r_{m-2} \mod r_{m-1} \\ = r_{m-2} \mod r_{m-1} \\ = r_{m-2} \mod r_{m-2} \mod r_{m-2} \ = r_{$$

Extended Euclidean Algorithm

<u>Purpose</u>: compute GCD(x,y) and inverse of y (if it exists)

$$init: r_{0} = x \quad r_{1} = y \quad t_{0} = 0 \quad t_{1} = 1$$

$$q_{1} = \lfloor r_{0} / r_{1} \rfloor \quad r_{2} = r_{0} \mod r_{1} \quad t_{1} = 1$$

$$\dots = \dots$$

$$q_{i} = \lfloor r_{i-1} / r_{i} \rfloor \quad r_{i+1} = r_{i-1} \mod r_{i} \quad t_{i} = t_{i-2} - q_{i-1} t_{i-1} \mod r_{0}$$

$$\dots = \dots$$

$$q_{m-1} = \lfloor r_{m-2} / r_{m-1} \rfloor \quad r_{m} = r_{m-2} \mod r_{m-1} \quad t_{m} = t_{m-2} - q_{m-1} t_{m-1} \mod r_{0}$$

if $(r_m = 1)$ OUTPUT t_m else if (rm = 0) OUTPUT "no inverse"

Extended Euclidean Algorithm (contd)

$$q_{i} = [r_{i-1} / r_{i}] \qquad r_{i+1} = r_{i-1} \mod r_{i} \qquad t_{i} = t_{i-2} - q_{i-1}t_{i-1} \mod r_{0}$$

Example: x=87 y=11
$$\frac{I \quad R \quad T \quad Q}{0 \quad 87 \quad 0 \quad --}$$
$$1 \quad 11 \quad 1 \quad 7$$
$$2 \quad 10 \quad 80 \quad 1$$
$$3 \quad 1 \quad 8 \quad --$$

Extended Euclidean Algorithm (contd) Example: x=93 y=87

 $q_i = [r_{i-1} / r_i]$ $r_{i+1} = r_{i-1} \mod r_i$ $t_i = t_{i-2} - q_{i-1} t_{i-1} \mod r_0$

I	R	Т	Q
0	93	0	
1	87	1	1
2	6	92	14
3	3	15	2
4	0	62	

No Inverse Exists

Chinese Remainder Theorem (CRT)

The following system of *n* modular equations (congruences)

$$x \equiv a_1 \mod m_1$$

...
$$x \equiv a_n \mod m_2$$

(all m_i -s relatively prime).

Has a unique solution:

$$x = \sum_{i=1}^{n} a_i \left(\frac{M}{m_i}\right) y_i \mod M$$

where:
$$M = m_i * \dots * m_n$$

$$y_i = \left(\frac{M}{m_i}\right)^{-1} \mod m_i$$

CRT Example

$$\begin{pmatrix} x \equiv 5 \mod 7 \\ x \equiv 3 \mod 11 \end{pmatrix}$$

$$x = [5(M / m_1)y_1 + 3(M / m_2)y_2] \mod M$$

$$M = 77$$

$$M / m_1 = 11$$

$$M / m_2 = 7$$

$$y_1 = 11^{-1} \mod 7 = 4^{-1} \mod 7 = 2$$

$$y_2 = 7^{-1} \mod 11 = 8$$

$$x = (5*11*2+3*7*8) \mod 77 = 47$$