Lecture 7

Public Key Cryptography I: Encryption + Signatures

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Public Key Cryptography

- Asymmetric cryptography
- Invented in 1974-1978 (Diffie-Hellman and Rivest-ShamirAdleman)
- Two keys: private (SK), public (PK)
- Encryption: with public key;
- Decryption: with private key
- Digital Signatures: Signing by private key; Verification by public key. i.e., "encrypt" message digest/hash -- $h(m)$-- with private key
- Authorship (authentication)
- Integrity: Similar to MAC
- Non-repudiation: can't do with symmetric key cryptography
- Much slower than conventional cryptography
- Often used together with conventional cryptography, e.g., to encrypt session keys

Public Key Cryptography

Bob's public key

Key Pre-distribution: Diffie-Hellman

"New Directions in Cryptography" 1976
System - wide parameters :

$$
\begin{aligned}
& p \text { - large prime }, \\
& a-\text { generator in } Z_{p}^{*}
\end{aligned}
$$

Alice's secret: v, public: $y_{a}=a^{v} \bmod p$
Bob's secret: w, public: $y_{b}=a^{w} \bmod p$
Alice has: $y_{b}=a^{w} \bmod p$
Bob has: $y_{a}=a^{v} \bmod p$
$K_{a b}=\left(y_{b}\right)^{v} \bmod p$
$=$
$K_{b a}=\left(y_{a}\right)^{w} \bmod p$

Public Key Pre-distribution: Diffie-Hellman


```
Alice computes
\(K_{a b}\)
```

Bob computes
$K_{a b}=K_{b a}$

Eve knows:
$\mathrm{p}, \mathrm{a}, \mathrm{y}_{\mathrm{a}}$ and y_{b}

Public Key Pre-distribution: Diffie-Hellman

Public Key Pre-distribution: Diffie-Hellman

```
Decision DH Problem:
p-large prime, a - generator
Given:
ya}=\mp@subsup{a}{}{v}\operatorname{mod}p,\mp@subsup{y}{b}{}=\mp@subsup{a}{}{w}\operatorname{mod}
Distinguish:
K
from a random number!
```

- DH Assumption: DH problem is HARD (not P)
- DL Assumption: DL problem is HARD (not P)
- DDH Assumption: solving DDH problem is HARD (not P)

Interactive (Public) Key Exchange:

Choose Diffie-Hellman
random v

$$
y_{a}=a^{v} \bmod p
$$

$$
\left.\begin{array}{cc}
\text { Compute } \\
K_{a b}=\left(y_{b}\right)^{v} \bmod p & y_{b}=a^{w} \bmod p
\end{array} \begin{array}{l}
\text { Choose } \\
\text { random } \mathrm{w}, \\
\text { Compute }
\end{array}\right\} \begin{aligned}
& K_{b a}=\left(y_{a}\right)^{w} \bmod p
\end{aligned}
$$

Eve is passive ...

The Man-in-the-Middle (MitM) Attack

(assume Eve is an active adversary!)

Choose
random v

Compute

$$
K_{a b}=\left(y_{b}\right)^{v} \bmod p
$$

$$
y_{a}=a^{v} \bmod p
$$

Let $n=p q \quad$ where $\quad p, q$-large primes $e, d \in Z_{\Phi(n)}^{*} \quad$ and $\quad e d \equiv 1 \bmod \Phi(n)$
where : $\Phi(n)=(p-1)(q-1)=p q-p-q-1$

Secrets : p, q, d

Publics: n, e

Encryption: message $=m<n$
$E(m)=y=m^{e} \bmod n$
Decryption : ciphertext $=y$
$D(y)=m^{\prime}=y^{d} \bmod n$

Why does it all work?

$$
\begin{aligned}
& x \in Z_{n}^{*} \\
& x^{e d}=x^{1 \bmod \Phi(n)} \bmod n= \\
& x^{c^{*} \Phi(n)+1} \bmod n=x
\end{aligned}
$$

But, recall that:

$$
g^{\Phi(n)}=1 \bmod n
$$

$$
-
$$

How does it all work?

Example: $p=5 q=7 n=35(p-1)(q-1)=24=3 * 2^{3}$ pick $e=11, d=11$
$x=2, \quad E(x)=2048 \bmod 35=18=y$
$y=18, \quad D(y)=6.426841007923 e+13 \bmod 35=2$

Example: $\mathrm{p}=17 \mathrm{q}=13 \mathrm{n}=221(\mathrm{p}-1)(\mathrm{q}-1)=192=3^{4 *} 2$
pick $\mathrm{e}=5, \mathrm{~d}=77$ Can we pick 16? 9? 27? 185?
$x=5, E(x)=3125 \bmod 221=31$
$D(y)=31^{77}=$
$6.83676142775442000196395599558 \mathrm{e}+114 \bmod 221=5$

Why is it Secure?

Conjecture: breaking RSA is polynomially equivalent to factoring \mathbf{n} Recall that n is very, very large!

Why: n has unique factors p, q
Given p and q, computing ($p-1$)($q-1$) is easy:

$$
e d \equiv 1 \bmod \Phi(n)
$$

Use extended Euclidian!

Exponentiation Costs

- Integer multiplication -- $O\left(b^{2}\right)$ where b is bit-size of the base
- Modular reduction -- $\mathrm{O}\left(\mathrm{b}^{2}\right)$
- Thus, modular multiplication -- $\mathrm{O}\left(\mathrm{b}^{2}\right)$
- Modular exponentiation (as in RSA) -- me $\bmod n$
- Naïve method: e-1 modular products -- $\mathrm{O}\left(\mathrm{b}^{2 *} \mathrm{e}\right)$
- BUT what if e is large, (almost) as large as n ?
- Let $\mathrm{L}=|\mathrm{e}|$ (e.g., $\mathrm{L}=1024$ for 1024-bit RSA exponent)
- We can assume b and L are very close, almost the same
- Square-and-multiply method works in $\mathrm{O}\left(\mathrm{b}^{3}\right)$ time ... $\mathrm{O}\left(\mathrm{b}^{2 *} 2 \mathrm{~L}\right)$

Square-and-Multiply

```
goal: compute m}\mp@subsup{m}{}{c}\operatorname{mod}
```

$l=\operatorname{sizeof}(n)$;
temp $=1$;
for $(i=l-1 ; i>=0 ; i-$ - $)$

$$
\text { temp }{ }^{*}=\text { temp }
$$

$$
\text { temp } \%=n
$$

$$
\text { if }(e[i])
$$

$$
t e m p^{*}=m
$$

$$
\text { temp } \%=n
$$

- Example 1: e=100
- Example 2: e=10000000
- Example 3: e=11111111

Speeding up RSA Decryption

Let: C - RSA ciphertext
$d_{p}=d \bmod (p-1)$
$d_{q}=d \bmod (q-1)$
compute:
$M_{p}=C^{d_{p}} \bmod p$
$M=\left[M_{p} q\left(q^{-1} \bmod p\right)\right.$
$M_{q}=C^{d_{q}} \bmod q$
$\left.+M_{q} p\left(p^{-1} \bmod q\right)\right] \bmod (p q)$
and solve:
$M=M_{p} \bmod p$
$M=M_{q} \bmod q$

More on RSA

- Modulus \mathbf{n} is unique per user \rightarrow
- 2 or more parties cannot share the same n
- What happens if Alice and Bob share the same modulus?
- Alice has ($e^{\prime}, \mathrm{d}^{\prime}, \mathrm{n}$) and Bob - ($\mathrm{e}^{\prime \prime}, \mathrm{d}^{\prime \prime}, \mathrm{n}$)
- Alice wants to compute d" (Bob's private key), but does not know phi(n)
- She knows that: $\mathrm{e}^{*} \mathrm{~d}^{\prime}=1$ mod phi(n)
- So: $e^{\prime *} d^{\prime}=k$ * phi(n) + 1 and: $e^{\prime *} d^{\prime}-1=k$ *phi(n)
- Alice just needs to compute inverse of $e^{\prime \prime} \bmod X$
- where $\mathrm{X}=\mathrm{e}^{\prime}$ * $\mathrm{d}^{\prime}-1=\mathrm{k}$ * phi(n$)$
- let's call this inverse d'"
- and remember that: $d^{\prime \prime \prime} * e^{\prime \prime}=k^{\prime} * k$ * phi(n) + 1
- can we be sure that: $\mathrm{d}^{\prime \prime}=\mathrm{d}$ " ?
- Is it possible that e" has no inverse mod X?
- Yes, if $\operatorname{gcd}\left(\mathrm{e}^{\prime \prime}, \mathrm{k}\right)>1$ but this is very, very UNLIKELY!
- For all decryption purposes, $d^{\prime \prime}$ is EQUIVALENT to $d^{\prime \prime}$
- Suppose Eve encrypted for Bob: C=(m) ${ }^{\mathrm{e}^{\prime \prime}} \bmod \mathrm{n}$
- Alice computes:

$$
C^{d^{\prime \prime \prime}} \bmod n=m^{\mathrm{e}^{\prime d^{\prime \prime \prime}}} \bmod n=(m)^{k^{\prime} * k^{*} \operatorname{phi}(n)+1} \bmod n=m
$$

El Gamal PK Cryptosystem (‘83)

```
p-large prime
\(b\) - base, primitive element, generator
\(x\) - private exponent
\(y\) - public residue; \(y \equiv b^{x} \bmod p\)
\(P=Z_{p}{ }^{*}\)
\(C=Z_{p}^{*} \times Z_{p}^{*}\)
publics : \(p, b, y\)
secrets : \(x\)
Encryption:
1. generate random \(r \in Z_{p-1}\)
2. compute \(: k=b^{r} \bmod p\)
3. compute : \(c=m y^{r} \bmod p=m b^{x r} \bmod p\)
4. ciphertext \(=\{k, c\}\)
Decryption :
1. compute \(k^{x} \bmod p\)
2. compute \(\left(k^{x}\right)^{-1} \bmod p\)
3. \(m^{\prime}=\left(k^{x}\right)^{-1} c=b^{-r x} m b^{x r} \bmod p=m\)
```


El Gamal (Example)

$$
\begin{aligned}
& p=13 \\
& b=2 \\
& x=9 \\
& y=2^{9} \bmod 13=5 \\
& \text { Encryption: } \\
& m=11 \\
& r=10 \\
& k=2^{10} \bmod 13=10 \\
& c=11 * 5^{10} \bmod 13=2 \\
& \text { ciphertext }=\{10,2\} \\
& \text { Decryption: } \\
& 10^{9} \bmod 13=12 \\
& 12^{-1} \bmod 13=12
\end{aligned}
$$

Digital Signatures

- Integrity
- Authentication
- Non-Repudiation
- Time-Stamping
- Causality

- Authorization

Digital Signatures

A signature scheme:
(P, A, K, Sign,Verify)
P - plaintext (msgs)
A-signatures
K - keys
Sign - signing function: $\left(P^{*} K\right)->A$
Verify - verification function: $\left(P^{*} A^{*} K\right) \rightarrow\{0,1\}$

RSA Signature Scheme

Use the fact that, in RSA, encryption reverses "decryption"
Let $\mathrm{n}=\mathrm{pq}$ where $\mathrm{p} \neq \mathrm{q}$ are two (large) primes
$e \in Z_{\Phi(n)}^{*}$ and $e=d^{-1} \bmod \Phi(n)$ and $e d \equiv 1 \bmod \Phi(n)$
$\Phi(n)=(p-1)(q-1)$
Secrets: p, q, d
Publics: n, e
Signing : message $=m$
$\operatorname{Sign}(m): y=m^{d} \bmod n$
Verification : signature $=y$
$\operatorname{Verify}(y, m):\left(m=y^{e}\right) ? ? ?$

RSA Signature Scheme (contd)

- The Good:
- Verification can be cheap (like RSA encryption)
- Mechanically same as RSA decryption function
- Security based on RSA encryption
- Signing is harder but \#verify-s > 1 ...
- Deterministic
- The Bad:
- RSA is malleable: signatures can be "massaged"
- $m_{1}{ }^{d} * m_{2}{ }^{d}=\left(m_{1}{ }^{*} m_{2}\right)^{d}$
- Phony "random" signatures
- compute $Y=R S A(e, X)=X^{e} \bmod n$
- X is a signature of Y because $Y^{d}=X$ mod n

Plaintext	SIG
X^{e}	X

- The Ugly:
- Signing requires integrity!
- How to sign multiple blocks when $m>n$?
- Deterministic - needs additional randomization!

