Announcements

Homework 1

- Due today 11:59pm
- Submit through GradeScope in PDF

Midterm exam

- Next Thursday, in class (2-3:20pm)

Lecture 8

Public Key Cryptography II:
 Signatures (cont’d) + Identification

[lecture slides are adapted from previous slides by Prof. Gene Tsudik]

Digital Signatures

- Integrity
- Authentication
- Non-Repudiation
- Time-Stamping
- Causality

- Authorization

RSA Signature Scheme

Use the fact that, in RSA, encryption reverses "decryption"
Let $\mathrm{n}=\mathrm{pq}$ where $\mathrm{p} \neq \mathrm{q}$ are two (large) primes
$e \in Z_{\Phi(n)}^{*}$ and $e=d^{-1} \bmod \Phi(n)$ and $e d \equiv 1 \bmod \Phi(n)$
$\Phi(n)=(p-1)(q-1)$
Secrets: p, q, d
Publics: n, e
Signing : message $=m$
$\operatorname{Sign}(m): y=m^{d} \bmod n$
Verification : signature $=y$
$\operatorname{Verify}(y, m):\left(m=y^{e}\right) ? ? ?$

RSA Signature Scheme (contd)

- The Good:
- Verification can be cheap (like RSA encryption)
- Mechanically same as RSA decryption function
- Security based on RSA encryption
- Signing is harder but \#verify-s > 1 ...
- Deterministic
- The Bad:
- RSA is malleable: signatures can be "massaged"
- $m_{1}{ }^{d} * m_{2}{ }^{d}=\left(m_{1}{ }^{*} m_{2}\right)^{d}$
- Phony "random" signatures
- compute $Y=R S A(e, X)=X^{e} \bmod n$
- X is a signature of Y because $Y^{d}=X$ mod n

Plaintext	SIG
X^{e}	X

- The Ugly:
- Signing requires integrity!
- How to sign multiple blocks when $m>n$?
- Deterministic - needs additional randomization!

El Gamal Signature Scheme

```
p-large prime
\(b\) - base, generator
\(x\) - private exponent
\(y-\) public residue; \(y \equiv b^{x} \bmod p\)
\(P=Z_{p}^{*}\)
\(A=Z_{p}{ }^{*} \times Z_{p}{ }^{*}\)
publics: \(p, b, y\)
secrets : \(x\)
Signing :
1. generate random \(r \in Z_{p-1}\)
2. compute \(: k=b^{r} \bmod p\)
3. compute: \(c=(m-x k) r^{-1} \bmod p-1\)
4. signature \(=\{k, c\}\)
Verifying :
\(y^{k} k^{c} \bmod p=b^{m} \bmod p \quad ? ? ?\)
notice that:
\(y^{k} k^{c}=b^{x b^{r}}\left(b^{r}\right)^{(m / r-x k / r)}=b^{x b^{r}+m-x b^{r}}=b^{m}\)
```


El Gamal PK
 Cryptosystem

El Gamal Signature Scheme

```
p-large prime
\(b\) - base, primitive element, generator
\(x\) - private exponent
\(y\) - public residue; \(y \equiv b^{x} \bmod p\)
\(P=Z_{p}{ }^{*}\)
\(C=Z_{p}{ }^{*} \times Z_{p}{ }^{*}\)
```

publics : p, b, y
secrets: x

Encryption:

1. generate random $r \in Z^{*}{ }_{p-1}$
2. compute $: k=b^{r} \bmod p$
3. compute : $c=m y^{r} \bmod p=m b^{x r} \bmod p$
4. ciphertext $=\{k, c\}$

Decryption:

1. compute $k^{x} \bmod p$
2. compute $\left(k^{x}\right)^{-1} \bmod p$
3. $m^{\prime}=\left(k^{x}\right)^{-1} c=b^{-r x} m b^{x r} \bmod p=m$
p-large prime
b - base, generator
x - private exponent
$y-$ public residue; $y \equiv b^{x} \bmod p$
$P=Z_{p}{ }^{*}$
$A=Z_{p}{ }^{*} \times Z_{p}{ }^{*}$
publics: p, b, y
secrets : x
Signing :
4. generate random $r \in Z^{*}{ }_{p-1}$
5. compute: $k=b^{r} \bmod p$
6. compute : $c=(m-x k) r^{-1} \bmod p-1$
7. signature $=\{k, c\}$

Verifying :
$y^{k} k^{c} \bmod p=b^{m} \bmod p \quad ? ? ?$
notice that:
$y^{k} k^{c}=b^{x b^{r}}\left(b^{r}\right)^{(m / r-x k / r)}=b^{x b^{r}+m-x b^{r} 7}=b^{m}$

El Gamal Signature Scheme (cont'd)

The good:

- Signing is cheap(er)
- Designed as a signature function
- Non-deterministic (randomized)

The bad:

- Need GOOD source of random numbers
- Randomizers cannot be revealed (trace)
- Randomizers cannot be reused

The Digital Signature Standard (DSS)

- Why DSS?
- RSA issues: patents, malleability, etc.
- A variant of El Gamal, but better performance
- Originally for $|p|=512$ bits, now up to 1024
- Optimized for signature size (320- vs. 1024-bit)
- Signing - 1 exp, 1 inv, verification - 2 exps, 1 inv
- No attacks thus far

DSS (contd)

$$
\begin{aligned}
& p-\text { large prime } \\
& b \text { - base, generator } \\
& x \text { - private exponent } \\
& y-\text { public residue } ; y \equiv b^{x} \bmod p \\
& P=Z_{p}^{*}, A=Z_{p}^{*} \times Z_{p}^{*} \\
& \text { publics }: p, b, y \quad \text { secrets }: x
\end{aligned}
$$

Signing :

1. generate random $r \in Z^{*}{ }_{p-1}$
2. compute: $k=b^{r} \bmod p$
3. compute $: c=(m-x k) r^{-1} \bmod p-1$
4. signature $=\{k, c\}$

Verifying:
$y^{k} k^{c} \bmod p=b^{m} \bmod p \quad ? ? ?$
$p-512-$ bit prime
$q-160-b i t$ prime, $(p-1) \% q=0$
$b-$ base, $b^{q} \equiv 1 \bmod p \quad\left(b=\delta^{(p-1) / q}\right)$
x-private exponent
$y-p u b l i c$ residue; $y \equiv b^{x} \bmod p$
$P=Z_{p}^{*}, A=Z_{q} \times Z_{q}$
publics $: p, q, b, y \quad$ secrets $: x$
Signing:

1. generate random $\quad r \in Z_{q-1}^{*}$
2. compute $: k=\left(b^{r} \bmod p\right) \bmod q$
3. compute $: c=(m+x k) r^{-1} \bmod q$
4. signature $=\{k, c\}$
Verifying :
$\left(b^{m c^{-1}} k^{k c^{-1}} \bmod p\right) \bmod q=b^{k} \bmod p \quad ? ? ?$
notice that $:$
$b^{m c^{-1}} y^{k c^{-1}}=b^{m r /\left(m+x b^{r}\right)}\left(b^{x}\right)^{\left(b^{r} r /\left(m+x b^{r}\right)\right.}$
$=b^{\left(m r+x b^{r} r\right) /\left(m+x b^{r}\right)}=b^{r}$

Signing :

1. generate random $r \in Z_{q-1}^{*}$
2. compute $: k=\left(b^{r} \bmod p\right) \bmod q$
3. compute : $c=(m+x k) r^{-1} \bmod q$
4. signature $=\{k, c\}$

Verifying :
$\left(b^{m c^{-1}} k^{k c}{ }^{-1} \bmod p\right) \bmod q=b^{k} \bmod p ? ? ?$
notice that:
$b^{m c^{-1}} y^{k c^{-1}}=b^{m r /\left(m+x b^{r}\right)}\left(b^{x}\right)^{\left(b^{r} r /\left(m+x b^{r}\right)\right.}$

Other interesting constructions around our topic...

Interactive (Public) Key Exchange:

Choose Diffie-Hellman
random v

$$
y_{a}=a^{v} \bmod p
$$

$$
\begin{gathered}
\text { Compute } \\
K_{a b}=\left(y_{b}\right)^{v} \bmod p \\
\text { Secure communication } \\
\text { with K } \mathrm{K}_{\mathrm{ab}}
\end{gathered}
$$

Eve is passive ...

Use symmetric crypto to exchange keys?

Merkle’s Puzzles (1974)

for $0<i<2^{n}=N$
Pick random values $X_{i}, Y_{i},\left|X_{i}\right| \geq 2^{*}\left|Y_{i}\right|$, where $\left|Y_{i}\right|=n$
Pick random index ${ }_{i}, \mid$ index $_{i} \mid=n$
Form Puzzle $P_{i}=E\left(Y_{i},\left\{\right.\right.$ index $\left.\left._{i}, X i, S\right\}\right)$
where S is a fixed string, e.g., "Alice to Bob"

$$
\left\{P_{i} \mid 0<i<2^{n}\right\}
$$

index ${ }_{j}$ Select P_{j}

Lookup index ${ }_{j}$
Obtain X_{j}

$$
\text { Encrypted communication with } \mathrm{X}_{\mathrm{j}}
$$

Pick random j, $0<j<2^{\prime}$ Break Y_{j} by brute force Obtain $\left\{\right.$ index $\left._{j}, X_{j}, S\right\}$

Alice's effort: $\boldsymbol{O}\left(\mathbf{2}^{n}\right)$

Eve's effort:
$O\left(2^{n} *\left|Y_{i}\right|\right)=O\left(\left(2^{n}\right)^{2}\right)=O\left(\left|X_{i}\right|\right)$

Bob's effort: $O\left(\left|Y_{j}\right|\right)=O\left(2^{n}\right)$

Is security computational or information theoretic?

Other use of public key crypto (except encryption \& signature)?

Identification/Authentication

- Identification/authentication is an interactive protocol whereby one party: "prover" (who claims to be, say, Alice) convinces the other party: "verifier" (Bob) that she is indeed Alice
- Identification/authentication can be accomplished with public key digital signatures
- However, signatures reveal information about private key
- Also, signatures are "transferrable", e.g., anyone who has Alice's signature can use it to prove that he/she is Alice
- Can we provide identification/authentication without revealing any info about the secret?
- Zero-knowledge proof: prove ownership of a secret without revealing any info about the secret

The Cave Analogy of Zero-Knowledge

(V)erifier

Claustrophobic and afraid of the dark

Point A:
entry

Point B

(P)rover

Claims to have the key but won't show it

V cannot follow P into the cave

The Cave Analogy of Zero-Knowledge

The Protocol:

1) V asks someone he trusts to check that the door is locked on both sides.
2) P goes into the maze past point B (heading either right or left)
3) V looks into the cave (while standing at point \mathbf{A})
4) V randomly picks right or left
5) V shouts (very loudly!) for P to come out from the picked direction
6) If P doesn't come out from the picked direction, V knows that P is a liar and protocol terminates

REPEAT steps (2)-(6)
k TIMES

Fiat-Shamir Identification Scheme

- In Fiat-Shamir, prover has an RSA-like modulus $\mathbf{n}=\mathbf{p q}$ where p and q are large primes and factorization of n is secret
- Primes themselves are not used in the protocol
- Unlike RSA, a trusted center can generate a global n, used by everyone, as long as nobody knows its factorization. Trusted center can then "forget" the factorization after computing \mathbf{n}

Fiat-Shamir Identification Scheme

- Secret Key: Prover (P) chooses a random value
$1<\mathrm{S}<\mathrm{n}$ (to serve as the key)
such that $\operatorname{gcd}(\mathrm{S}, \mathrm{n})=1$
- Public Key: P computes $\mathrm{I}=\mathrm{S}^{2} \bmod \mathrm{n}$, publishes (I, n) as his public key.
- Assumption: Finding square roots $\bmod \mathrm{n}$ is at least as hard as factoring n
- Purpose of the protocol: P has to convince verifier (V) that he knows the secret S corresponding to the public key $(1, n)$,
- i.e., to prove that he knows a square root of I mod n, without revealing S or any portion thereof

Fiat-Shamir

Fiat-Shamir Identification Scheme

V wants to authenticate identity of P, who claims to have a public key I. Thus, V asks P to convince him that P knows the secret key S corresponding to I .

1. P chooses at random $1<\mathrm{R}<\mathrm{n}$ and computes: $\mathrm{X}=\mathrm{R}^{2} \bmod \mathrm{n}$
2. $\quad P$ sends X to V
3. V randomly requests from P one of two things (0 or 1):
(a) R
or
(b) $R S \bmod n$
4. P sends requested information

Fiat-Shamir ZK Identification Scheme
5. V checks the correct answer:
a) $R^{2} ?=X(\bmod n)$
or
b) $\left(\mathrm{R}^{*} \mathrm{~S}\right)^{2}$? $=\mathrm{X}^{*} \mathrm{I}(\bmod \mathrm{n})$
6. If verification fails, V concludes that P does not know S
7. Protocol is repeated t (usually 20,30 , or $\log n$) times, and, if each one succeeds, V concludes that P is the claimed party.

What if Prover knows the challenge ahead of time: Case 0
n, I (doesn't know S)
pick random \mathbf{R}; set $\boldsymbol{x}=\boldsymbol{R}^{\mathbf{2}} \bmod \boldsymbol{n} \quad I, \boldsymbol{x}$

$$
\text { query = } 0
$$

R
Check that: $\boldsymbol{R}^{2}=\boldsymbol{x} \bmod \boldsymbol{n}$

What if Prover knows the challenge ahead of time: Case 1

n, I (doesn't know S) pick random \boldsymbol{R};
n set $x=R^{2 *} \bmod n \quad I, X=R^{2}$ *I

$$
\text { query }=1
$$

Check that:
$R^{*} I \bmod n$
$\left(R^{*}\right)^{2}=x^{*} \operatorname{Imod} n$
(Instead of: $\left.R^{*} S \bmod n\right)$

Fiat-Shamir Identification Scheme

CLAIM: Protocol does not reveal ANY information about S,
or
The Fiat-Shamir protocol is ZERO-KNOWLEDGE

Proof: We show that no information on S is revealed:

- Clearly, when P sends X or R, it does not reveal any information about S
- When P sends RS modn:
- $\quad R S \bmod n$ is random, since R is random and $\operatorname{gcd}(S, n)=1$.
- If adversary can compute any information about S from

$$
\mathrm{I}, \mathrm{n}, \mathrm{X} \text { and } \mathrm{RS} \bmod \mathrm{n}
$$

it can also compute the same information on S from I and n, since it can choose a random $\mathrm{T}=\mathrm{R}^{\prime} \mathrm{S} \bmod \mathrm{n}$ and compute:

$$
X^{\prime}=T^{2} I^{-1}=\left(R^{\prime}\right)^{2} S^{2} I^{-1}=\left(R^{\prime}\right)^{2}
$$

Security

Clearly, if P knows S, then V is convinced of P^{\prime} s identity
If P does not know S, it can either:

1. know R, but not $R S$ mod n. Since P is choosing R, it cannot multiply it by the unknown value S
or
2. choose RS mod n, and thus can answer the second question: RS mod n. But, in this case, P cannot answer the first question R, since to do so, needs to divide by unknown S

Security

- In any case, adversary cannot answer both questions, since otherwise he can compute S as the ratio between the two answers.
- But, we assumed that computing S is hard, equivalent to factoring n .
- \quad Since P does not know in advance (when choosing R or RS mod n) which question that V will ask, he cannot foresee the required choice. He can succeed in guessing V's question with probability $1 / 2$ for each question.
- The probability that V fails to catch P in all runs is thus: $2^{-\mathrm{t}}$
- e.g., 1 in $1,000,000,000$ for $t=20$

