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Module interconnection languages are considered essen-
tial tools in the development of large software systems.
Current software development practice follows the prin-
ciple of the recursive decomposition of larger problems
that can be grasped, understood, and handied by spe-
cialized and usually independent teams of software engi-
neers. After teams succeed in designing and coding their
respective subsystems, they are faced with different but
usually more difficult issues: how to integrate indepen-
dently developed subsystems or modules into the origi-
nally planned compiete system. Module interconnection
languages (MILs) provide formal grammar constructs for
describing the global structure of a software system and
for deciding the various module interconnection specifi-
cations required for its complete assembly. Automatic
processing of these formal descriptions results in a veri-
fication of system integrity and intermodular compatibility.
This paper is a survey of MILs that are specifically de-
signed to support module interconnection and includes
brief descriptions of some software development systems
that support module interconnection.

1. INTRODUCTION

Module interconnection languages are considered es-
sential tools in the development of large software sys-
tems. Current software development practice follows
the principle of the recursive decomposition of larger
problems into smaller problems that can be grasped,
understood, and handled by specialized and usually in-
dependent teams of software engineers.

After teams succeed in designing and coding their
respective subsystems, they are faced with different but
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usually more difficult issues; e.g., how to integrate in-
dependently developed subsystems or modules into the
originally planned complete system. Manual integra-
tion has been the standard practice with increasing sup-
port from automated environments. The current state
of the art in software development environments is due
mainly to the pioneering work on module interconnec-
tion language of the late 1970s. Module interconnection
languages (MILs) provide formal grammar constructs
for deciding the various module interconnection speci-
fications required to assemble a complete software sys-
tem. An MIL code listing is a formal description of the
global structure of a software system. Automatic pro-
cessing of these formal descriptions results in a verifi-
cation of system integrity and intermodular
compatibility.

An MIL can be considered a structural design lan-
guage because it states what the system modules are
and how they fit together to implement the system's
function. This is architectural design information.
MILs are notr concerned with what the system does
(specification information), how the major parts of the
system are embedded into the organization (analysis in-
formation), or how the individual modules implement
their function (detailed design information).

While the major payoff of using an MIL may seem
to be during the system design phase of the software
lifecycle, the actual payoff is during system integration,
evolution, and maintenance. This is because the MIL
specification of a system constitutes a written descrip-
tion of the system design which must be followed for
each version of the system to be constructed. A main-
tenance programmer cannot violate the system design
without explicitly modifying the system design.

The first module interconnection language, MIL75,
was developed by DeRemer and Kron [14]. They es-
tablished the basic ideas and concepts of module inter-
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connection by arguing convincingly about the differ-
ences between programming-in-the-small for which
typical programming languages are used to write mod-
ules and programming-in-the-large for which a module
interconnection language is rquired for “'knitting™ those
modules together.

Three MILs [48, 12, 50] were developed after
MIL75, Thomas' MIL [48] Cooprider’s MIL [12], and
INTERCOL [50], each one adding new ideas and fea-
tures to MIL75 but, essentially based on DeRemer and
Kron's original concepts. Thomas developed a module
interconnection notation and discussed a possible mod-
ule interconnection processor; Cooprider expanded the
basic ideas of MIL75 to introduce a version control fa-
cility and a software control facility; and Tichy devel-
oped INTERCOL, a MIL that integrates some of
Cooprider's features with control of system families and
with independent compilation of modules.

There exist several languages, software development
tools, and operating systems that in one way or another
provide module interconnection mechanisms. To de-
scribe every tool, system, or methodology that supports
some kind of module interconnection is beyond the
scope of this paper. The scope of this paper is to survey
the languages called Module Interconnection Lan-
guages that are specifically designed to support module
interconnection and to include brief descriptions of
some software development systems that support mod-
ule interconnection to provide a frame of reference for
comparisons.

The goal of this survey is to acquaint the reader fa-
miliar with the problems of programming and main-
taining large software systems with a class of tools de-
signed to describe how a large system “fits together.”
In particular, we will focus on MILs designed to specify
the structure of a system, not its behavior. We will not
deal largely with how the MILs perform their functions
in order to treat the issue of whar they do in more de-
tail. The interested reader will find more detail in the
referenced literature.

1.1 Current Research

Current research in module interconnection can be ob-
served from three different but complementary per-
spectives: The Software Engineering Perspective, the
Formal Models Perspective, and the Artificial Intelli-
gence Perspective. The basic question in module inter-
connection is: given a collection of agents (modules),
each of which performs a certain function under certain
circumstances, how can these agents be combined to
perform a more complex function?

Researchers in Software Engineering view the prob-
lem as a design problem and approach the problem
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from the point of view of finding a design notation that
can capture the complete design of a system as stated
explicitly by a system designer. MILs are design nota-
tions resulting from this point of view. The system de-
signer is thought of as “coding” in design notations. A
MIL description of a system is mechanically checked
for consistency and completeness before the system is
actually linked together.

Researchers working in Formal Models view inter-
connection in two ways: as a structural model of the
resource usage of the system during execution and as a
consistency model of the construction of the system.
The resource model is intended to determine the data
loading of different parts of the system and to detect
any communications deadlocks that might occur. The
SARA system [9, 10] has adopted this structural mod-
eling and Ada® based real-time system designs use this
approach for integrating multitasking modules. A sys-
tem consistency model captures the constraints on using
different versions or implementations of individual
modules composed of other modules. Given these for-
mal constraints and the modules that must be imple-
mented, a consistency model determines a collection of
specific versions and implementations of modules that
can be shown to implement the system [34, 35].

For the Artificial Intelligence researcher, the inter-
connection problem manifests itself as a problem in au-
tomatic programming. In this context, “knowledge
about programming’ or “‘knowledge aout the problem
domain” can represent both constraint and implemen-
tation information. The problem becomes one of using
this knowledge base to arrive at a sequence of low-level
steps that implement a high-level specification. This
search for an acceptable series of steps is guided by a
description of the problem to be solved (goal), hints
about a series of steps that might suffice for a given goal
(plan), and a description of which plans are potentially
useful in different circumstances (frame). The goals,
plans, and frames are all a part of the knowledge base.
These mechanisms must make sure that the steps that
they link together are compatible, which is the inter-
connection problem. The Transformational Implemen-
tation system [3] and the Programmer’s Apprentice
system (41, 42] are two systems that take this
approach.

The point of view taken in this survey is the Software
Engineering perspective. The points of view of the other
perspectives are very important and each deserve a
complete in-depth study. Since each of these views deal
with similar interconnection information, it is impor-
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tant that a researcher using one perspective understand
the focuses of the other perspectives including infor-
mation manipulated and the operations provided.

1.2 Plan of Presentation

This survey is divided into three main sections. First,
MIL concepts and ideas are presented and a domain of
discourse is established. The next section is a detailed
presentation of the four classical MILs: MIL 75,
Thomas’ MIL, Cooprider’s MIL, and Intercol. A com-
mon example is implemented in all four MILs to com-
pare and contrast their features. The last section is a
brief description of some software development systems
that support module interconnection and how their fea-
tures relate to the classical MILs.

2. MIL Concepts and Ideas

Modularity is a well-established concept that has been
used in engineering and managerial disciplines for
many years to break up the work of a big project into
controllable units. In programming, the main idea is to
separate the behavior of the program from the details
of each component, thus reducing the complexity of the
programming problem. Each of the subprograms can
then be considered in turn, in isolation from each other
and from the program skeleton in which they are
embedded.

Some of these ideas go as far back as the concept of
mathematical function or even to earlier times. Even
though the key words “‘modularization” or “module”
did not become widely used until the early 1970s, the
original work on structured programming and hierar-
chical system decomposition provided the conceptual
background for the development of module intercon-
nection languages (MILs) in the late 1970s.

The concept of MILs came about as part of the con-
ceptual separation between programming-in-the-large
(PL) and programming-in-the-small (PS). PS is con-
cerned with building programs and has been greatly de-
veloped to include the new techniques of structured pro-
gramming, top-down design, stepwise refinement, and
others. Many of the widely accepted languages
(ALGOL, Pascal, COBOL. etc.) have been designed to
aid programming-in-the-small and have contributed to-
wards the effort to make programming a science [23].
The system life cycle phases of detailed design and im-
Plementation primarily use PS notations. These nota-
tions focus on how a particular part (module) of a sys-
tem performs its function,

PL, on the other hand, is concerned with building
Systems. PL notations are primarily used in the archi-
tectural design phase of system construction and con-
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centrate on how the system modules cooperate (through
calls and data sharing) and which functions each mod-
ule provides. We refer to a language concerned with the
data and control flow interconnections between a col-
lection of modules as a Language for Programming in
the Large (LPL). An MIL js an LPL with a formal
machine-processable syntax (i.e.. not natural language
or graphical diagram) that provides a means for the de-
signer of a large system to represent the overall system
structure in a concise, precise, and verifiable form. As
in conventional languages for PS, an MIL assumes the
existence of a language processor for coupling programs
(i.e., system structure descriptions) expressed in MIL
syntax.

MILs are very effective but limited tools to aid dur-
ing the software lifecycle. A system must be analyzed,
evaluated, and designed first by means of current meth-
ods and techniques. Once a system structure is deter-
mined, it may be coded in an MIL to be checked and
verified for completeness and inconsistencies. MIL code
must be maintained during implementation and then
used for high-level maintenance during system opera-
tion and enhancement.

The main concepts of MILs are:

I. The idea of a separate language to describe system
design.

2. The ability to perform static type-checking at an in-
termodule level of description.

3. The ability to consolidate design and construction
process (module assembly) in a single description.

4. The ability to control different versions and families
of a system.

An MIL usually serves as a Project Management Tool
by =ncouraging structuring before the start of detailed
programming and as a Support Tool for the design pro-
cess by capturing overall program structure and being
able to verify system integrity before implementation.
An MIL could also provide some means of standard-
izing communication among members of a program-
ming team and of standardizing documentation of Sys-
tem structure. The significant support of these
activities, as seen from the Software Engineering per-
spective, is what makes MILs an important tool for the
software development process.

In an MIL description, resources are the currency of
exchange among modules. A resource is any entity that
can be named in a programming language (e.g., vari-
ables, constants, procedures, type definitions, etc.) and
which can actually be made available for reference by
another module within a given software system.

All resources are ultimately provided by modules,
thus modules are units that provide resources and that
require some set of resources. The syntax primitives of



module ABC
provides a.b.c
requires X.Y¥
consist-of function XA, module YBC

function XA
must-provide a
requires x
has-access-to module 2

real x. integer 2 \\ ARG
end XA
module YBC \ //\
must-provide b.c \ has—scocess—D ay

requires a,y
real y. integer a.b.c
end YBC
end ABC

MIL source code

Figure 1. MIL description of 2 module.

an MIL desribe the flow of resources among modules;
they are called provide (which may also be called syn-
thesize or export) and require (which may also be
called inherit or import). Has-access-to is another syn-
tax primitive that helps to provide proper module struc-
ture within a system. A must attribute may also pre-
cede the above primitives.

An example of an MIL description of a module is
shown in Figure 1. Note that declarations such as mod-
ule, function, and consist-of are also part of the MIL
syntax.

The MIL description of a module specifies the re-
sources required and provided by the module and be-
comes the interface with other modules and subsys-
tems. Module descriptions are the actual code of a MIL
and are used when assembling or integrating a software
system in order to verify system integrity.

In most of the module interconnection schemes we
shall examine, the PL information is in the form of an
MIL and the PS information is in the form of a regular

PL |
——— Rt | PS
. ps L& | PL. |—
PL /_k— |
——=| PS
| ps " 7 : PL |
(st of
L * pointers) !
CPL T pg
| PS ‘. 1 | i
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Modules System System Modules
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programming language. The packaging of this infor-
mation differs between different schemes (Figure 2). At
one side of the spectrum a system is defined as a collec-
tion of modules each of which contains MIL and PS
information with no central description of the system
other than the list of modules that compose it. At the
other end of the spectrum, the modules that compose
the system contain only PS information while the cen-
tral description of the system contains all the MIL in-
formation for each module and the interconnections in
the system. In both cases it makes sense to “compile”
the MIL definition of a system to see if the interfaces
between its constituent parts match. No programming
language (PS level) information is necessary to perform
this compilation. There are some functions that are not
considered to belong to the domain of MILs. These
functions were stated by DeRemer and Kron [14] and
by Thomas [48] in order to make a clear distinction
between an MIL and other tools or languages perform-
ing similar functions related to module interconnection.
With this separation of functions the above authors in-
tended to state the “‘universe of discourse™ of MILs es-
tablishing the basis upon which newer MILs should be
built.

Figure 2. Two alternatives to describe system structure
using MILs.




The functions MILs and

their respective processors
should not attempt are:

I. Loading: An MIL should leave this function to a
“subsystem loading language™ or to other facilities
within the software development environment.
Functional System Specification: An MIL only
shows the static structure of a piece of software and
should not specify the nature of its resources. This
task should be assigned to other subsystems.

3. Type Specification: An MIL is concerned with
showing and verifying the different paths of com-
munication among modules within a software sys-
tem by means of named resources. Some of these re-
sources may be types syntactically checked by an
MIL processor for type consistency throughout the
system but an MIL cannot check for the validity of
their specifications. For example, the decision to de-
clare real y in a program is a design decision that
follows a type specification while the statement real
¥ in MIL code is processed as a type checking state-
ment only. An MIL, however, is used to display the
structure of a system to help in validating
specifications,

4. Embedded Link-Edit Instructions: These operations
should be left for another subsystem within the de-
velopment environment such as the operating system
or a separate command language.

2

The current tendency in MIL development is to keep
the domain of MILs well defined so that stand-alone

MILs can be developed and then integrated as part of
a software development environment such as in Gan-
dalf [21, 24].

Approaches such as C/MESA of the MESA System
[29] and External Structure of the ADAPT system [1]
conform to the current tendency but are not as general
since they are restricted to modules coded in a single
programming language.

More recent programming environments provide
tools that support module interconnection along with
version control mechanisms and other software devel-
opment aids (i.e., PWB, MESA, CDL2, Gandalf,
Pamela, Arcadia, etc.). Some of the module intercon-
nection tools integrated in these Systems are implemen-
tations of MILs (i.e.. MESA’s C/MESA, SARA’s
MID. Gandalf's INTERCOL, DREAM’s DDN) while
others are collections of specialized tools (i.e., PWB,
PROTEL, CDL2). Some of these tools and environ-
ments are described in more detail in Section 4.

3. MODULE INTERCONNECTION LANGUAGES

There are four stand-alone MILs developed to date and
reported in the literature: MIL75 [14], Thomas’ MIL
(48], Cooprider's MIL [12], and INTERCOL (50].
The evolution of MILs along time is shown in Figure
3. MIL75 and Thomas’ MIL have a strong modular

Figure 3. Graphic view of MIL evolution.
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language origin and a tendency to use software engi-
neering techniques. Cooprider’s MIL and Intercol, al-
though sharing the same origins with their predeces-
sors, go further by integrating techniques from software
engineering and tools from powerful operating systems.
The graph partially represents the citations made by
papers in the different areas at the given times and
serves to show that the problem addressed by MILs are
not confined to a single area.

DeRemer and Kron developed the first module in-
terconnection language, MIL75 [14]. They established
the basic ideas and concepts of module interconnection.
MIL75 is a language for programming-in-the-large
(LPL) that gives the systems designer a tool to design
and. to a certain extent, build a complete system out of
modules that do not have to be completely coded and
tested. just properly specified. For each module, the de-
signer must specify the resources provided and re-
quired. The type of the resources must also be specified.
Details about the internal operations of the modules are
not required. MIL75 processes all these specifications
while doing consistency checking resulting in an accu-
rate recording of the overall solution structure.

Thomas [48] developed a module interconnection
notation and discussed a possible module interconnec-
tion processor. He proposed 2 formal model based on
the separation of compiling, binding, and linking that
allows for flexible bindings and also provides a notation
to incorporate his MIL into a programming environ-
ment. Besides the flexible binding scheme which is his
main contribution to MILs, Thomas presented, through
his formal model, the basis for practical MIL
implementation.

Cooprider [12], expands the basic ideas of the pre-
vious MILs to introduce a version control facility and a
software construction facility. The former facility can

Figure 4. Graphical system tree for a one-pass compiler.

recognize the different instantiations (versions) of an
interconnection network and know how they are hier-
archically integrated while the latter facility can con-
struct a complete software system from a functional de-
scription of the construction process. Resources and
source files are combined according to construction
rules, and explicitly specified by the designer, to create
the objects that form a software system.

His major contribution to MILs is to discard the use
of a “compiler” and to use instead a database processor
(similar to the system described by Bratman and Court
[8]) supporting an interactive system construction
environment.

INTERCOL was developed by Tichy in 1979 [49,
50]. In addition to the features of Cooprider’s MIL,
INTERCOL supports separale compilation of modules
and/or subsystems, and control of system families. IN-
TERCOL is intended to be an integrated software de-
velopment and maintenance environment that supports
communication and cooperation among Programmers.
Gandalf has integrated INTERCOL as its tool for sys-
tem version description and generation.

3.1 MIL75

MIL75 is based on the concept that any system struc-
ture has a graphical representation in the form of an
inverted tree with nodes being the modules and the
edges their different hierarchical relationships. This
graphical relationship of a system is an implicit prereq-
uisite to using MIL75. The methods proposed in [36,
47, 52] for structured design could be used to obtain
the hierarchically decomposed inverted tree represen-
tation of a system as required by MIL75, provided
some additions are included to represent module acces-
siblity as well as the resources required and provided.
An inverted tree structure of a one-pass compiler is
shown in Figure 4.

Once a graphical structure for a system is obtained,

v
generate aliocate | !
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it is programmed in MIL75 where the code consists of
the description of the modules in each node. The code
is processed to verify system integrity and to enhance
reliability. Each system description can be recompiled
alone or with any others. When systems descriptions

are put together they define a module interconnection
structure.

MIL75 consists of three sets
quired to establish system structur

iems that are re-

1. Resources: Atomic elements that denote abstrac-
tions of programming constructs within a program
(variables, types, arrays, functions, etc.) and are
available for reference to other modules,

2. Modules: Programming units made up of resources
and other programming constructs that perform a
specified function or task.

3. Systems: Groups of hierarchically organized mod-
ules that communicate via resources to perform
more elaborate functions.

MIL7S establishes certain relationships between re-
sources and modules as the basis to keep system struc-
ture, integrity, and maintainability within control.
These relationships (listed below) are based around the
inverted tree model described above and form the min-
imum set required by MIL75 to be able to do module
interconnection:

1. External scope relations: These relations define the
scope of definitions of module or subsystem names
thus helping to impose the overall system structure
called here the system tree. These external scope def-
initions consist of the descriptions of nodes and their
respective interfaces written in MIL75 code.

The relationship between modules and their pro-

vided and derived resources: This relationship is rep-

resented by a Resource Augmented Tree which is a

system tree that also indicates the resourcs provided

(e.g., from children to parent) and derived (e.g.,

from parent to children) for each node pursuing a

top-down approach. Resources originated in other

nodes, not being direct ancestors or successors, are
accessed resources.

. The relationship among the resources of sibling
modules: The channels for flow of resources among
siblings are determined by the parent. These acces-
siblity channels or links among a set of siblings may
form any directed graph. Access rights are not tran-
sitive and the children of a node are invisible to its
siblings. This relationship limits resources accessi-
bility to modules lying at the same hierarchical level.

. The relationship of accessibility of resources of
modules at different hierarchical levels: Unless ex-
plicitly stated by a parent, children inherit by de-
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fault all access rights granted to their parents. Par-
ents have unconditional access to their children but
not to their grandchildren or lower descendants.

5. The relationship between modules and the origin and
usage of resources: For each module, a MIL75 pro-
gram must include two statements: the starement of
origin listing the resources defined in that module
and, the statement of usage listing separately the de-
rived resources and all other resources obtained
through siblings or inherited access.

Establishing relationships 1-5 is what MIL75 coding is
all about. After the system designer has coded these re-
lationships, the MIL75 “‘compiler” checks that actual
usage of resources by a given module agrees with the
access rights provided by other modules to those re-
sources and that provided resources either come from a
child or are defined within that module. Passing that
stage, the compiler then establishes the usage links
which are direct channels where resources will flow.

A usage link is illustrated as follows: if a module m
has access to a resource provided by a module p then a
usage link is established to point to m from p. In other
words, it is solving indirect references by direct links,
which in short corrresponds to binding (at compile
time). This binding is what establishes the “module in-
terconnection structure™ shown in Figure 5. A complete
MIL75 program consists of a series of statements ex-
‘pressing the different relationships (1, . .., 5 above) be-
tween resources and modules of a structured (nodal)
representation of a system.

The MIL75 code that describes the module inter-
connection structure for the one-pass compiler of Fig-
ure 5 is shown in Figure 6. In order to minimize MIL
coding effort, anyone doing programming-in-the-large
should start describing the system from the beginning
of the design process rather than wait for the design to
be completed and then proceed to describe it.

Differences from the other MILs. MIL75 is ori-
ented around a structured (oriented tree) representa-
tion of a system thus shifting some of the work back to
the system designer. The MIL75 compiler takes the
complete description of the system where design deci-
sions like proper abstraction, functional decomposition,
and modularization have already been made by the sys-
tem designer. The system designer must also establish
the accessibility and provision of resources among
modules.

The main contribution of MIL75 is in providing the
designer with some means of detecting wrong design
decisions before construction begins. If the MIL75
compiler detects an error, it may be an error reflecting
a bad system modularization or simply an inconsistency
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Figure 5. The module interconnection structure.

in the flow of resources. In the later case, the fix is
relatively easy and requires the recompilation of one or
a few modules and/or subsystems while in the former
case a recompilation of the complete system may be
required.

The major drawback of MIL7S5 is its rigidity, caused
by its attachment to the inverted tree structure.
Thomas (next section), tried to overcome this deficiency
by designing his MIL around a more flexible structure.
Another deficiency in MIL75 is its lack of support for
the “specification of the function of the modules.”
DeRemer and Kron also mention that a MIL should
have the capability to support modules programmed in
different languages but they have not established this
capability in MIL75. Last but not least, MIL75 may
be seen as an isolated tool used only to show how an
MIL should work but not how it would be integrated
into a software development environment. Integration
is essential to reduce maintenance effort. Maintenance
of two separate source listings for one project may be-
come a problem. An MIL should be integrated into a
software development environment where updates in
programming-in-the-large can be automatically indi-
cated in programming-in-the-small and vice versa.
Thomas tried to establish the mechanisms to integrate
his MIL into a programming system. This integration
is required in order to use and evaluate MILs.
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Experience to date. Although DeRemer and Kron
do not mention any particular implementation of
MIL75, they implied the existence, at least at the pro-
totype level, of an MIL75 processor to test some of the
examples. The objective was to test the concepts of
module interconnection, but not to use MIL75 in a pro-
duction environment or to integrate it into a software
development system.

3.2 Thomas' MIL

The objective in Thomas’ dissertation (48] was to pro-
pose an MIL that would be a complement to CLU/
ALPHARD-like languages (i.e., languages that sup-
port data abstraction) and that would incorporate new
ideas for the future development of MILs.

Thomas’ MIL is based on the idea that module in-
terconnection should be flexible and not constrained to
a particular system structure as in MIL75. He advo-
cates the “compiling and static type-checking before
binding/linking” scheme and claims to obtain more
flexibility, less recompilation, and lower cost because of
combining binding and linking into a single phase.

This scheme allows a software system to be repre-
sented (in MIL code) as a “finite directed graph G with
no simple cycles and where S is a start node in G and
all nodes in G are reachable from S.” An instance of
this graph definiton may be the inverted tree module
interconnection structure of MIL75. Thomas proves
that static checking will not be affected by the addition




system compile
author John Smith
date 2/25/82
provides compiler
consists of
root module
originates compiler
subsystem scan
has access to symtbl, errormsg
consists of
root module
originates scanner
uses derived nextchar_funct
uses nonderived symtbl
subsystem nextchar
must provide nextchar_funct /* fetches next char *}
subsystem backup
provides backup_proc /* backs up to previous char */
subsystem parse
must provide parser
has access to scan, postfix
consists of
root module
originates parser
uses derived verify funct, errormsg_proc
uses non derived scan, postfix
subsystem verify
must provide verify funct /* checks for valid tokens L)
has access to errormsg
subsystem errormsg
must provide errormsg_proc /*displays error type and nbr*/
subsystem system-label
provides system_label proc /* creates system labels Ly
has access to symtbl

Figure 6. A simple one pass compiler described in uses non derived symtbl
MIL75. subsystam symbtbl
consists of
root module

originates symbtbl proc
uses derived enter_proc, get_proc, lookup_proc
subsystem enter /* enters a symbol in symbol table */
must provide enter_proc
has access to search, errormsg
uses non derived search
subsystem retrieve /* gets an entry from symbol table */
must provide get_proc
has access to search, errormsg
uses non derived search
subsystem search /* look for a regquired symbol */
must provide lookup_proc
subsystem postfix
has access to system_label
consists of
' root module
originates postfix_generator /"convert to post_fix notation*/
uses derived codegenerator
uses non derived system_label
subsystem codegen
must provide codegenerator /* generates machine code */
consists of
root module
originates codegenerator
uses derived register_allocation, generate_instruction
subsystem allocate
must provide register_allocation
subsystem generate /* generates address and operands
for machine instruction */
must provide generate_instruction
has access to symtbl
uses non derived symtbl.

of cycles but that binding may become an intractable other modules. This list of directories may be infinite if
problem in some cases. His proof is based on the fact partially recursive functions are present (i.e., cycles).
that binding requires for each node besides a name, a Expensive dynamic linkage must be used for these cases
directory of the resources (required and provided) for instead. Of course, Thomas obtains interconnection
each context upon which that node may be used by flexibility by going from a pure oriented tree structure
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of a system to an oriented tree with cycles at the price
of sometimes not being able to do the binding.

The “universe of discourse” of Thomas' MIL is
names that fall into four classes: Resources. Modules,
Nodes. and Subsystems.

Resources are the class of names within a module
which can actually be made available for reference.

Modules are units of source code (may be written in
different programming languages) providing and re-
quiring resources. The definitions of resources and
modules are almost identical to the ones given in
MIL7s.

Nodes are descriptive units (in MIL code) that estab-
lish environments for the modules by binding re-
source names to modules. Nodes are the basic entity
for programming-in-the-large just as a module de-
scription is in MIL75. So a node specifies the set of
modules attached to it and the interconnection be-
tween the node and other nodes of the system. There
are four main operations a node can apply to re-
sources to form the MIL code:

1. Synthesize: specifies a set of resources provided by a
module.

2. Inherit: specifies a set of resources required by a
node.

3. Generate-Locally: specifies which modules are at-
tached to the node being defined. These operators
are equivalent to the MIL75 provide, has-access-to,
and consist-of, respectively.

4. Has-successor: determines the set of nodes that pro-
vides resources to this node, or in MIL75 terms, the
successors are the children of a node that generate
““derived” resources to their parent.

Subsystems are graphs (directed) of nodes and the
edges connecting them with one node (the “distin-
guished node™) providing a characterization of the
subsystem (i.e., indicates resources provided and re-
quired for the whole subsystem). A subsystem is
stored in a library structure and can be referenced
in an MIL program as if it were a single node.

In 48], complete syntax description and examples of
this MIL are presented for further reference. The one-
pass compiler from the previous example coded in
Thomas MIL is shown in Figure 7. Notice the layered
decomposition of the system in contrast with the rigid
hierarchy of MIL75. Each node description is self-con-
tained (i.e.. capitalizes on the data abstraction princi-
ple). It describes its composition, and the resources pro-
vided and required to interact with other nodes. Notice
also that nodes may be arranged in any order in the
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proper listing. The introduction of the using construct
in the syntax allows Thomas' MIL to specify which
particular implementation of a module or function is re-
quired. If a user were to design a software system using
Thomas' MIL as a development tool, a structured de-
sign methodology should be followed to obtain an ori-
ented tree structure of the system just as the “system
tree™ of MIL75 is obtained. The user would then define
the nodes in MIL constructs by carefully analyzing
which modules could be encapsulated in a subsystem so
that a node structure is obtained which describes the
whole system structure in an LPL. This is analogous to
the “packaging” activity of structured design [36] or
the informaton hiding principle of Parnas [37]. This is
a more flexible way to build the rigid “resource aug-
mented” and “access augmented” system trees of
MIL75.

During the formation of the node structure, static
type checking would be performed by the MIL proces-
sor so that at the end. resource flow consistency would
be verified.

The next step, in contrast with MIL75, would be to
code the individual modules and compile each one sep-
arately. Finally, the MIL processor would be called to
do the binding and perform the required module inter-
connections; i.e., to change all indirect references to di-
rect connections. The MIL75 compiler instead estab-
lishes the ‘‘usage links" (bindings) at an LPL level
without need for module coding.

Difference from the other MILs. Thomas' MIL
performs the module interconnection after module
compilation allowing more flexibility to the designer at
the typecheck stage but at the same time forcing the
derivation of the system (coding) before interconnec-
tion can be performed. The pay-off is during mainte-
nance when individual modules can be added without
requiring full recompilation of the system. A change in
MIL75 code, in contrast, usually requires a full recom-
pilation. This pay-off will be increased if the MIL were
to be integrated into a system development environment
as Thomas proposes. Thomas’ MIL is restricted by
binding the interconnection to the compile/link para-
digm. Cooprider and Tichy succeed in freeing their
MILs from this restriction and in integrating their
MILs into working systems development environments.

Experience to date. Thomas' work was only a dis-
cussion of a possible MIL processor and it was not im-
plemented. It is, however, a valuable work that pro-
vided some basic proofs on MIL structures and
established certain ideas for future MILs.
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Figure 7. A one pass compiler coded in Thomas' MIL.
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node complle
synthesizes proc compiler
generates locally proc compiler using NIP_COMP
has successors scan, parse, symtbl, postfix
successor scan
must synthesizes proc scanner
inherit proc symbtbl_funct, errormsg_proc
successor parse
must synthesizes proc parse
inherit proc scanner, postfix_generator
successor symtbl
must synthesize cluster symtbl _proc
with ops enter, retrieve,
successor postfix
must synthesize proc postfix_generator

node scan
synthesizes proc scanner
must inherit proc symtbl_proe, errormsg_proc
generates locally cluster scanner using SCANOD2
proc nextchar_funct using NXTCH
proc backup_proc using BCKP

node parse
synthesizes proc parser
must inherit proc scanner, postfix_generator
generates locally proc parser using PARSE.NPP
has successors system-label, errormsg, verify
successor system-label
must synthesize proc system-label proc
inherits proc symtbl _proc
SUCCRSSOr errormsg
must synthesize proc errormsg_proc
successor verify
must synthesize proc verify funct
inherits proc errormsg_proc

noda symtbl

synthesizes proc symtbl proc

must inherit proc errormsg_proc

generates locally cluster symtbl_proc using SYMBL
proc enter_proc using ENTO1
proc get_proc using RETOO

has successors search

successor search
must synthesize proc lookup_proc

node postfix
synthesizes proc postfix_generator
must inherit proc system-label_proc

s=arch

gensrates locally proc postfix_generator using POSTFIXGEN.NIP

has successors codegen
successor codegen
must synthesize proc codegenerator

node codegen
synthesizes proc codegenerator
must inherit proc symtbl proc

genaratas locally proc cluster codegenerator using CODEGO3

proc register_allocator using REGALLOC
proc generate_instruction using GENO7
inherits proc symtbl_function

node system-label

synthesize proc system-label proc

must inherit proc symtbl

generates locally proc system-label proc using SYSLBL

node errormsg
synthesize proc errormsg_proc
generates locally proc errormsg_proc using ERRMSG

node verify
synthesize proc verify_func
generates locally proc verify func using VRFY

node search
synthesize proc loockup_proc
generates locally proc lookup_proc using LOOKUPOZ



3.3 Cooprider's MIL

The objective in Cooprider’s work [12] is to propose a
system, that to some extent, would bridge the gap be-
tween software design and software construction. He
developed a representation for software systems that in-
tegrates an MIL, a version control facility, and a soft-
ware construction facility. His emphasis is on the later
two facilities but he succeeded in adding some innova-
tions to the work of DeRemer & Kron and Thomas.

There are three levels of notation in this MIL. The
highest most abstract level defines the interconnection
between subsystems or modules. The intermediate level
describes instantiations of system versions conforming
to those interconnection structures. And the lowest,
most concrete level describes actual system construc-
tion operations.

The Interconnection System. The abstract portion
of the subsystem interconnection notation corresponds
to the one used in the previous M1Ls. The subsystem or
module is the basic building block; resources are the
currency of exchange among subsystems. Subsystems
may enclose other subsystems. Resources must be
named explicitly and can be “extra linguistic"; i.e., they
are not necessarily made of programming constructs
alone but may be composed of plain text or even,
graphic information. All these characteristics have been
defined in the previous two sections and their definition
applies the same in this MIL.

There are three interconnection mechanisms in this
MIL:

|. Nesting: The provider can be nested directly within
a requirer. This mechanism is similar to the flow of
resources from children to parent in the resource
augmented tree of MIL75.

2. Explicit Reference: The provider can be named by
an external clause in the requirer. This case is anal-
ogous to the accessibility channels for resources
among sibling modules of MIL75.

3. Environmeni Definition: The provider can be named
by a subsystem that encloses the requiring subsys-
tem. This mechanism is the same environment de-
scribed in Thomas’ MIL and similar to the flow of
resources from parent to children in the resources
augmented tree of MIL75.

The construction system. This lowest, most con-
crete level of notation is presented before the interme-
diate level in order to convey better understanding of
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the whole language. The objective here is to specify the
process by which a system is constructed. Concrete ob-
Jjects, rules, and processors are required for the con-
struction to take place. A rule shows how a concrete
object is constructed; a concrete object is a generalized
file (source, object, or executable code) and a processor
is any program that produces a concrete object (com-
piler, assembler, text processor, etc.). A source file is
always the original concrete object in a chain of con-
struction rules.

There are three operators used in the construction
system:

1. File: Used to point to a specific file name indicated
by a path (full directory path) enclosed in ( ) brack-
ets. This path may be empty, thus showing the file
name only.

2. Acquire: converts a resource from another subsys-
tem into a concrete object.

3. Deferred: retrieves all objects that have been implic-
itly associated with the parameter object. This op-
erator is used when separately compiled subroutine
bodies are linked and their external procedure dec-
larations made effective.

The example below illustrates the use of the above
operators.
Example:

concrete object filel = FOR(file({DIR-name:MAIN)))

concrete object COMM = FOR(acquire(COMMON-BLK))

concrete object file2 = FOR(file(source-SORT))

concrete object file3 = MERGE(file(inputl).file(input2))

concrete object execMAIN = LINK(filel. file2. file3,
COMM, deferred(file2))

The version control system. The objective of this
system is to make different system versions share the
same interconnection structure so that duplication of
identical information is prevented and modification
sites are centralized. This approach is better than copy-
ing system descriptions that would require modifica-
tions to each copy for any small alteration performed to
a component subsystem.

The syntax for this system consists of two parts: the
realization section and the version section. The realiza-
tion section contains all the information pertinent to the
tangible form of a subsystem while a version is an in-
stantiation of a subsystem or a group of such instantia-
tions. There are several combinations of the syntactic
constructs that can be used to describe a subsystem re-
alization. The example that follows shows a subsystem
with several versions.
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Example: -

subsystem HASH provides HashFunction

realization
version Quick

versfon FORTRAN resources file((FORTRANQuickHash))end FORTRAN
vers?on Pascal resources file((PascalQuickHash) )end Pascal
version ALGOL resources file((ALGOLQuickHash))end ALGOL

end Quick
version Careful

version FOKTRAN resources file((FORTRANCarefulHash))end FORTRAN
vers!on Pascal resources file{ ( PascalCaref ulHash))end Pascal
version ALGOL resources file((ALGOLCarefulHash))end ALGOL

end Careful end HASH

Our one pass compiler coded in Cooprider’s MIL is
shown in Figure 8. Emphasis is on the interconnection
mechanism to compare with MIL75 and with Thomas'
MIL. Hypothetical realizations are included in the first
two subsystems (scan and parse) to illustrate how a
complete program might look in Cooprider's MIL. The
remaining subsystem realizations were omitted for sim-
plicity and only the names of the corresponding pro-
vided resources are listed. The approach to structuring
a system is very similar to that used by Thomas.
Cooprider introduces optional nesting as shown in the
compiler and symtbl subsystems of the example. Op-
tional nesting provides more flexibility to the system de-
sign and is an effective tool for modular design based
on information hiding.

In contrast with the two previous MILs, the lan-
guage developed by Cooprider could be seen as an ex-
tended MIL that also supports system construction not
only system design. If a user were to design and con-
struct a software system using this MIL as a develop-
ment tool, a similar process would be followed as if
using MIL75 or Thomas' MIL; i.e., a structured design
methodology. This process would be. in contrast with
the previous MILs, carried on interactively with the aid
of a database system where system integrity would be
verified. Availability of implementation information at
the MIL level significantly reduces maintenance effort
and increases reliability.

With this tool, construction information could be
specified and verified during the design phase so that
the end product would not be only a structured descrip-
tion of what steps to follow to obtain such a system.
Module coding could be done separately and/or in par-
allel with the whole system design. The largest gain in
using Cooprider’s system would be, by far, during the
evolution of the software product throughout its entire
operational life.

Differences from the other MILs. It is difficult to
compare Cooprider’s MIL with the previous two be-
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cause of its language extensions. Judging the structural
flexibility offered to the system design, however,
Cooprider’s MIL could be placed in the middle point
between the very rigid MIL75 and the highly decoupled
Thomas’ MIL. The module interconnection mecha-
nisms of Cooprider’s MIL could be considered as a syn-
thesis of both. That is, most of their advantages such as
flexibility in the interconnection structure, easy syntax
and notation and static binding were integrated in this
MIL. There are restrictions on the flow of resources in
Cooprider’s MIL as there are in MIL75, but they are
not as stringent. A subsystem here provides and re-
quires resources in a way that is similar to scope rules
in structured programming languages, while in a mod-
ule in MIL7S, derived and accessed resources must
also be specified to indicate flow among parent—off-
spring or among siblings, respectively. This reduction in
the complexity of resource flow is due to the use of a
database processor instead of a compiler. This is the
major contribution of Cooprider’s work. The database
processor is also a key factor for the implementation of
the construction and version control systems.

A drawback of the construction mechanism is that
the database has no knowledge of the various versions.
The realization description requires excessive detail; the
designer must give explicit construction rules for all
components and configurations and program all the
modification policies by hand. Moreover, the database
processor does not support control for concurrent ac-
tions (i.e., two programmers modifying the same file at
the same time).

Experience to date. Several parts of this system
have been implemented. The implemented components
were tested in a laboratory environment with a specific
but small test case: software support for a scan line
graphics printer. They have not been proved in a real
production environment. There is no report of a consis-
tent version of the system as proposed but many of the
ideas and some of the components have been used in the



subsystem compile provides compiler
requires scanner, symtbl proc, parser,
postfix_generator

subsystem scan provides scanner
requires backup_proc. nextchar_funct
external symtbl, errormsg, parse

subsystem backup provides backup_funct
realization
version NIP-language
version PL/l concrete object BCKP = PL
(file(<BCKP.service>)) end PL/1
end NIP-language
end backup

subsystem nextchar provides nextchar_funct
realization
varsion NIP-language
version PL/1 concrete object NEXTCH=PL
(file(<NXTCH.source>)) end PL/1
end NIP-language
and nextchar

realization
version NIP_language
version PL/1 concrate object SCAND2=PL
(fila(<scan02.source>)) end PL/1
version Pascal concrats object SCANO3-Pasc
(file(<scan03.Pscl>)) end Pascal
end NIP_language
end scan

subsystem parse provides parser

requires system-label proc, errormsg_proc. verafy_funct
external scan, postfix
realization

version NIP-language

version PL/1 concrete object PARSE.NIP=PL
(file(<PARSE.source>)) end PL/1
snd NIP-language
end parse

subsystam postfix provides postfix_generator
requires codegenerator external system-label
realization .. (creates POSTFIXGEN.NIF)
end postfix

development of the Gandalf System Generator Facility
[24]).

3.4 Intercol

Tichy's work at the software development environment
level has three objectives:

1. A Module Interconnection Language (INTER-

COL) capable of representing multiple versions and

configurations written in multiple programming

languages.

An Interface Control System that automatically

verifies interface consistency among separately de-

veloped software components.

3. A Version Control System similar to the one pro-
posed by Cooprider but with the advantage that in
this case the system determines which version of
which component should be used to form a particu-
lar version of a particular configuration instead of
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Figure 8. Partial Cooprider's MIL code for a simple one
pass compiler.

relying on a detailed set of construction commands
issued by the designer as in Cooprider’s MIL.

A description in INTERCOL is a sequence of module
and system families followed by a set of compositions.
A member of a module family is a version of a module,
and a member of a system family is a version of a sys-
tem (Figure 9). The former may be one of a set of dif-
ferent module implementations for different environ-
ments or in different languages, or may be one of a set
of different module revisions, or can also be a derived
version. The latter may be a member of a set of differ-
ent system configurations or of a different derived
composition.

Each one of the above families has an interface. An
interface consists of programmed entities called re-
sources. A resource in INTERCOL has the same
meaning as a resource in the previous MILs; they are
the units of flow among modules and/or among sys-
tems. All members of a particular module or system



subsystem symtbl provides symtbl-proc
requires enter-proc, lookup-proc. get-proc
external errormsg
subsystem enter provides enter-proc
external search, errormsg

realization .. (creates ENTOl)

end enter

subsystem search provides lookup-proc
realization .. (creates LOOKUPO2)

and search
subsystem retrieve provides get-proc
external search, errormsg
realization .. (creates RET00)
end retrieve
realization .. (creates SYMBL)
and symtbl

subsystem system-label provides system-label-proc
external symtbl
realization ..(creates SYSLBL)
end system-label

subsystam errormsg provides errormsg-proc

. . . \ . realization ..(creates ERRMST)
Figure 8. Partial Cooprider’s MIL (Continued) end errormsg

subsystem verify provides verify-funct
external errormsg
realization .. (creates VRFY)
end verify

subsystem codegen provides codegenerator
requires generate_instruction, register_allocator
realization ..(creates CODE603)
end codegen

subsystem generate provides generate_instruction
sxternal symtbl
realization .. (creates GEND7)
and generate

subsystem allocate provides register_allocator
realization ..(creates REGALLOC)

end allocate.

realization .. (creates COMPO1)

end compile

Figure 9. System and module families in Intercol.
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family use the same interface so that free substitution
of family members can occur. This is the main reason,
in contrast with previous MILs, that INTERCOL
makes every interface explicit. The scan module in the
INTERCOL version of our compiler example (Figure
10) shows the case of three different implementation
modules using the same interface description.

INTERCOL interacts with a number of different
programming languages by means of a resource-speci-
fication sublanguage. Resources are constructs in a spe-
cific programming language that are implemented and
used in the modules. A mapping from a resource spec-
ification sublanguage is installation dependent, but the
language must be statically typed. The sublanguage
used by Tichy in his work is a subset of Ada.

A resource declaration in INTERCOL may consist
of a compact representation or a specification or both.
A compact representation is an abbreviated list of re-
sources and their attributes (type, access, etc.) as illus-
trated by module symtbl of our example (Figure 10)
and a specification is a list of resources written in the
resource specification sublanguage.

A module family has an interface consisting of a list
of provided and required resources and contains one or
more implementations. Each implementation may exist
in several revisions that are the entities or files that con-
tain the actual programs. Different programming lan-
guages can be used for different realizations. Each re-
alization may have several revisions, where a revision is
the result of programming the initial revision or editing
an existing one. Derived versions constitute a second di-
mension of variations of realizations.

A system family contains zero or more module and
system families and zero or more compositions. A com-
position gives a name to a combination of elements that
are the names of previously declared building blocks in
the same or enclosing system families. The compile sys-
tem of Figure 10, for example, could have other com-
positions in addition to the one indicated for PL/1 if
implementations of the other modules (e.g., Pascal)
were available. If one compares the INTERCOL ver-
sion of our example with the other MIL descriptions, it
will be noticed that there is an increase in the detail of
the interface description. It could be said that INTER-
COL is “stronger typed” than the other MILs. The in-
crease in detail is needed for more effective type check-
ing but it forces the system developer into premature
decisions about module implementation.

An INTERCOL user and a Cooprider’s MIL user
would follow an almost identical process in constructing
a software system. INTERCOL, however, is imbedded
in a Software Development Control Facility (SDCF)
which is organized as an interactive system that con-
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trols a software development database. The SDCF,
moreover, allows for independent and incremental com-
pilation and type checking, thus, significantly reducing
development costs.

The advantage of using Tichy’s SDCF rather than
the previous MILs occurs in controlling the evolution-
ary process of a software system. The approach of sys-
tem design by “evolving prototypes™ would be the ideal
approach to use with this SDCF.

Differences from the other MILs. The most signif-
icant contributions of INTERCOL and Tichy's SDCF
to MILs are that they

l. Allow a structured specification and control of fam-
ilies of systems and modules

2. Allow independent compilation and type checking

3. Include an interface control system that automati-
cally manages the consistency of the interconnection
among module and system families

4. Include a version control system that supervises the
addition of new versions.

Experience to date. Tichy's SDCF became opera-
tional at the prototype level in a PDP 11/40 system
under UNIX and was later integrated into the Gandalf
System [24] as the System Version Description facility.

3.5 Observations

We use the compiler example as the basis for our ob-
servations. MIL75 introduces the basic MIL con-
structs—requires, provides, has-access-to, etc. With
these basic constructs expressed in a formal syntax, a
system structure can be completely described and auto-
matically checked for inconsistencies. Our compiler ex-
ample was overdecomposed to emphasize the intercon-
nection structure. An MIL75 description is as rigid as
its ancestor—a structured design chart. The construc-
tion of an MIL7S structured description usually follows
a preordered traversal of the structured design tree.
The language, although rigid, is effective in enforcing a
proper structure.

Thomas’ MIL simplifies the notation, and provides a
more fiexible approach to describe system structure.
Nodes are not required to be listed in a rigid nested tree
structure. Thomas’ MIL provides the syntactic con-
struct using to indicate the particular program that im-
plements a given module. It can be considered as a ru-
dimentary approach to version control. By providing
more flexibility in module arrangement, Thomas’ MIL
makes information hiding easier to implement as shown
in the scan node (Figure 7).
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Figure 10. INTERCOL code for a single one pass
compiler.

System compile
provide compile

module compiler /*compiler driver-main program*/

provide procedurs compiler

require scanner, parser, postfix_generator, symtbl funct
and compiler

module scan
provide package scanner is
type token:ALPHA
function nextchar_funct return:CHARACTER
procedurs backup_proc
end scanner
require symtbl proc, errormsg_proc
implemantation SCANOZ .. PL/1
implementation SCANO3 .. NIP
implemantation SCANO4 .. Pascal

and scan

module parse
provide procedure parser
require scanner, postfix_generator, system-label proc,
errormsg_proc, verify_funct
implementation PARSE.NIP
end parse

modules postfix
provide package postfix_generator (token) is
procedure codegenerator
procedurs generate-instruction
function register-allocate return:INTEGER
end postfix_generator
requira system-label proc, errormsg_proc
implemantation POSTFIXGEN.NIP
end postfix

module symtbl

provide package symtbl proc
constant tblsize:INTEGER, found:LOGICAL
type name, type, procname:ALPHA
type location is range 1..tblsize
procedure enter-proc (name, type, procname, location)
procedure get-proc (name, type, procname, leccation)
procedure lookup-proc (name, type, procname,) return

location found;
end symtbl proc

require errormsg_proc

implementation SYMBL-PL/1

implemantaiton SYMBL-Pasc
and symtbl

module system-label
provide procedure system-label proc (label:name)
/*create new label®*/
require symtbl proc
implemantation SYSLBL
end system-label

module verify
provide function verify_func (token) return:LOGICAL
require errormsg_proc
implemantation VRFY

end verify

module errormsg
provide procedurs errormsg_proc
implemantation ERRMSG

end errormsg

COMPOSITION
compile A = [compile, SCANOZ, PARSE.NIP, SYMBL.PL/1l, POSTFIXGEN.NIP
SYSLBL, VRFY, ERRMSG)
end compile
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Cooprider's MIL provides a complete version control
scheme and a specialized construction syntax to de-
scribe how a software system is constructed by assem-
bling existing modules selected from a variety of differ-
ent versions. The interconnection syntax is simplified
even further to only three constructs: provides, re-
quires, and external. Multiple nesting is allowed, thus
information hiding can be implemented at different lev-
els of abstraction.

Intercol expands the version control scheme to in-
clude families of systems and modules. It provides for
a module description to be the standard description for
a family of modules at the expense of some explicit de-
tail in the resource types. Given an interface descrip-
tion, modules may be implemented in different lan-
guages or for different target machines.

In summary, it can be observed that MILs follow an
evolution development from basic—simple MIL75—to
the more powerful and elaborate Intercol. They all
share the same interconnections constructs but differ in
their implementation and on the extra features to aid
the software development process.

In the next section, several software development
systems are surveyed and classified by the type and
level of module interconnection they support.

SYSTEMS SUPPORTING MODULE
INTERCONNECTION

There are several programming environments and soft-
ware development systems that provide module inter-
connection facilities. Detailed classification of these sys-
tems is somewhat difficult since each has its own unique
characteristics and has emerged from a distinct design
philosophy. From the point of view of MILs, however,
we have selected a representative sample of the differ-
ent approaches taken to do module interconnection.
The sample includes the following systems: PWB,
CLU, ADAPT, MESA, PROTEL, CDL2, SARA and
Gandalf. Each of these approaches is discussed in more
detail in the following sections.

PWB [27] represents the class of systems that pro-
vide facilities for management of systems development
(i.e., version control) but lacks facilities for strict mod-
ule interconnection (i.e., intramodule typechecking,
systems structure description, module accessibility).
Systems like the Software Factory [8], the SWB Sys-
tem [31], and the ARCTURUS System [46] also fall
into this class.

CLU and ADAPT represent the class of languages
and language extensions perfectly suited to support
module interconnection. Languages in this class are
highly modular and provide constructs for version def-

initions. They are based on data abstractions and use
the same language for module construction (PS) as for
system description (PL). This last characteristic may
be considered a drawback from the point of view of
MILs. MODULA, ALPHARD, and Ada also fall into
this class. Within this category we include Prolog [26]
as an effective MIL with built-in powerful automatic
processing and the additional feature of automatic eval-
uation of design metrics. An awkward notation is one
of Prolog's disadvantages.

MESA, PROTEL, and, CDL2 represent the class of
fully integrated software development systems that is
actually used in production environments. This class of
systems performs module interconnection as MILs do
but are restricted to modules written in their own
language.

SARA represents the class of special purpose soft-
ware design systems at the development stage that uses
a different approach to module interconnection—
SARA advocates a formal model approach instead of
MILs. A MIL based on Ada. however, has recently
been added to SARA [5]. This Ada based MIL is one
of the best examples of the potential of Ada as both an 3
LPL and LPS. '

Gandalf represents the class of fully integrated soft-
ware development systems that has successfully in- ¥
cluded an MIL—INTERCOL —as one of their devel-
opment tools.

4.1 PWB

The PWB (Programmer’s Work Bench) facility pro- -
vides limited support for module interconnection. Based
on UNIX. PWB was developed by Bell Labs in 1973
[6. 15, 27] to provide tools and services to ease the load 3
on the application system designer, programmer, ;
documenter, tester, and development personnel. It is
based on the concept that the facilities needed by pro-
gram developers are different than those required by
the program users. i

PWB succeeds in separating the program develops
ment and maintenance function onto a specialized com:
puter that is dedicated to that purpose. This compu o
provides the interface between program developers amnsg
their target computer(s). PWB supplies a separate ung
form environment in which people perform their wots
The facilities supported by the PWB are a source o
trol system, a remote job entry system, a docume:
preparation system, a modification request control g
tem, and drivers that simulate user conditions'}
testing.

The PWB Source Code Control System (SCis
[43] is a file storage system that records the



versions of a text file; this is accomplished by recording
the original version plus interleaved modification de-
scriptions that can be applied to create more up-to-date
versions. This system supports creation of any revision
of a source program or text, file protection against ac-
cidental changes, selection propagation of module
changes to each of its revisions, and identification of ob-
Ject and source (revision number, date created. etc.).
P\ 1's SCCS System does not provide, however, syn-
tax constructs for module interconnection descriptions
as an MIL would do.

4.2 CLU

The programming language CLU was designed by Lis-
kov [30] to implement the concept of abstract data
types. It provides constructs that support the use of ab-
stractions in program design and implementation. An
earlier language, ALPHARD [51], was designed
mainly to support the construction of structured pro-
grams. Both, CLU and ALPHARD deal with abstract
data types and abstraction building mechanisms and
both are essentially derived from SIMULA 67 [13, 7).
Although CLU and ALPHARD are somewhat similar,
they differ in many important details.

In CLU, programs are developed incrementally, one
abstraction at a time. A distinction is made between an
abstraction and a program or module which imple-
ments that abstraction. An abstraction isolates use
from implementation: “An abstraction can be used
without knowledge of its implementation and imple-
mented without knowledge of its use.” The CLU /i-
brary which supports this methodology maintains infor-
mation about abstractions and the CLU modules that
implement them.

For each abstraction there is a description unit
which contains all system-maintained information
about that abstraction. The interface specification
which is that information needed to typecheck uses of
the abstraction is the most important information about
an abstraction contained in a description unit. In most
cases, this information consists of the number and types
of parameters, arguments, and output values plus any
constraints on type parameters.

An abstraction is entered in the library by submit-
ting the interface specification; no implementations are
required. A module can be compiled before any imple-
mentations have been provided for the abstraction it
uses. During compilation a module’s external refer-
ences must be bound to description units so that type
checking can be performed. The binding is accom-
plished by constructing an association lisi, mapping
names to description units, and this list is passed to the

compiler along with the source code when compiling the
module. The mapping in the association list is then
stored by the compiler in the library as part of the
module.

The idea of compiling the abstractions with their in-
terface specifications without any implementations
needed is the same idea as MIL75. An important fea-
ture of CLU is its type checking capability across mod-
ules, which is a natural consequence of its objective: to
aid the programmer to construct correct programs. A
drawback is its lack of support for system organization.

Cooprider showed that an MIL based on a database
processor is more effective in the control of system or-
ganization than an MIL based on a compiler. It could
be argued that the CLU library is the equivalent of a
database processor because it supports incremental pro-
gram development, but cannot support version nor sys-
tem family control because the compiler binds a module
permanently to the abstraction it uses. This is the price
of the strong type checking needed for correct pro-
grams. CLU therefore is more of an LPS Language for
Programming in the Small than an LPL.

4.3 ADAPT

Abstract Design And Programming Translator, a lan-
guage resembling CLU in its essentials but with PL/1-
style syntax, has been implemented at IBM [1, 2]. It
has proven to be as good a mechanism for describing
the detailed semantics of modules as CLU, but in con-
trast to CLU, an MIL has been added. This MIL ex-
tension to ADAPT is called External Structure,

The External Structure is an MIL used primarily for
system description with a facility to convert the syntax
description into a graphic display. It is used as a design
tool and as a project control facility that provides sys-
tem structuring support for programmers and develop-
ment groups. It allows for separate compilation of mod-
ules and performs intermodule type checking. It is an
automated resource, interacting with the ADAPT
compiler.

The ADAPT language is used to define the seman-
tics of modules. There are three kinds of semantics, cor-
responding to procedural, data, and control abstractions
and defined by the PROCEDURE, CAPSULE, and
ITERATOR constructs respectively.

PROCEDURE is like procedures in other lan-
guages, but parameters may be used-defined data
types, in addition to the data types provided by the lan-
guage. CAPSULE is used to specify a data abstraction
and consists of an internal data representation and op-
erations that manipulate the internal representation.
ITERATOR defines control abstractions by defining



how elements of an abstract data collection are ob-
tained so that actions on the elements can be pro-
grammed independently. lterations may be encapsu-
lated within a data abstraction, or they may exist as an
abstraction in their own right.

The External Structue language is used to describe
systems as collections of modules and their interconnec-
tions. The definition of a module includes the name of
each interface, the types of the parameters, and the re-
turn value for the interface.

Procedures are not required to have a return value,
and their functional type specification has abbreviated
syntax. For example, a WRITE procedure to transmit
a STRING to a printer has the following syntax:

WRITE(STRING)

When the module is a data type, the interface is de-
scribed by a set of operators; i.e., by encapsulated pro-
cedures and iterators called the DEFINES list for the
module.

In addition to the interface definitions, the modules
used by the module being described are listed in a
USING list. Although USING lists are required for
compilation, they can be deferred or abbreviated allow-
ing the designer to defer representation decisions dur-
ing the early stages of design.

A drawback in the module interconnection mecha-
nism of the External Structure is the restriction to mod-
ules written in the ADAPT lanaguage. A system is de-
scribed in External Structure as a collection of modules
and their allowable interconnections. This approach is
very similar to the one followed by C/MESA of the
MESA System.

4.4 MESA

MESA was developed at Xerox PARC during 1975
[22, 33] and is successfully being used in the design,
specification, and implementation of a number of sys-
tems. In particular, the experience of using MESA for
the development of an operating system is reported in
[29, 25].

In contrast to the MILs described in the previous
sections, MESA is both a programming language and
a software development system, and it has been used in
production environments. MESA supports program
modularity as the basis for incremental program devel-
opment and provides complete type checking for sub-
systems to be developed separately and safely bound to-
gether. The MESA language is similar to Pascal or
ALGOL 68 and has a global structure similar to that
of Simula. MESA by itself would be a strongly typed
LPS supporting separate compilation, but with the ad-
dition of C/MESA which supports separate configu-
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ration descriptions, it became a very powerful and prac-
tical MIL.

C/MESA, a configuration language developed in
1978, describes the system organization and controls
the scope of interfaces. C/MESA has many of the de-
sired attributes of a MIL as described above and is used
in the MESA system to specify how separately com-
piled modules are to be bound together to form
configurations.

From MIL’s point of view, MESA and C/MESA
form a well-integrated set of tools covering the design
and implementation aspect of a software system life-
cycle. The MESA System succeeds in implementing
some of the ideas originated in MIL75 and parallels
some of the ideas of Cooprider and Tichy on version
control but at a less general level. The goal of C/
MESA is to allow the user to represent a complete sys-
tem in a hierarchy of configuration descriptions. In
MIL75 terms, C/MESA has all the syntactic con-
structs to represent a sysiem tree.

Systems built in MESA are collections of two kinds
of modules: definitions and programs. A definitions
module defines an abstraction's interface by declaring
shared types and constants and by naming procedures
available to other modules. Program modules are pieces
of source text similar to ALGOL procedure declara-
tions or Simula class definitions.

A module declaration in MESA is a list of variable
names and the names of procedures that operate on
those variables. This concept of a module is more re-
stricted than that used by the MILs described above
because at the level of module definition, MESA is a
language for PS. Modules communicate with each
other via interfaces. A module may import an interface,
in which case it may *‘use” facilities defined in the in-
terface and implemented in other modules. The im-
porter is called a client of the interface. A module may
also export an interface, in which case it makes its own
facilities available (provides) to other modules as de-
fined by that interface. Such a module is the implemen-
tor of these facilities.

An interface consists of a sequence of declarations
defined by a definitions module. Only the names and
types of operations are specified in the interface, not
their implementations. A definitions module and one of
its implementors is illustrated in Figure 11 (taken from
[22]). Modules and interfaces are compiled separately.
The compiler reads each of the imported modules and
obtajns all the information necessary to compile the im-
porting module, performing type-checking for all ref-
erences. No knowledge about any implementors of the
interfaces is required.

The MESA binder collects exported interface rec-
ords that have been identified with a unique name by
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Figure 11. Definitions module and an implementor in
MESA.

the compiler, and assigns their values to their import-
er's corresponding interface records. This unique name
is what allows the binder to check that each interface
is used in the same version by every importer and ex-
porter. The binder uses the configuration description
code to bind modules together to form configurations.
The partial code for a system configuration is shown in
Figure 12 (taken from [22]). In this example, A, B, C,
... are the interfaces and U, V, W, . . . are the modules
that import/export them as indicated by the special
comment characters—.

The definition modules in MESA are equivalent to
the declarative statements of any of the MILs described
above, and the separate C/MESA code is equivalent to
an MIL program without the declarative statements.
For example, a definitions module in MESA has state-
ments analogous to provides, originates, and consist of
from MIL75 and to synthesizes, inherit, and has suc-

Figure 12. A partial configuration description in C/MESA.

Configl : CONFIGURATION
IMPORTS A
EXPORTS B =
BEGIN
u; -=-imports
. --exports
END.

w >
non

Config2:CONFIGURATION
IMPORTS B =
BEGIN
LH --imports B, Exports C
X: -=imports B,C
END.

Config3 :CONFIGURATION
IMPORTS A =
BEGIN
Configl:
Config2;
END.

Abstraction:DEFINITIONS =
BEGIN

it:TYPE=,...:rt:TYPE=....;

p:PROCEDURE ;
Pt:PROCEDURE([it] RETURNS[rt];

END

Implementor : PROGRAM IMPLEMENTING Abstraction =
BEGIN
OPEN Abstraction;
x:INTEGER;

p:PUBLIC PROCEDURE = <code for P>;
pl:PUBLIC PROCEDURE [i:INTEGER] = <code for pl>;

Pi:PUBLIC PROCEDURE([x:it] RETURNS [y:rt] = <code for pi>;

END

cessors from Thomas’ MIL. Such statements in
MESA, however, are not explicit as in the MILs but
rather implicit as observed in the example of Figure 11.
The same could be said if Ada were used as an MIL.

The separate C/MESA code, as illustrated by the
example of Figure 12, explicitly uses IMPORTS and
EXPORTS predicates to define resource flow, but does
not give an explicit view of the resources imported and
exported by each of the component modules. Such dec-
larations are implicit in each module, and the C/
MESA programmer must make such declarations vis-
ible with comments.

This approach to module interconnection is different
from the approach advocated by the MILs described
above. The module interconnection facility offered by
the MESA System is a combination of an implicit dec-
laration of resource flow by each module and an explicit
configuration description. In contrast, the other MILs
propose a separate module description and system con-
figuration coding where all resource flow is explicit.

In contrast with the other MILs, MESA is a widely
used and tested facility within Xerox where a substan-
tial amount of experience on its use has been
accumulated.

4.5 PROTEL

PRocedure Oriented Type Enforcing Language is a
tool that supports type checking across modules in a
fashion similar to MESA [11]. PROTEL was imple-
mented in 1975 by Bell-Northern Research of Ottawa,
Canada and has been used extensively since then
mainly by its own developers.

This system is based on the compile-link-load para-
digm like UNIX but performs type checking across
modules like MESA. To support type checking of in-
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Figure 13. Module structure in CDL2.

tersection and intermodule references, the compiler
performs a process called embedding which consists of
first writing symbolic information to an object file,
reading that information for all sections visible to the
one being compiled, and using that information to ini-
tialize the compiler symbol table. With the symbol
table so initialized, full compile time checking of all ref-
erences can take place.

A Library System was added in 1977 to support
module interconnection and system version control but
resulted in an environment too involved to be practical
(11]. PROTEL is very limited in controlling system
versions and in supporting system organization. The Li-
brary System is restricted to modules coded in
PROTEL.

4.6 CDL2

The CDL2 system, developed at the Technical Univer-
sity of Berlin between 1977 and 1980, is a development
environment centered around a single language [4]. It
is intended for the development of large, sequential
systems.

From the MILs’ point of view, a CDL2 program
consists of modules, which may be connected via ex-
plicit export and import interfaces. Each module con-
tains a strict hierarchy of /ayers. Lower layers can ex-
port resources to layers at a higher level of abstraction.
In Figure 13(a) horizontal arrows represent import /ex-
port module interfaces and upper pointing arrows show
layer export direction.

Within the layers is found a set of sections connected

b: Layer Level
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by explicit interfaces to other sections in the same layer
or in the next higher. Export of resources from one sec-
tion to another within the layer is called extension; ex-
ports to sections in the next higher layer are called ab-
stractions. Sections are functional units like modules.
Extension is used to extend the power of a layer; ab-
straction is used to realize one level of the abstract ma-
chine in terms of the next lower one. The division of
modules into layers and of layers into sections allows 3
the user to define different layers of interconnection. If
a module, for example, is originally designed at a very
low level of abstraction, a higher level description of the
same module could be designed to provide a simpler, :
more general interconnection interface.

The unique hierarchical organization of modules in
CDL2 provides the structure for describing a very high-
level design that could accommodate different versions
of the same module. The lower level layers of a partic-
ular module could be replaced by layers performing the
same function but having different characteristics. This
is analogous to the family and version control of
Cooprider’s MIL and Tichy’s INTERCOL.

The CDL2 System is centered around a command
interpreter that provides the user with a uniform lan-§
guage to control all components of the system (Editor,
Formater, Analyzers, Coders, and Database). From the
MILs point of view, the Local and Global Analyzer
are essential because together they perform the rolet
an MIL processor (i.e., compiler). The Local Anal
consists of a Syntax Checker and a Local Se
Checker. The Global Analyzer consists of a Gl
mantic Checker and an Intermodule Interface C
The Intermodule Interface Checker is used during 8!
tem design and specification to create a general desigt
description. The Global Semantic Checker verifies it¥



port/export data types across modules (similar to the
MIL75 compiler). The Local Semantic Checker veri-
fies internal module interfaces (among layers).

The CDL2 System is presently being used in various
research projects within the Technical University of
Berlin and has been transported to other sites where it
is being used as an experimental software development
environment.

4.7 SARA

System ARchitect’s Apprentice (SARA) is a com-
puter-aided system that supports a structured multi-
level requirement driven methodology for the design of
reliable software or hardware digital systems. SARA
was designed at UCLA in 1976 [18, 9, 10] and has
been under continual development since then.

The SARA methodology, based on formal models.
supports both a top-down partitioning procedure (re-
finement) and a bottom-up composition procedure (ab-
straction). It deals mainly with the structure of the ex-
ecution record, providing effective means for
synthesizing and analyzing a system. To accomplish
this, SARA makes use of a structural model (SL1) and
a behavioral model, GMB (Graph Model of Eehavior).

The structural model resembles the contour model
[28] used to describe the semantics of the execution re-
cord in block structured processes. The contour model
consists of graphs that represent processes enclosing
nested blocks. The structural model consists also of en-
closing contours, but in this case they are used mainly
to enforce modularity by providing a better means to
enforce encapsulation. They permit the isolation of
parts of the system which then can be modeled sepa-
rately. SL1 is SARA’s modeling language designed to
describe the structure of the realization of a modular
system.

The behavioral model consists of two graphs: a flow-
of-control (CG, Control Graph) and a flow-of-data
(DG. Data Graph) together with interrelations associ-
ated with the nodes of the data graph. The CG is sim-
ilar to a Petri-net of processes and directed control arcs
and the data flow is modeled in the DG through pro-
cessors and data sets, where the processors are respon-
sible for the transformation of the data stored in data
sets.

In mapping between the behavioral and structural
models, SARA structures the execution record. This
mapping provides the SARA tools with means to detect
any inconsistency in the design, but it does not provide
any facilities for module interconnection.

In 1979, an MIL was added to SARA [38] to deal
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with algorithm structure. This MID (Module /nterface
Description) was intended to enhance SARA's power
by providing a smoother path from modeling to code.’

In this new model, a SARA-MID mapping is ob-
tained in which the SLI-GMB model identifies the
variables and the calls of the code; the MIL model iden-
tifies the type and procedure definitions; and the map-
ping (SARA-MID) :uys which variable is of which
type and which call = of which procedure.

More recently, Berry [5] proposed on Ada based
MIL tool for the SARA System. This Ada based MIL
satisfies the basic MIL requirements of module descrip-
tion and interface definitions including the equivalent
of provide and uses constructs.

Berry uses a subset of Ada for this purpose which
allows as a major advantage that a normal Ada com-
piler can perform module interconnection consistency
checking. The MIL subset of Ada comprises the object.
type, subprogram, package, exceptions, and renaming
declarations and the generic versions. It also includes
procedure and function calls, and compilation units.

A MIL description of 2 system consists of a collec-
tion of package and procedure compilation units, one
for each module. The specification parts of these units
make explicit what resources they provide.

Berry introduces a generic procedure that allows the
user to invoke provided resources that are usually value
returning functions. This generic procedure is instan-
tiated with a null body for each type that appears in the
MIL descriptions. The purpose of this procedure is to
provide a “‘receptacle” for the returned value no matter
what type it is. The MIL programmer may invoke this
procedure around any invocation of a function that is
written in the specification. This way the Ada compiler
does not complain about the return value not being used
and does all the desired parameter checking.

The proposed Ada subset does not include tasking.
Berry observes that “the differences between an ab-
straction built with tasks and one functionally identical
built without tasks are strictly of behavior and perfor-
mance.” Thus tasking is not part of the code structure
language but belongs to SARA's other languages.

Examples coded in this Ada based MIL, including
Parnas’ KWIC system [37], have been tested success-
fully with the NYU Ada/Ed compiler. The compiler
does all interconnection verification except for warning
when a module (an abstraction in Ada) is not used by
any other module and if none of its provided resources
are involved.

*Formerly called MISC for Module /nterconnection Specifica-
tion Capability.



The potential for integration of this MIL in Ada en-
vironments is one of the major advantages of this ap-
proach. A disadvantage, at least from the point of view
of this survey, still remains—a single programming lan-
guage. Another disadvantage, from the systems de-
signer perspective, may be the high level of detail re-
quired to describe a module interface. All types must
be defined at module description time.

4.8 Gandalf

Gandalf [24, 21] is a new software development envi-
ronment, different from all the conventional tools, such
as the ones described above. It is designed for projects
that use Ada, but its current implementation is written
in the C language.

It is called an “environment” rather than a “tool”
because it integrates uniformly a set of three develop-
ment support tools. These tools can cooperate closely
with each other since they are all based on Ada and are
generally knowledgeable about the environment. They
operate on a common representation: the syntax tree
representation of the program. These three develop-
ment support tools are

1. A collection of incremental program construction
tools. _

2. A collection of system version description and gen-
eration tools.

3. A collection of project management tools.

The incremental program description tool consists of a
syntax directed editor, ALOE [32] and a syntax di-
rected dynamic debugger, LOIPE [19]. The syntax di-
rected editor is formed by the pair (program construc-
tor. unparser) as a replacement for the typical triple
(line editor, lexical analyzer, syntax analyzer). This
new approach allows the programmer to write syntac-
tically correct programs the first time.

The idea of the dynamic debugger or incremental
programming environment is that a user can write his
debugging statements in terms of the source represen-
tation of his program instead of in terms of machine
code, memory locations, and fast registers. A program
can be built incrementally because the program or sub-
program being debugged is halted, corrected, recom-
piled, linked, and loaded automatically. Execution can
then be continued upon modification.

The System Version Description and Generation
Tool consists of both Cooprider’s version control system
and Tichy's SDCF. They address the two basic prob-
lems of system composition: module interface control
and system version control. It provides a system gen-
eration facility based on system descriptions thus taking
over all necessary bookkeeping from programmers or

system builders, a qualitative improvement over UNIX,
MESA, PROTEL, and SARA. Type checking across
modules and system boundaries is also provided and
performed independently and/or incrementally thus
helping the system builder in assembling perfectly
matched modules.

The purpose of the Project Management facility is
to support collaboration of programmers on a project.
It consists of two parts, (1) Software Development Con-
trol (SDC), responsible for coordinating the state of the
system, and (2) Generation and proliferation of
documentation.

The SDC is also responsible for avoiding conflicts of
interest among project programmers; i.e.. it will not
permit two programmers to alter source code concur-
rently. Access rights are automatically checked by the
system so that unauthorized users may not manipulate
the product.

Documentation control is intended to force users to
comment on source object manipulations by prompting
programmers for documentation whenever additions or
modifications are made to the system. This ensures that
all changes made to the system state are reflected in the
documentation.

In contrast with other systems composed of tools
that are used individually for different tasks, Gandalf
provides a well-integrated environment that uses among
other tools the latest MIL for module and version con-
trol. Gandalf may be considered as one of the first rev-
olutionary software development environments of the
1980s. It is built on most of the ideas described in the
previous sections. it uses the concept of structured pro-
gramming and stepwise refinement for construction of
modular programs, Parnas’ ideas [37] for module con-
struction using information hiding, the concept of sep-
arating system specification (LPL) from implementa-
tion (LPS), system version representation by abstract
data types, and several other ideas from previous tools,
(e.g.. UNIX, MESA, CLU, etc.).

An environment that could be considered similar to
Gandalf is the Adele research project of the Labora-
toire de Genie Informatique, IMAG, Grenoble, France
(16, 17]. This project has four main components: (1) a
program editor, interpreter, and debugger; (2) a para-
metrized code generator; (3) a user interface; (4) a pro-
gram base. Components (1) and (2) are analogous to
the incremental program construction tools in Gandalf
and the program base is essentially a system composi-
tion and version control tool. Project management tools
in the Adele project are presently limited to version
numbering and version status (revisions) with explicit
support for documentation generation and control to be
added in the near future. .

The program base is essentially a DB based MIL




similar 1o Tichy's. The version control mechanism is
also based on Tichy’s scheme but with an additional
feature. Propagation of version changes and revisions
are conducted automatically. The main original points
in the Adele approach lie in the “expression of multi-
version system composition by constraints of attributes
rather than by component names (the attributes being
locally attached to any component or configuration),
and in the extended notion of ‘status’.” Estublier be-
lieves that such an implicit definition is often a more
natural specification means for the designer than the
explicit naming of components. This approach, how-
ever, departs from the idea of explicit descriptions ad-
vocated in MILs.

The current version of the program base is written
in Pascal to support Pascal programs and runs in the
Multics environment. It has been used in several exper-
imental program developments with satisfactory re-
sults. The Adele project objective is to create an inte-
grated software development environment.

Many new software development environments are
essentially special purpose tools integrated in a system
with an underlying database system. Most of them con-
sist of the three basic development tools: program con-
struction, system description/design and version con-
trol, and project management. The ECLIPSE system,
for example [45], one of the newest of these environ-
ments, has an underlying structure very similar to Gan-
dalf and Adele. A commonality of this kind of environ-
ments is the central role of the system description and
version control tool which is basically an MIL.

4.9 Tool Support for Interconnection

The relationship among the tools described above and
their support of module interconnection are illustrated
below.

Full MIL Support: Gandalf, C/MESA, SARA-MID,
CDL-2, Intercol, Cooprider’'s MIL, Thomas’ MIL,
MIL75

Partial MIL Support: Protel, Ada, MESA, PWB,
SARA

Marginal MIL Support: CLU, SIMULA, MODEL,
ALPHARD, modular languages

5. SUMMARY

After taking the reader through this detailed descrip-
tion of module interconnection languages and of some
software development systems that support module in-
terconnection, it is appropriate to mention their main
contributions to software engineering technology.
MILs and their related processors represent a set of
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tools that primarily aid the software engineer during
the architectural design, evolution, and maintenance
phases of the system life cycle. A secondary purpose of
MILs is to serve as a goal for systems analysis and a
constraint for systems implementation. To be effective,
an MIL must be integrated into a software develop-
ment system or facility where the MIL description of
the system is checked every time a change is made to
that system.
MILs’ main contributions are:

1. MILs provide a2 means to represent the architectural
design of a software system in a separate machine
checkable language. Design and construction infor-
mation is successfully integrated at the program-
ming-in-the-large level. These notations should be of
interest to researchers in automatic programming
and program generation since they are developing
mechanisms to manipulate this information.

2. MILs can prohibit programmers from changing the
system architectural design during evolution and
maintenance without an explicit change in the ar-
chitectural design.

3. MILs can represent a system construction process
and serve as the basis for a unified database during
system development.

A consequence of these contributions is a substantial
improvement of the maintenance stage. A designer can
revise, modify, and type check a system at the MIL
level before attempting any changes to the code.

These contributions, although significant, are only a
modest advance towards improving software develop-
ment technology.

A question naturally comes to mind: to what extent
could the main ideas and concepts of MILs be used to
improve other stages of the software life cycle?

6 FUTURE RESEARCH

Some of the main concepts of MILs could be used as
ideas to drive research in other areas in computer sci-
ence in general and in software engineering in
particular.

The idea in MILs of a separate language to describe
system structure could be extended to study the prob-
lem of representing system specifications. A “module
specification language” could be proposed together with
a study of what methods we must develop to encode
general specifications and how we can match require-
ment specifications with provision specifications.
Among the issues to be addressed with this proposition
are compatibility, functional equivalence, and unifor-
mity. Reusability is also an important issue directly re-
lated to this matching scheme.



Reusability, as proposed by Freeman [20], should
seldom deal with executable code, but should primarily
use nonexecutable work products from system analysis
and design. A research question is then how could an
MIL be expanded or augmented to include information
about the availability of resources and modules? At
present, MILs provide a description of system structure
and resource flow among modules (system components)
but more information is needed to indicate the specifi-
cations of such modules and resources. How much in-
formation is needed to be able to decide whether this or
that module will satisfy the proposed design
requirements’

Program generation techniques is an area where
some MIL concepts have been used. MODEL [40] and
NOPAL [44] are two nonprocedural languages used
for automatic generation of computer programs that
support module description and provide limited module
interconnection. There is, however. a need for extensive
research in this area. The way MILs consolidate design
and construction processes in a single description, for
example, could provide some insight into the question
of encoding the methods by which information from a
problem is encoded in programs.

There are further research questions that relate to
both the reusability problem and the automatic pro-
gram generation problem. The following question
touches the very concept of reusability. To what extent
is it practical to reuse components that can be easily
generated by automatic programming systems? Maybe
it would be more practical to reuse construction pro-
cesses as represented in MILs than to reuse design
specifications (the first, being a high-level executable
code. the second. a nonexecutable work product). To
reuse a construction process would be more attractive
than reusing a design specification.

An inherent property of large systems is massive
change over a long period of time. These changes occur
in three ways: evolution (system functional change),
maintenance (system error correction), and hardware/
software changes (configurations) supported by the sys-
tem. Each of these changes provides an index into a
“version space” for a particular system. The MILs of
Cooprider and Tichy started to examine the problem of
version control but more work is needed. The problem
of which changes are inherited by a system that is new
along some dimension from the other dimensions re-
mains unsolved.

In conclusion, having examined most of the existing
MILs, some of the software development tools that sup-
port module interconnection, and their significant con-
tributions to improving the state of the art in software
engineering technology, we determined out that there is

still a long way to go a before a major breakthrough in

the manufacture of software is achieved. Every major
breakthrough in technology, however, has been at-
tained through small steps.
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