Programming Environments for Reusability

A. N. Habermann
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Programming Environments are designed to support
the development of programs and systems. Some en-
vironments emphasize the production process, others
focus on the product. Traditional commercial environ-
ments rely on topdown design and stepwise refinement.
More recently, environments have reached the market
that offer integrated sets of tools in support of system
development. Tool integration and automation have
been the main issues of research for some time. Many
interesting ideas that make use of program generators
and Artificial Intelligence techniques have been
demonstrated in prototype environments. It is inter-
esting to speculate which type of environment will be
best suited to support emerging techniques such as
reusability.

1. Introduction

The main objectives of Software Engineering are: im-
proving the quality of software systems and increasing
the efficacy of the software production process. This
dual goal is pursued by developing a variety of facilities
consisting of methods, tools and techniques that make
programmers more productive and that make systems
more reliable, faster and friendlier.

Large software producers are accustomed to measuring
programmers’ productivity in terms of the number of
lines of code a programmer writes in a month or in a
year. Practice shows that this number is on the order of
2,000 lines of debugged code per year (2]. Since there is
little hope that productivity can be improved simply by
having programmers write faster, the dominant ap-
proach so far has been to focus on correctness. This

This work was supported in part by the United States
Army, Software Technology Development Division of
CECOM COMM/ADP, Fort Monmouth, NJ, and in part
by ZTI-SOF of Siemens Corporation, Munich, Germany.

THO0212-1/88/0000/0001$01.00 © 1988 IEEE

approach forces programmers to spend most of their
time on testing, debugging and modifying programs.
Therefore, a noticeable increase in productivity may
result if the time spent on these activities can be sub-
stantially reduced.

There are two popular methods of reducing the debug-
ging and program modification effort, both based on the
observation that it is better to prevent errors than try to
correct them afterwards. The first and most widely
practiced method is to institute tight control over the
production process. This method amounts to enforcing
rules that standardize the way programmers specify,
test and document their programs. This method has as
a side effect that additional positions are created for
system analysts, who oversee the software production
process. The second method is called the "clean room"
approach [19), which emphasizes the importance of
verification as part of program and system design [4].

An alternative approach, very different from controlling
the production process or introducing a programming
methodology, is to reduce the programming effort
simply by writing less code. There is a general belief
that many programs for standard computations and
input/output processing are unnecessarily rewritten
from scratch each time a new project is started. This
may be avoided if we can develop standard techniques
for practicing ‘reusability”. The purpose of writing
reusable programs is to avoid this writing from scratch
and enable programmers to generate programs by in-
stantiating reusable components.

When reusability becomes a technique, it will change
our attitude to programming. It will shift the emphasis
from "do it yourself" to “see what is available". For most
programmers, programming will primarily be the task
of composing systems out of existing program com-
ponents. Programming environments will play an im-
portant role in the process. They will help program-
mers with constructing concrete programs from reus-
able components. 1t is thus interesting to see how well
existing programming environments are able to support
reusability.

The purpose of this paper is to examine which type of
programming environment is suitable for supporting
reusability. In the next section we discuss a variety of
techniques that lead to reusable programs. A review of
the various types of programming environments that
support software development follows in Section 3. In
the last section we then briefly discuss which of these
environments is most likely to be suitable for support-
ing reusability.

2. Reusability

There are some techniques in use that encourage the
reuse of programs. However, for a variety of reasons,
most components of software systems are not reusable.
After reviewing the standard techniques and the
obstacles to reuse, we will discuss some emerging tech-
niques that may make a larger fraction of system
software reusable.

2.1. Standard Techniques

The most common forms of reusability practiced today
are code sharing and program libraries. For instance, sub-
stantial pieces of code are shared among users through
the use of a common operating system. Very few
programmers feel a need to write their own file I/O
routines. Most users are happy to use procedures, both
in their programs and at the system command level,
that are provided by the operating system interface.
The code for these procedures is shared in a direct sense
because no user gets a private copy of the code.

Another form of code sharing takes place in the design
of a system family that builds on a common kernel and
a collection of parameterized facilities that can be
adapted to the particular requirements of an individual
family member. The family concept is practical for sys-
tems that have many elementary functions in common.
The family approach is very natural to system designs
that make use of generic tools. Several projects that
generate structure-oriented programming environments
have taken this approach [12, 13, 23].

The use of program libraries is another widely-practiced
form of reusability. Well-known are the libraries of
mathematical routines that have been perfected over the
last twenty years. Note that these programs do not exist
in a single version, but allow the user to select from a
variety of implementations. This choice makes it pos-
sible for a programmer to find the version that suits the
particular characteristic of his input. A matrix inversion
program, for instance, can be chosen according to the
special characteristics of the input matrix such as tri-
angular shape or sparseness.

Yet another form of reuse that has great potential is the
use of generic units that define the operation on a collec-
tion of objects independent of the types of these objects.

This idea is supported in Ada! by generic packages that
accept type parameters, and in functional languages by
the concept of polymorphic types. It is peculiar that the
idea of a variety of different implementations for a
single set of specifications (as provided for math
routines) has apparently not occurred to the designers
of these languages.

2.2. Obstacles

There are several reasons why it is so hard to reuse
programs. Three of the main reasons are:

e programs are hard to read
¢ programs are strongly context dependent

e information about programs is hard to find.

Although language designers often adopt readability as
one of their design goals, the fact is that for most lan-
guages it is extremely difficult to derive the meaning of
a program from its text. There may be some hope for
Prolog programs, because here the code is practically
the same as the specification. The situation is worse for
functional languages and practically hopeless for im-
perative languages such as FORTRAN, Pascal, C or
Ada. The main problem with these languages is, of
course, that the program text describes how the com-
putation is to take place, but does not describe why.
Programs become hard to modify without proper
specification and documentation. This characteristic
makes it hard to reuse programs.

It is surprisingly difficult to port programs from one
environment to another. Standardizing on a particular
operating system such as UNIX? is generally believed
to alleviate the problems of context dependencies of
programs. Although it may be true that it is extremely
hard to port code from UNIX to an IBM operating sys-
tem for instance, even porting code from one UNIX to
another is by no means trivial. Most UNIX systems
suffer from local peculiarities, enhancements and
restrictions. As a case in point, it took more than half a
year at CMU to convert all software from Berkeley-
UNIX 4.2 to the upwards compatible version 4.3.

Many systems have grown so large that it becomes very
hard for most users to find out what is available. Few
systems provide effective browsing facilities and hierar-
chical help or plain straightforward explanations. Dis-
couraged by the steep learning curve, users are often
inclined to make do with a bare minimum of essential

lAdaisa registered trademark of the US Government, AJPO.

2UNIX is a registered trademark of AT&T's Bell Laboratories, NJ.

facilities. Increasing the user’s skills is more likely to
occur by word of mouth than by reading the documen-
tation. This is altogether a serious obstacle to reusing
programs.

2.3. Reusability through Abstraction

The problem of understanding programs can be solved
by representing reusable programs at a higher level of
abstraction than is possible in an existing programming
language. Such an abstract representation is routinely
used in textbooks on algorithms. Using a higher level of
abstraction has the advantage that the logic of an algo-
rithm is conveyed without binding control flow and
data representations too early in the design process.
However, if the abstract representation is far removed
from a standard program representation, translation
into such a standard representation becomes a substan-
tial effort.

A programming language is not the suitable vehicle for
representing the logic of an algorithm, Consider, for
example, the doubly linked list structure presented in
[15]. The Pascal or Ada programmer has no trouble
following the explanation in Knuth’s book, because
these languages lead the programmer immediately
down the path of pointers. Even the qualification
"doubly linked" strongly suggests an implementation
where each element has a left and a right pointer such
that

if right(x) = y then left(y) = x.

Suppose one wants to implement this structure in a
functional language such as Miranda [29]. Functional
languages do not provide pointers. One must therefore
first determine the essential property of doubly linked
lists before one can find a suitable implementation in
such a language. The essential property is, of course,
that one can walk a doubly linked list in both directions.
One can move from each node either to its left neighbor
or to its right neighbor.

Once this property is understood, the representation in
a functional language becomes even simpler than in
pointer languages. Standard operations allow one to
access the first or last element of a list. Removing the
first or the last element leaves respectively the tail or the
head. Another standard operation is "insert" which
prepends a new element to a list. If the current element
is the first element of the list, a left move and a right
move are respectively accomplished by

insert(last,head) and insert(first,tail).

It is clear that programming languages are far too sug-
gestive as to what solution one should adopt. For the
given example, imperative languages promote the

pointer implementation, while functional languages
provide a list implementation that suits the problem
well. Although both are able to implement the bidirec-
tional structure, neither one is able to express its essen-
tial property explicitly. It is interesting to observe that
the attempt of describing an implementation in a dif-
ferent programming language naturally leads first to
describing the essential property of a problem inde-
pendent of language and then to deriving a solution as
an implementation of those properties. This shows that
it is natural to look for a more abstract description, at a
higher level than a programming language, in which the
logic of algorithms and procedures can be described.

Assuming that we will succeed in describing reusable
components by abstract schemata, we are facing two
issues: how programmers will find out about the exist-
ence of a reusable component and how programmers
can transform such a component into a concrete
program that can be compiled or interpreted by existing
language systems. Good browsing capabilities and
hierarchical help facilities are needed for programmers
to find out what is available. For each reusable com-
ponent a clear explanation is needed to describe its pur-
pose and describe all the available options and design
decisions a user must make. Such choices are to be
expressed by attaching parameters and attributes to
reusable components.

The description of a reusable component and all its
options may be fairly elaborate. The bidirectional struc-
ture, for instance, might allow three different im-
plementations that respectively use lists, arrays or heap
variables. For each of these the memory size may be set
in advance or not. The description would mention that
each element has a predecessor and a successor except
for the first and last elements. The description may
provide the option of defining the successor of the last
element to be that element itself, to be the first element
or to be undefined. The reusable component may also
leave open the choice of whether structure elements
must be of a uniform type or can be of heterogeneous

types.

A general design of the way reusable components can
be described is beyond the scope of this paper.
However, the example shows that such a description is
likely to be fairly elaborate and that it may require quite
a bit of work to construct a concrete program out of a
reusable component. This type of work can be
facilitated greatly by a programming environment that
provides the tools for program transformations and for
browsing through the descriptions and options of reus-
able components.

3. Programming Environments

Programming Environment research and development
have gone in various directions. Environments can be
partitioned into five categories depending on their
premises and goals. The five categories are:

e Structure-oriented environments

¢ Language environments

e Toolkit environments

» Software development methodologies

» System development assistants.

The main characteristics of each of these environments
are briefly discussed below.

3.1. Structure-Oriented Environments

Examples of structure-oriented environments are Men-
tor [6], Gandalf [12], the Cornell Program Synthesizer
[27], Pecan [22], PSG [13] and many others. A major
objective of these environments is to eliminate the tex-
tual interface between user and system. The important
idea is to have the user operate directly on data struc-
tures and structured data objects in the programming
environment. This approach has the significant advan-
tage that user-system dialogue takes place in terms of
typed objects with well-defined operations. Having this
knowledge, the system is able to check and assure that
the user’s actions make sense.

Another characteristic of structure-oriented environ-
ments is the use of a concurrent model for environ-
ments. The traditional model, which is still most com-
mon today, is sequential. Information is not shared by a
collection of tools, but explicitly passed from one tool to
the other. UNIX pipes are a typical example of this
model. In the concurrent model, on the other hand,
tools operate on a common database which enables
them to share information.

The sequential model has the advantage that new tools
can easily be added, because tools communicate ex-
clusively through input/output connections. However,
the model has two major drawbacks: lack of uniformity
of tool design and usage, and potential inefficiency
caused by parsing and transforming input for each tool.
The concurrent model is exactly the opposite of the
sequential model. A tool designer using the concurrent
model has the integration of tools foremost in mind and
designs the interaction of tools with users and with
other tools as a facility of the programming environ-
ment. In the concurrent model, tools need not parse
and transform input, because information is shared in
the common database. On the other hand, the concur-

rent model has the drawback that extending an environ-
ment with new tools may be hard because the existing
data formats are fixed and cannot easily be modified to
include the information needed by the new tool. Recent
work on views [10] seems to offer a promising approach
to solving this problem. The essence of the solution is to
define for each tool the particular view it has on the
data and to construct the data formats by merging these
views.

Another common characteristic of this category of en-
vironments is the generic approach. If the environment
consists of typed objects instead of text files, one wants
to express environment-specific information in these ob-
jects. This object orientation leads to a desire to
generate families of environments, each designed to
provide support for a specific task. As a result, the
question arises how this multitude of specialized en-
vironments can be generated within a reasonable period
of time. Since the size of each environment is on the
order of a language compiler, one cannot expect to be
successful with this approach if each environment must
be hand-coded. That would mean a production effort of
two or more man-years per environment.

To solve the generation problem, program generators
have been written that translate declarative environ-
ment descriptions produced by the environment desig-
ner into programs and tables. These declarative
descriptions are much shorter than programs written in
a programming language such as C or Ada. Moreover,
special purpose environments have been generated that
alleviate the designer’s task of producing these descrip-
tions. The generic approach has not only served the
purpose of generating a variety of environments, but
has also proven to be extremely valuable in making it
easy to modify and enhance existing environments.

To recapitulate, the three major characteristics of the
environments in this category are:

o direct interaction with structured objects,
eliminating the traditional textual interface

s the concurrent environment model which
facilitates sharing of information among
tools

o the generic approach which facilitates the
creation and incremental modification of
families of environments.

3.2. Language Environments

Language environments exist for almost all important
programming languages. Examples are Interlisp for
Lisp [28], Smalltalk [11], Cedar for Mesa [26], Lilith for
Modula 2 [32], Toolpack for FORTRAN [20], Rational-

Ada [1] and MacGnome for Pascal {3]. They have in
common that the environment is centered around a par-
ticular programming language and that all program-
ming is done in that language.

The motivation for designing language environments is
that programming languages provide facilities for writ-
ing individual programs (known as programming-in-
the-small), but fail to address system building issues
(known as programming-in-the-large). Even Ada, with
its constructs for describing intermodular dependencies,
went only halfway and limits its facilities to static
descriptions of systems. For instance, Ada does not
provide constructs for the typical programming-in-the-
large facilities that enable programmers to describe al-
ternative implementations or successive versions of the
code. Designers of language environments recognized
the lack of support for programming-in-the-large in
their environments which initially provided support
only for language translation, debugging and execution.
Extension with tools for programming-in-the-large en-
ables a programmer to stay within the language of
choice and build modular systems in its environment.
Most of the language environments make use of an
existing database or file system for implementing the
system building support tools.

The Rational-Ada environment goes the furthest in
providing support not only for system building, but
also for project management (known as programming-
inthe-many). The additional facilities needed for
project management address the team aspect of
software projects. These facilities support the propaga-
tion of information about the project status and enforce
some elementary rules of behavior among programmers
of a team. For example, the environment can enforce a
check-in, check-out policy that prevents programmers
from overwriting each others modifications. Most lan-
guage environments, however, provide support for sys-
tem building, but not for project management. Interlisp
and Smalltalk have this characteristic and are therefore
basically single-user environments.

In contrast to structure-oriented environments, all lan-
guage environments are monolithic and handcrafted.
The designers of language environments have not
pursued the idea of system families. The handcrafted
approach has the advantage that support facilities can
be made to run very efficiently, but has the drawback
that the environment is hard to modify and that tools
and policies are difficult to replace. The language en-
vironments are built in the tradition of language com-
pilers. The main characteristics of language environ-
ments are:

e single language environment with exten-
sions for building systems

« good support for a single user, little support
for project management

e environments are handcrafted, provide ef-
ficient tools, are hard to modify.

3.3. Toolkit Environments

Some examples of toolkit environments are PWB [5],
DSEE [16], PCTE [9] and CAIS [18]. The Programmers
Workbench is an extension of UNIX; DSEE is a system
for programming-in-the-large on Apollo workstations;
PCTE is the modified version of UNIX designed by a
number of European companies under the auspices of
the Esprit program; CAIS is the DoD-STARS design for
an Ada environment. In contrast to the language en-
vironments, the design of toolkit environments starts
with programming-in-the-large. These environments
provide support for system building with an emphasis
on system configuration management and version con-
trol. The tools provided by toolkit environments are
language independent. The tools are primarily exten-
sions of the operating system, its file system and its user
interface.

Toolkit environments extend the operating system inter-
face with the concept of typed objects and with tools.
The concept of typed objects is added by all toolkit
environments, except PWB, and replaces the notion of
text file. However, the range of typed objects is usually
fixed and very limited. Typical types supported in the
environment are "document”, "source”, "object code",
etc. Users and environment designers cannot add their
own types. The tools added to the environment make
use of the object types and hide the untyped character
of the underlying file system.

The approach taken by the designers of these environ-
ments is that the programmer’s task can be greatly
facilitated by providing tools that help a programmer
with the most frequently occurring subtasks and with
those aspects of system development control that are
tedious for programmers to do, but easy for machines.
An example is DSEE which provides elaborate facilities
for system version control and for keeping track of the
modification process. Neither CAIS nor PCTE provides
much support for system building beyond the intro-
duction of typed objects. But all environments in this
category are built with the intent that the user is com-
pletely in charge and decides when to apply one of the
available tools.

In contrast to the language environments, toolkit en-
vironments are in principle multi-language environ-
ments. Adding a new programming language to the
environment requires only little change. However,
similar to language environments, toolkit environments
are monolithic and handcrafted. The idea of system
families plays no role in the design and tools are made

to perform well by fine tuning the environment by
hand. Also, little support is provided for project
management. PWB, CAIS and PCTE provide virtually
none, while DSEE provides good support for propaga-
tion of information, and some for enforcing project
development rules.

Summarizing, we find that the main characteristics of
toolkit environments are:

e the environment extends the operating sys-
tem interface primarily with tools for
programming-in-the-large

» text files are replaced by a fixed set of object
types

¢ environments are handcrafted, provide ef-
ficient tools, and are hard to modify.

3.4. Software Development Methodologies

Examples of well-known software development
methodologies are Jackson’s JSD [14], Softech’s SADT
[24], Yourdon’s SA/SD [33] and many similar systems.
The emphasis of these methodologies is not on tools or
languages, but on support of stepwise system develop-
ment. The common idea of these methodologies is that
software systems can be developed in an orderly fash-
ion if programmers follow a fixed sequence of steps and
obey certain rules.

Software design methodologies are based on specific
models of the software development process. SADT, for
instance, uses the notions of actigram and datagram to
describe system components, mainly in terms of actions
that involve input, tools, database information and out-
put. The result of adopting a specific model for the
development process is that tools in the environment
become much more cohesive than in the toolkit ap-
proach. Tools are designed as a close-knit collection of
functions, each function contributing in a specific way
to supporting the methodology.

The dominant concepts in software development
methodologies are top-down design and stepwise
refinement. Although these concepts can be supported
by other environments, they do not play as strong a role
as in software development methodologies. However, a
much more significant distinction between software
development methodologies and the other environ-
ments is the fundamental concepts ignored by the
methodologies and emphasized by the others. The
major concepts that play no role in software develop-
ment methodologies are abstract datatypes, and in par-
ticular data encapsulation, subsystems and version con-
trol. The reason that the methodologies ignore these
concepts may be in their operational approach to the

development process. The subtasks of programmers are
primarily described in terms of actions in which infor-
mation hiding and data dependencies play no sig-
nificant role.

Software design methodologies were first designed
without support of a programming environment. More
recently, the large software producers have adopted
these methodologies and have built the necessary en-
vironments to support them. In contrast to the other
types of environments, the software development
methodologies provide a complete guide for the
development process, while the other environments
leave the use of the tools entirely in the hands of the
users. A toolkit environment, for instance, does not tell
its user when and in which order tools must be used.

The major characteristics of software methodologies are:

e complete guidance through the top-down
software development process

 a coherent set of tools that support stepwise
development

e no usage of data encapsulation, subsystems
and version control.

3.5. System Development Assistants

Examples of system development assistants are ISTAR
by Imperial Software [7], ERGO [25] and SEAR [17] at
CMU, and various Al systems among which the
Programmers Apprentice at MIT [30] and REFINE by
Kestrel [31] are developed further than most. The com-
mon theme of these environments is to provide user
assistance and have the environment complement the
user’s work.

The development assistant environments resemble the
structure-oriented environments and the methodologies
in providing a coherent set of tools that assists the user
in performing a specific task, However, the system
development philosophy promoted by these environ-
ments varies widely and does not particularly em-
phasize top-down design or stepwise refinement.
Another major difference with the methodologies is that
the development assistants make extensive use of data
structures and data dependencies. A difference with
the toolkit environments is that the environment per-
forms some subtasks automatically, particularly clerical
tasks which are not performed well by the user.
Development assistants participate more actively in the
work and interact with the user in a manner that one
might expect of a human assistant.

Development assistants share with structure-oriented
environments the objective of providing support for
specialized tasks. In contrast to toolkit environments,

development assistants typically build their set of tools
on top of a system kernel that provides common
facilities to tools and monitors the application of tools in
the user environment. However, development assis-
tants resemble language environments and tooklit en-
vironments in their monolithic character and in their
handcrafted implementation. The idea of sharing
facilities and code in a system family has not yet been
adopted by the designers of development assistants.
Also, the handcrafted approach contributes to runtime
efficiency, but makes it hard to enhance and modify an
environment.

The development assistants vary widely in objective.
ISTAR is a software development environment in the
traditional sense, but it achieves its goal in a novel way
by having its users express their tasks in terms of con-
tracts and subcontracts. The Programmers’ Apprentice
and REFINE are examples of knowledge-based systems.
SEAR is a specialized environment for building expert
systems. ERGO is an ambitious environment for the
derivation of programs through a formal representation
of the relationship between programs. ISTAR and
REFINE are available as commercial products, while the
other three have been developed in the academic en-
vironment.

In summary, the main characteristics of system develop-
ment assistants are:

e the environment complements the user’s
work and performs subtasks automatically

o the environment applies domain knowledge

e environments are handcrafted, provide ef-
ficient tools, and are hard to modify.

4. Environments for Reuse

In this section we explore first what is needed for fur-
ther development of the reusability idea. Many of these
needs happen to be things that must be supported well
by a programming environment. In the second part of
this section we come back to the programming environ-
ment taxonomy and see which type of environment can
best support reusability.

4.1. Development of Reusability

In Section 2 we reviewed the various techniques that
can help produce reusable programs. The techniques
discussed were:

e code sharing
e program libraries

» generic program modules

e program generators

e program schemata.

The first two are widely practiced today, while the third
is gaining in popularity, particularly through the use of
the Ada language. Program generators have been used
for specific purposes (such as parsers and structure-
oriented programming environments) and can be par-
ticularly useful in advancing the cause of reusability by
supporting the design of system or program families.

We argued that for reusability to become a more useful
technique, algorithms must be described at a higher
level of abstraction than is currently possible in a pro-
gramming language. Such an abstract description must
be augmented by parameters and attributes that give
the user a choice of implementation, resource utiliza-
tion, object representation, etc. We use, somewhat
reluctantly, the term "program schema" for such an
abstract description. The use of this term should not be
confused with the use of that term of fifteen years ago.

The design of program schemata is undoubtedly the
least explored area of reusability. Although the other
forms of reuse are still growing (which is encouraging!),
research and development of a technique of reuse
through program schemata are just starting. It is there-
fore natural to ask where to start and in which direction

to go.

Language design should not be the first step. We
should resist the computer scientist’s propensity for at-
tacking a problem by designing a programming lan-
guage. There are two reasons why such an approach is
not appropriate. First, designing a language for describ-
ing program schemata will focus our attention on form
and not on substance. It is premature to make represen-
tation the main issue, when we do not have a clear
picture of what should be described in a program
schema. Secondly, a particular notation should not be
chosen until various camps have explored the issue and
are able to debate the matter of representation based on
research results. This is a lesson learned from the Ada
environment design. The Ada language is based on
extensive research in language design and program-
ming methodology. The APSE environment for Ada,
however, was proposed before research and experimen-
tation had taken place. The result has been a chaotic
process of extensions, while the commerical market has
largely ignored the Ada environment design altogether
and designed its own.

The issues that seem most important with respect to

program schemata for reuse are:

o description and documentation

» browsing capabilities

« object editing
¢ transformation tools
e tool control

e persistent data storage.

The first item on the list refers to the content of a
program schema describing a reusable component. A
schema must describe precisely and concisely what the
component does and how it can be used. A useful
example for documentation style may be the kind of
explanation one finds in textbooks on the design of
algorithms. It is likely that one also wants a mechanism
that records the usage of a reusable component: where
it is used, which options were used, etc.

The importance of a browsing capability cannot be em-
phasized strongly enough. A collection of reusable
components will be practically worthless if the user
must read through long lists of acronyms or cross refer-
ence lists. The collection must be accessible by topic, by
keyword, by name and must also be traversible in al-
phabetic order or in random order. It should not be
necessary for the user to enter names precisely. The
environment must be flexible enough to match names
that resemble the input. Wildcards should also be used
extensively.

The concept of object-oriented programming has shown
its usefulness. An important aspect of object-oriented
programming is that the environment deals with typed
objects. This approach has the great advantage that the
environment is able to maintain consistency and check
that operations applied to objects maintain consistency.
In an environment consisting of typed objects many
mistakes can be avoided by having the user edit these
objects directly.

The primary task of an environment supporting
reusability is to provide tools that help the user trans-
form a reusable component into a finished program.
The environment can contribute two other things,
namely tool support and storage facilities. The advan-
tage of designing a collection of tools together is that
common facilities such as data structure access
procedures can be provided by the environment for all
tools to use. It is then not necessary for each tool to
define and implement its own support. An important
part of general tool support is access to storage. When
the user is transforming reusable components into
finished programs, the intermediate and final results of
his work need to be preserved in part for future elabora-
tion. The environment ought to provide the storage
medium in which not only the objects themselves, but
also their relationships can be stored.

4.2. Suitable Environments

Almost all types of programming environments dis-
cussed in Section 3 are suitable for supporting the cur-
rent practice of reuse through shared code and program
libraries. With respect to libraries, there may be some
advantage in working with a language environment or
a toolkit environment. The toolkit environments may
even have a slight advantage over the language en-
vironments, because they often support a multi-
language environment in which various language sys-
tems can make use of each others libraries. The
structure-oriented environments and the system
development assistants are somewhat less suitable, be-
cause their approach usually requires a specific effort to
integrate existing code from elsewhere. The methodol-
ogy environments handle program libraries as well as
the toolkit environments because of their file system or
database orientation.

The Ada language environment is particularly suitable
for reuse through generic components, because these
are directly supported in the language. Other language
environments could support a similar mechanism if the
module concept of their language were extended to in-
clude types and functions as parameters. The other
environment types, with the exception of the
methodologies, could support generic units in a similar
manner as a part of their programming-in-the-large
facilities. It is difficult to see how methodology en-
vironments easily can support generic units since nei-
ther data types nor programming-in-the-large are
provided.

Program generators are used extensively for creating
structure-oriented environments, but their use is not
particularly promoted in the created user environments.
There seems to be no particular reason to assume that
one environment type is more suitable to support
program generators than any other. Program generators
are application programs that can be placed in any
program library or file system.

Greater difference exists with respect to the support of
program schemata. Here it seems that the structure-
oriented environments and the system development as-
sistants have a distinct advantage over the others.
These environments provide the best support for typed
objects and for tool control. They are able to assist the
user with object editing, can maintain consistency and
can also provide the browsing capabilities. The toolkit
environments can be used with a little more difficulty,
but will require a lot of discipline on the part of the
user.

It seems that the language environments and the
methodologies are the least suitable for supporting
program schemata. In language environments it is not
possible to represent program schemata at a sufficiently

abstract level. It might be possible to do this if the
designer is willing to go outside of the language, which
he probably has done already to add system version
control to the environment. The methdology environ-
ments are the least suitable for supporting program
schemata. In contrast to language environments, the
description is not the problem, nor is storage, but all
other issues are. Methodology environments lack sup-
port for typed objects, while things such as browsing,
tool sets and tool support are foreign to their methodol-
ogy approach.

Conclusion

Current practice of program reuse is primarily based on
code sharing and program libraries. Generic units and
program generators are emerging as additional
reusability techniques. Reusability may become sig-
nificantly more important if we can find ways to ex-
press reusable components at a higher level of abstrac-
tion than is possible in a programming language. Such
a description must not bind the implementation too
early and must capture the logic of an algorithm or
procedure. This form of reusability needs the support
of a programming environment that uses typed objects,
and provides transformation tools and extensive brows-
ing capabilities.

While all types of environments discussed in this paper
are able to support the reusability techniques currently
practiced, the development of program schemata is bet-
ter supported by the object-orientation of the structure-
oriented environments and by the development assis-
tants. Both types are characterized by their support of
integrated tool sets that operate on collections of typed
objects. The toolkit environments can probably provide
a similar functionality, but much will depend on dis-
ciplined behavior on the part of the user. The language
environments are limited in what they can do to sup-
port abstract program schemata because this approach
requires going outside of the chosen programming lan-
guage. The methodology environments are probably
the least suitable for supporting further development in
reusability because of their lack of support for abstract
datatypes and integrated tool sets.

References

[11 Archer, J. E, "The Design of the Rational
Environment", in Springer Verlag's Lecture Notes in
Computer Science, Proc. CRAI Intn’l. Conf. on
Software Factories and Ada, Capri, Italy, May 1986.

{2] Boehm, B. W., "Software Engineering Economics”,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

(3] Chandok, R. et al., "Structure Editing-Based Pro-
gramming Environments: The Gnome Approach”,
in Proc. Natn’l. Computer Conf. AFIPS, July 1985.

(4]

[5]

(6]

(7]

(8]

[91

{10}

[11]

[12]

Dijkstra, E. W., "A Discipline of Programming”,
Prentice-Hall, Series in Automatic Computation,
pPp- 16 - 23, Englewood Cliffs, NJ, 1976.

Dolotta, T. A. et al., "UNIX Time-Sharing System:
The Programmer’s Workbench”, in Interactive Pro-
gramming Environments, D. R. Barstow, Ed.
MacGraw Hill, NY, 1984.

Donzeau-Gouge, V. et al., "Practical Applications
of a Syntax-Directed Program Manipulation
Environment", in Proc. 7th Intn’l. Conf. on Software
Engineering, Orlando, Fla., March 1984.

Dowson, M., "ISTAR: An Integrated Project Sup-
port Environment”, in Proc. ACM
SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical = Software Development
Environments, Palo Alto, Calif., Dec. 1986.

Floyd, Ch., "Eine Untersuchung von Software-
Entwicklungsmethoden", in Proc. German Chapter
of ACM, 18, Munchen, published by Teubner Ver-
lag, Stuttgart, April 1984.

Gallo, F. et al,, "The Object Management System of
PCTE as a Software Engineering Database
Management System", in ACM
SIGSOFT[SIGPLAN Software Engineering Sym-
posium on Practical Software Development
Environments, Palo Alto, Calif., Dec. 1986.

Garlan, D., "Views for Tools in Integrated
Environments", in Springer Verlag's Lecture Notes in
Computer Science, Proc. Workshop on Advanced Pro-
gramming Environments, Trondheim, Aug. 1986.

Goldberg, A., "Smalltalk-80: The Interactive Pro-
gramming Environment", Addison & Wesley, Read-
ing, Mass., 1984.

Habermann, A. N. and D. E. Notkin, "Gandalf:
Software Development Environments”, in IEEE
Transactions on Software Engineering, 12, 12, Dec.
1986.

Henhapl, W. et al., "PSG: A Programming System
Generator”, German Chapter of the ACM, 18,
Munchen, published by Teubner, Stuttgart, 1984.

Jackson, M., "Principles of Program Design",
Academic Press, 1975.

Knuth, D. E., "The Art of Programming”, Vol. 1, p.
278, Addison-Wesley, Reading, Mass., 1973.

Leblang, D. B. and R. P. Chase, Jr., "Computer-
Aided Software Engineering in a Distributed
Workstation Environment”, in Proc. ACM
SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development
Environments, Pittsburgh, Pa., Apr. 1984.

17]

(18]

(19]

[20]

(21)

[22]

[23]

[24]

(25]

(26]

{27)

(28]

[29]

{30]

McDermott, J., "Making Expert Systems Explicit”,
in Proc. IFIP 10th World Computer Congress, Dublin,
Ireland, published by North Holland/Elsevier,
Sept. 1986.

Military Standard Common APSE Interface Set,
proposed MIL-STD- CAIS, Ada Joint Program Of-
fice, Wash., DC, Jan 1985.

Mills, H. D. and R. C. Linger, "Data Structured
Programming: Program Design without Arrays
and Pointers", in IEEE Trans. Software Engineering,
12, 2, Feb. 1986.

Osterweil, L.], "Toolpack - An Experimental
Software Development Environment Research
Project”, in IEEE Trans. Software Engineering, 9, 11,
Nov 1983.

"Readings in Artificial Intelligence and Software
Engineering", edited by C. Rich and R. C. Waters,
published by Morgan Kaufman Publishers, Inc.,
Los Altos, Calif., 1986.

Reiss, S. P., "PECAN: Program Development Sys-
tems that Support Multiple Views", in Proc. 7th
Intn’l. Conf. Software Engineering, Seattle, Wash.,
Mar. 1985.

Reps, T. and R. Teitelbaum, "The Synthesizer
Generator”, in Proc. ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, Pittsburgh, Pa.,
Apr. 1984.

Ross, D. T. and K. E. Schoman, Jr., "Structured
Analysis for Requirements Definition", in IEEE
Trans. Software Engineering, 3, 1, Jan. 1977.

Scherlis, W. L. and D. Scott, "First Steps Towards
Inferential Programming”, in Proc. IFIP Congress
83, Paris, Sept. 1983.

Sweet, R. E, "The Mesa Programming
Environment”, in Proc. ACM/SIGPLAN Symposium
on Language Issues in Programming Environments,
Jul. 1985.

Teitelbaum, R. and T. Reps, "The Cornell Program*
Synthesizer: A Syntax-Directed Programming
Environment”, in Comm. ACM, 24, 9, Sept. 1981.

Teitelman, W. and L. Masinter, "The Interlisp Pro-
gramming Environment”, in Computer, 14, pp. 25 -
34, April 1981.

Turner, D, "An Overview of Miranda"”, in
SIGPLAN Notices, 21, 12, Dec. 1986.

Waters, R. C, "The Programmer’s Apprentice:
Knowledge-Based Program Editing", in IEEE
Trans. Software Engineering, 8, 1, Jan. 1982.

(31]

(32

{331

Westfold, S., "Artificial Intelligence in Software
Production”, in Springer Verlag's Lecture Notes in
Computer Science, Proc. CRAI Intn’l. Conf. on
Software Factories and Ada, Capri, Italy, May 1986.

Wirth, N., "Lilith: A Personal Computer for the
Software Engineer”, in Proc. 5th Intn’l. Conf.
Software Engineering, San Diego, Calif., March 1981.

Yourdon, E. and L. Constantine, “Structured
Design", Prentice Hall, Englewood Cliffs, Calif.,
1979.

