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Structure, clearly understood and represented, is a key tool in the design of any complex 
artifact. Software systems are among the most complex of all human artifacts. The software 
designer’s essential product is not the software itself, but the behaviours that it evokes in the 
‘problem world’ outside the computer and the affordances it provides to its users. The 
properties of the problem world, and the users’ capacities to understand and exploit the 
system’s complex functionality, are therefore vital subjects for the designer’s attention. 
Causality is an important concern in a realistic system, within the computer, within the 
problem world, and in their mutual interactions. The computer can process and manipulate 
information; it can therefore embody useful representations of the problem world, of its 
users, and even of itself, adding further levels of structural complexity. This paper discusses 
some aspects of structure and its representation arising from these concerns in software 
system design, and offers some general observations relevant to other design fields. The 
discussion is illustrated by the design task studied in the SPSD2010 workshop that took 
place in February 2010 at UC Irvine, CA, USA.  
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Introducing a digital computer into a system brings an unprecedented level of behavioural 
complexity. Anyone who has ever written and tested a small program knows that software, 
even when apparently simple, can exhibit complex and surprising behaviours. To deal 
effectively with this complexity the program text must be structured to allow the 
programmer to understand clearly how the program will behave in execution (Dijkstra 
1968). That is: the program’s behaviour structure must be clearly represented by its textual 
structure.  

In a system of realistic size, a further level of complexity is due to the combination and 
interaction of many features. For example, a modern mobile phone may provide the 
functions of a phone, a camera, a web browser, an email client, a GPS navigation aid, and 
several more. These features can interact in many ways—a photo taken by the camera can be 
transmitted in a phone call—and the resulting complexity demands its own clearly 
understood structuring if the feature interactions are to be useful and reliable. The functional 
structures created and understood by the designer must be intelligibly related to parallel 
structures perceived by the users of the system. It is failure in this user-interface structuring 
that explains the difficulty experienced by many users of digital TV recorders, and the 
multitude of puzzled customers asking on internet forums how to set the clock on their 
digitally-controlled ovens.  

Yet another demand for clear structure comes from the world outside the computer, where 
the problem to be solved by the system is located. For some systems, including critical and 
embedded systems, the essential purpose of the system is to monitor and control this 
problem world: the purpose of an avionics system is to control an airplane in flight, and the 
purpose of a cruise control system is to control the speed of a car. The designers of such a 
system must study, structure, analyse and clearly depict the properties and behaviours of the 
problem world where the software execution will take its effect; they must respect and 
exploit those properties and behaviours in designing the software to produce the effects 
required.  
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Structure, then, is of paramount importance in software design: understanding, capturing, 
analysing, creating and representing structure furnish the central theme in this paper. The 
paper arises from a software design workshop (SPSD 2010) sponsored by the US National 
Science foundation in February 2010. The workshop brought together a multidisciplinary 
group of participants, all with an interest in the theory and practice of design in its many 
manifestations. The workshop focused on previously distributed video and transcription 
records of design sessions, each of one or two hours, in which three teams of software 
professionals worked separately on a given system design problem. The introduction to the 
special issue of Design Studies in which this paper appears gives a fuller account of the 
design problem itself and of the capture of the design teams’ activities. The time allotted for 
the work was very short, and none of the teams could be said to have addressed the problem 
effectively. However, many interesting issues arose in the design sessions and were 
discussed in the workshop.  

In this paper these issues are considered both at the level of software development generally 
and in the specific context of the given problem, focusing on the discovery, invention and 
representation of structure in a few of its many dimensions and perspectives. The paper 
progresses broadly from the task of understanding the initial requirement in Section 1 
towards the design of the eventual software system in Section 7. Section 2 considers the 
designer’s view of the reality to be simulated—in this case, a road traffic signalling 
scheme—and Section 3 discusses the simulation of this reality by objects within a computer 
program. Sections 4, 5, and 6 explore some general structural concerns as they arose in the 
problem and its solution. Section 8 discusses some broader aspects of the design case study, 
and comments critically on current software development practices and notations. Section 9 
concludes the paper by offering some more general observations relevant to design practice 
in other fields.  

1 Understanding the requirement 

The problem, outlined in a two-page design prompt, is to design a system to simulate traffic 
flow in a road network. The sponsor or client is Professor E, a teacher of civil engineering, 
and the system’s intended users are her civil engineering students. The system’s purpose is 
to help them to achieve some understanding of the effects on traffic flow of different 
schemes of traffic signal timings at road intersections. The design teams were required to 
focus on two main design aspects: the users’ interactions with the system, and the basic 
structure of the software program.  

This traffic simulation problem is not a critical or embedded system: it is no part of the 
system’s purpose to monitor or control traffic in the real world. Nevertheless, the system has 
a close relationship to the real world because it is required to simulate the behaviour of real 
traffic under different regimes of traffic signalling at road intersections. An obviously 
important criterion of a successful design is that the simulation should be sufficiently faithful 
to the behaviour of real traffic.  

The core function of the system is to support the creation and execution of traffic 
simulations. Each executed simulation has the following basic elements: 

 a map: a road layout containing several four-way intersections, all with traffic lights;  
 a scheme: a traffic signalling scheme defining the sequence and duration of the light 

phases at each intersection; and  
 a load: a traffic load on the system imposed by the statistical distributions over time of 

cars entering and leaving the layout.  
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The student users will specify maps, schemes and loads; they will use them to run 
simulations and observe their results in a visual display. They must be able to alter the 
scheme or the load and see how the change affects the traffic flow. By using the system in 
this way the students are expected to obtain a broad intuitive understanding that the practical 
engineering of traffic signal timing is a challenging subject, and at least a rough feeling for 
the variety of effects that a scheme can have. As Professor E points out, “This can be a very 
subtle matter: changing the timing at a single intersection by a couple of seconds can have 
far-reaching effects on the traffic in the surrounding areas. Many students find this topic 
quite abstract, and the system must allow them to gain understanding by experimenting with 
different schemes and seeing first-hand some of the patterns that govern the subject.” The 
understanding they have gained will prepare and motivate them for the systematic 
mathematical treatment in their civil engineering course on the subject of traffic 
management.  

Understanding the requirement—that is, the problem that the software is intended to solve—
is a crucial task in developing software (Jackson 2001). Kokotovich (2008) cites the 
investigation by Matthias (1993) of novice and expert designers in several fields. Matthias 
found that expert designers treat problem analysis as a fundamental early design activity, but 
novices typically neglect it. Major misunderstandings of the system requirement were 
detectable both in some of the recorded design sessions and in some of the subsequent 
workshop discussions.  

One design team was—temporarily—misled by the mention in the design prompt of an 
“existing software package that provides relevant mathematical functionality such as 
statistical distributions, random number generators, and queuing theory”. They assumed that 
the purpose of the software package mentioned was to support a mathematical analysis of 
the traffic flow. The system would take a specified map, scheme and load, and derive a 
system of equations; by solving these equations the system would determine performance 
measures such as waiting times at intersections, average speeds over each road segment, the 
expected number of cars held up at each intersection, and so on. These results would be 
displayed on the computer screen; when the user changes the map, scheme or load, the effect 
of these changes on the performance measures would be recalculated and made visible on 
the screen.  

In fact, the design prompt did not call for such a mathematical analysis: instead it called for a 
simulation of the traffic flow. The system would contain program objects corresponding to 
the parts of the real-world traffic and its environment: vehicles, roads, and signals. The 
properties and individual behaviours of these program objects would be specified by the user 
in the map, scheme and load. Execution of the system would cause these program objects to 
behave and interact in ways closely analogous to their real-world counterparts. The resulting 
traffic flows would then emerge from the interactions of the program objects just as real-
world traffic flows emerge from the individual behaviours and properties of the vehicles, 
roads, and signals. As the simulation progresses, the flows would be displayed as a pictorial 
representation of cars moving along roads, the display changing over time just as real traffic 
flows do.  

A related misunderstanding of the requirement was the assumption that the simulation 
should produce not only a visual representation of the light settings and the resulting traffic 
flow, but also numerical outputs such as average journey times. In fact, the design prompt 
document says nothing about numerical outputs, but emphasises visual representation 
throughout.   

In one workshop discussion it was argued that the purpose of the system was to help the 
student users to find the optimal signalling scheme for a given map and a given load. This, 
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too, was a misconception. The purpose of the software system, clearly described in the 
design prompt, was to help the students to develop an informal intuitive understanding by 
running and observing clearly visualised simulations. Finding optimal schemes would be the 
goal of the formal mathematical treatment that the students would encounter later, in their 
academic course. The system would prepare the students for this formal mathematical 
treatment by introducing them to the problem and stimulating their interest by animating 
some  practical examples of the complexities it can exhibit. 

2 Road layout and traffic in the real world 

Simulations are necessarily simplifications, and the design prompt directs the system 
designer to consider only a simplified area of a real world road layout. Many commonly 
found features are eliminated. There are no one-way roads and no T-junctions; all 
intersections are four-way and all are controlled by traffic lights; there are no overpasses and 
no giratories. The part of the road layout to be considered is bounded; it is quite small, 
containing only a few—“six, if not more”—intersections.  

Even with these layout constraints there are variations that the system must be able to 
handle, and some that the designer may be free to ignore. In considering the design choices 
here it is important to bear in mind the purpose of the system, and to consult Professor E 
whenever the consequences of a design choice are obscure. For example, the simplest road 
arrangement that satisfies the layout constraints is a rectangular grid; for many reasons the 
system design will be easier if more complex layouts are ignored. However, as Figure 1 
shows, the layout constraints given in the design prompt are also satisfied by a rectangular 
grid with added diagonal roads. Whether this complication must be handled depends on a 
question of traffic management theory. All cycles in the rectangular grid are quadrilaterals, 
while the complex layout also has triangular cycles. Do these triangular cycles give rise to 
unique characteristic variations in traffic flow effects that the students are expected to learn 
about from the system? This is a question that Professor E must answer for the designer.  

 

 

 

 

 

 

Figure 1.  Possible road layouts 

Another design choice concerns the way cars enter and leave the traffic flows in the layout. 
Since there are no one-way roads, cars can enter and leave at any point at which a road 
crosses the map boundary. If the map contains parking lots, it is also possible for cars to 
enter or leave the traffic flow at any point at which a parking lot is connected to a road. This 
possibility seems to introduce a large complication. The system will need to keep track of 
the number of cars in each parking lot, and the points at which cars enter the traffic flow on 
leaving the lot will constitute intersections of a new and different kind, requiring special and 
potentially complex treatment. This additional complication seems to add little or nothing to 
the value of the system for its proclaimed purpose, and all the teams wisely ignored the 
possibility.  

The real-world traffic signal schemes that must be considered are less constrained. One or 
more lanes at each intersection may be equipped with sensors: the traffic signal scheme can 
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then take account of the presence or absence of vehicles in a lane, avoiding giving pointless 
priority to directions in which there is no traffic. The design prompt does not stipulate 
whether right turn on red is permitted. It states that the system must “accommodate left-hand 
turns protected by left-hand green arrow lights”, but it is unclear whether unprotected left 
turns are permitted anywhere. It is also unclear whether ‘lane’ has its usual real-world 
meaning in which a wide road may have several lanes in each direction, or instead denotes 
one of the two possible travel directions along a stretch of road. A “variety of sequences and 
timing schemes” should be accommodated, but the variety is left to the designer to choose.  

The design prompt does not mention large trucks or emergency vehicles, and individual 
vehicle behaviour is implicitly limited to normal lawful behaviour of passenger cars. The 
design prompt says nothing about speed limits, and the designer may perhaps assume that a 
uniform speed limit applies everywhere. Cars do not break down or collide; their drivers 
always obey the traffic signals and never block an intersection. No road segments or lanes 
are closed for repairs.  

3 Simulation of real-world traffic by programming objects 

The physical elements of a real-world traffic system, and their relationships, are shown in 
Figure 2. The diagram shows only the physical elements of the real-world traffic, 
represented by the symbols, and the interfaces at which they interact, represented by the 
connecting lines. It does not represent such abstract things as signalling schemes or the 
drivers’ planned journeys through the layout.  

 

 

 

 

 

 

 

 

Figure 2.  Real-world traffic elements and interactions 

Vehicle sensors and signal units are permanently located (c and d) at positions in the road 
layout. The vehicle drivers see and obey (e) the traffic signals; they move into road space 
only if it is not occupied (f) by another car; and their movements affect (g) the states of any 
vehicle sensor they encounter. The sequencing and timing of the signal lights is controlled 
(a) by one or more signal controllers, which read and take account of (b) the states of any 
relevant vehicle sensors. It is the behaviour of such real-world traffic systems that is to be 
simulated by an executable computer program.  

All the design teams assumed—realistically, in today’s software development culture—that 
the executable simulation is to be programmed in an object-oriented language such as Java. 
So a significant part of the design task is to decide what programming objects should 
participate in the simulation and how they should interact. In effect, the properties and 
behaviours of these objects when the simulation is executed will constitute the designer’s 
chosen model of the properties and behaviours of the simulated reality.  
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Starting from the depiction in Figure 2, it seems initially that the necessary objects are: one 
for each car; one for each signal unit; one for each sensor; one for the road layout; and one 
for each signal controller. However, while it is reasonably clear that one object is needed to 
represent each car and one for each sensor, it is not yet clear how many individual objects 
will be needed to represent the road layout, the signal units, and the signal controllers.  

The road layout is made up of roads which cross each other at intersections, so we may 
initially expect to have one object for each road and one for each intersection. These objects 
must be associated so that each intersection object indicates which roads cross there and each 
road indicates the sequence of intersections encountered along the road. The signal units 
might be represented in several different ways. For example: one object for each lamp, one 
for each set of lamps physically contained in the same casing, or one object for all the 
casings located at one intersection. The signal controllers too might be represented in several 
different ways, ranging from one controller for the whole layout to one for each set of lamps 
or even for each lamp.  

We will return later to these more detailed concerns about the numbers of objects of the 
various classes. Broader concerns demand attention first. They reflect potent sources of 
confusion and difficulty that were dramatically obvious in some of the recorded design 
sessions.  

4 Initiative and causality 

The five element classes shown in Figure 2 interact to give the overall behaviour of the real-
world traffic. Where does the initiative for this behaviour come from? Which elements cause 
the behaviour, directly or indirectly, and how?  

Initiative in the real world comes from only two sources: the signal controllers and the car 
drivers. First, the signal controllers. They take the initiative, according to their designed 
control regime and, perhaps, the states of the vehicle sensors, in changing the visible states 
of the lamps in the signal units. Even if there were no cars on the roads the signals would, in 
general, go through their sequences as commanded by the controllers. Second, the car 
drivers. Each driver is engaged in a purposeful journey from one place to another, driving 
the car in order to progress along a chosen route at chosen speeds. Progress is constrained by 
traffic laws that limit the car’s permissible road positions and speeds, by the need to avoid 
collision with other cars, and by obedience to the signals.  

There are no other sources of initiative. The road layout, signal units, and sensors all change 
their states as a result of the initiatives taken by the signal controllers and the drivers, but 
they are entirely passive: they take no initiative on their own account. A part of the road may 
or may not be currently occupied by a car, but the road itself can neither import nor expel a 
car. A sensor may be on or off, but it can neither permit nor block a car’s movement. Up to 
an acceptable approximation, the executed simulation must reflect this behaviour faithfully. 
It will be harder to achieve a sufficient degree of fidelity if the simulation design deviates 
gratuitously from the behaviour of the real-world traffic.  

Setting aside the internal object structures of the signal controllers, the signal units and the 
road layout, Figure 3 shows an initial software structure for the simulation. The solid 
rectangles and the solid lines connecting them directly represent the software objects and 
interactions that model the real-world traffic elements shown in Figure 2. However, these 
five object classes are not enough to run the simulation, and additional objects are needed.  

The arrivals model objects, represented by the smaller dotted rectangle, will certainly be 
needed. Because the road layout is bounded, it is necessary to consider the arrivals and 



StrucSoftSysDesign.doc 13/09/2010 Page 7 

departures of cars: cars arriving from outside the boundary will appear to the simulation to 
be newly created, and on departure will appear to have been destroyed. The software 
function of creating a car object cannot be a function of the car itself, so it is necessary to 
introduce one or more objects to create cars. These objects are represented by the arrivals 
model object in Figure 3. Like the signals model, arrivals are multiple objects, one located 
(v) at each entry point to the layout and creating (w) new car model objects there according 
to statistical distributions representing the frequency of arrivals at that point.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Synchronous simulation elements and interactions 

The simulation clock object, represented by the larger dotted rectangle, may or may not be 
needed, depending on a technical design choice. Given the arrivals objects, the simulation 
could be implemented by a single-threaded or a multi-threaded design. In a multi-threaded 
design, each independently active object has its own thread of control: that is, it behaves as 
if it were running on an independent processor, concurrently with all other objects, and 
synchronising its behaviour with other objects only when it interacts with them. The 
simulation depicted in Figure 3 could then be implemented by the five solid-line objects with 
the sole addition of the arrivals object. Independent control threads would be provided for 
each signal controller model, each arrivals model, and each newly created car. This would be 
an asynchronous design for running the simulation. The passage of time—for example, to 
distribute arrivals over time, to delimit signal phases or to maintain a car’s desired constant 
speed along a road segment—would be represented by wait statements in the programmed 
behaviours of the arrivals objects, signal controllers and cars respectively.  

The concurrent behaviours in a multi-threaded design offer many opportunities for subtle 
programming errors that are hard to avoid and hard to diagnose and eradicate: their effects 
are difficult to reproduce in program testing. There may also be efficiency penalties in 
execution. For these reasons, a single-threaded synchronous design may be preferred, in 
which only one object can be executing at a time. The single thread design uses the 
simulation clock object represented by the larger dotted rectangle. This clock object would 
be the only independently active object in the simulation. It would emit (x, y and z) periodic 
ticks to activate the controller objects, arrivals objects and car objects, each one progressing 
in its simulated lifetime as far as it can progress in the short time associated with the tick. 
One controller, for example, might count down one tick while it waits for the next signal 
change to become due, while another makes a signal change that became due immediately 
after the preceding tick. One arrivals object might make a randomly determined choice to 
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create a new car, while another makes a randomly determined choice to do nothing. One car 
might continue to wait at a stop signal while another makes a unit of progress along a road.  

The key point in such a design is that the simulation clock does nothing except mark the 
progress of time in units of one tick, for each tick briefly activating each arrivals, cars, and 
controllers object. It would be a fundamental confusion, therefore, to think of the simulation 
clock as a kind of master controller, like a global policeman determining the behaviour of 
every individual part of the simulation. What each controller, arrivals, or car object does in 
each tick should be determined purely by its own current state, its defined behaviour, and its 
interactions with neighbouring objects. The simulation clock is merely a technical software 
implementation mechanism to represent the passage of global time while saving the designer 
from the well-known programming pitfalls of asynchrony and concurrency in a multi-
threaded system.  

5 Causality and determination 

The most notable confusion about initiative and causality displayed in the recorded design 
sessions centred on the movement of cars in the simulation. In one session a designer 
suggested that when a signal changes to green the intersection “asks its roads to feed certain 
numbers of left-turn, right-turn and straight-ahead cars.” This surprising suggestion almost 
exactly reverses the direction of causality in the real-world traffic: it makes the intersection 
and the road into active objects, while the cars become passive objects, moved by the road’s 
action, which in turn is caused by the intersection.  

A related confusion about the movement of cars concerns the path to be taken by each car 
when it encounters an intersection. This confusion permeated many of the recorded design 
sessions, and also appeared in discussion sessions in some workshop groups. The confused 
idea was to regard each incoming road at each intersection as having the property that a 
certain proportion of the cars arriving at the intersection would turn left, a certain proportion 
would turn right, and the remainder would continue straight ahead. The confusion here is 
quite subtle. It is, of course, true that empirical observation of the traffic in a real-world road 
system will allow these proportions to be measured and recorded. Traffic engineers do make 
such measurements and use them to determine efficient signal timings. For example, if most 
northbound and southbound vehicles at a particular intersection continue straight ahead or 
turn right, it would be obviously inefficient to provide a lengthy phase for protected left 
turns. The confusion lies in treating these proportions as a determining cause of the vehicles’ 
behaviours, when in fact they are an emergent effect of the routes the drivers are following.  
Treating the effect as if it were a cause will give rise to senseless journeys by fragmenting 
each journey into a series of unrelated choices at successive intersections: in effect each 
journey becomes a random walk through the road layout. If real-world traffic patterns are to 
be simulated with a reasonable degree of fidelity, this confusion must be avoided.  

A deeper philosophical point is exposed here about object-oriented programming. It was not 
by chance that the first usable object-oriented programming language (Dahl et al 1970, 1972) 
was named Simula: it was a language designed for the programming of discrete behavioural 
simulations. Objects in Simula possessed defined behaviours, independent but interacting, 
and the goal of the simulation was to reveal the properties that emerged from their 
interaction. To an important extent the original purpose of such a language is perverted when 
it is used in design to proceed in the reverse direction—starting from given required global 
behaviours and properties of a system to derive the interacting behaviours and properties of 
the objects from which these global properties are required to emerge. In such a design 
process, the system is decomposed into objects with independent behaviours and properties: 
but it is then hard to ensure that the global results that emerge will be what is required.  
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For designing the traffic simulation considered here an object-oriented programming 
language is an excellent choice: the signal controllers and the cars have given behaviours, 
and the system’s explicit purpose is to reveal the emergent properties of the traffic flow.  

6 Description span 

The problem of describing the behaviour of individual cars reveals another fundamental and 
ubiquitous structural concern. In designing, describing or analysing any subject of interest it 
is necessary to decide on the span of the description. The span of a description (Jackson 
1995) is the extent that it describes of its subject matter, the extent being defined in time, in 
space, or in the size of a subset. For example: a map of Europe has a smaller span than a map 
of the world; a history of the Second World War has a smaller span than a history of the 
Twentieth Century; a line in a text has a smaller span than a paragraph; a day has a smaller 
span than a year; and a study of automobiles has a smaller span than a study of road vehicles. 
The penalty for choosing too small a span for the purpose in hand is that the subject matter 
of interest is then described only by a number of fragments: obtaining an understanding of 
the whole from these fragments is difficult and error-prone. In software development, many 
unnecessary difficulties arise from the choice of an insufficient description span. 

The initial focus of two of the three teams provided an early illustration of the consequences 
of an ill-chosen span: they began their discussion of the problem by considering just one 
intersection. This probably seemed natural because it is primarily at intersections that traffic 
control is exercised, and certainly there are aspects of the problem for which one intersection 
is the appropriate span for discussion and description. However, after considering one 
intersection, both teams eventually turned their attention to the question: How can departures 
from one intersection be related to arrivals at a neighbouring intersection? The focus on 
individual intersections now became a serious disadvantage: the rules were clearly going to 
become very complicated. It took a little time before the teams realised that they must 
consider the question in the larger span of a whole road or even the whole layout.  

Applying the notion of span to describing the behaviour of an individual car as it encounters 
successive intersections, it becomes immediately clear that the appropriate span is the car’s 
complete purposeful journey across the bounded layout. Nothing else can adequately 
represent the behaviour of real cars and drivers. (Of course, in the real world there are 
exceptions such as learner drivers practising left turns, joy riding teenagers, and mechanics 
road testing a repaired car: the purpose of their journeys is not to reach a destination. Such 
exceptions can be ignored in the simulation. They may be assumed to be relatively rare, and 
since these drivers have no desired destination their efficient and convenient movement is 
not a matter of significant concern to traffic engineers.) The turning behaviour of a car 
should therefore be determined by a route assigned to it when it was created by the arrivals 
model—this route, like the car creation itself, drawn from some statistical distribution 
defined by the users. Such a design corresponds well to the reality that traffic loads 
commonly result from such purposeful journeys as commuting between home and work, 
children’s school runs, shopping expeditions, and visits to entertainment centres.  

Another example of a span concern is the design of the object structure for the signal 
controllers. In an earlier section it was suggested that the signal controllers might be 
represented in several different ways, ranging from one controller for the whole layout to 
one for each set of lamps or even for each lamp. The choice must be governed by the span of 
control to be exercised. Evidently, all the signals at one intersection must be brought under 
unified control. Without such a unified control it would be very hard to ensure, for example, 
that the signals are never simultaneously green for conflicting flows, and the software to 
control the signals at a single intersection would become a complex distributed system in its 
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own right. Similarly, if the signals at the intersections along one main road are to be 
synchronised to present a steady uninterrupted sequence of green signals to cars travelling 
just below the maximum permitted speed, then some signal control must span the whole 
road. Signal control objects at different spans will be necessary, interacting in a structure of 
multiple objects corresponding in total to a single signal control for the whole layout.  

Regardless of the synchronisation of signals at multiple intersections, the representation of 
signal states and sequences at a single intersection raises its own issue of description span. 
As the design prompt stipulates, “combinations of individual signals that would result in 
crashes should not be allowed.” Intuitively, this means that only certain combinations of 
traffic flows can be permitted at any one time, and the allowed signal settings must 
correspond to these combinations only. For example: “left-turning northbound traffic may 
not be permitted in combination with straight-ahead southbound traffic;” or “east-west traffic 
may not be permitted in combination with north-south traffic.” Each permissible 
combination can be captured by enumerating the associated states of individual signals, and 
one of the design teams explored representations of signalling sequences in exactly these 
terms, using lines of coloured dots or stripes to represent the states of individual signals.  

A description of larger span for each combination at each intersection could be expressed in 
terms of permitted traffic flows rather than of individual signals, leaving the individual lamp 
settings in each case to be implied by the permitted flows. This span leads to a more 
compact, direct and convenient representation by symbols in a style of the kind shown in 
Figure 4. Their meanings are immediately obvious, and the complete set of permissible 
symbols—not all of which are shown in Figure 4—directly represents the set of permissible 
combinations of signal states.  

 

 

 

 

 

 

Figure 4.  Representing signal states at intersections 

The symbols can be used to good effect in design to represent signal sequencing and timing 
at each intersection, as shown in a state machine diagram in Figure 5.  

 

 

 

 

 

Figure 5.  Representing signal sequencing and timing 

Further symbols can represent transitional phases in which all lights are red, and no flow is 
allowed. State machines of this kind could play a useful role in the users’ specification of 
signalling schemes. The symbols could also be used in the visualisation of the traffic light 
states, as suggested by Figure 4. Although the users’ own driving experience has accustomed 
them to recognising configurations of coloured lights as they approach them along the road 
at ground level, the suggested symbols are more immediately understandable when seen, as 
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it were, from the bird’s eye view that is more appropriate to users of the system watching a 
simulation on the screen. Each symbol directly captures in a single glyph all the currently 
permitted and forbidden traffic flows at the intersection.  

As a general rule a designer who is in doubt should choose a larger rather than a smaller 
description span. The consequence of choosing an unnecessarily large span is small: the 
subject matter naturally fragments itself into mutually independent parts among which no 
relevant relationships or interactions are found. The consequence of an inappropriately small 
span is large: it is gratuitous complexity with all its attendant difficulties.  

7 Forming simulations 

The student users must define, run and observe many simulations if they are to acquire the 
desired intuitive understanding of traffic control. To stimulate this understanding how should 
these simulations be formed? What variations should be supported? How should the various 
simulations be related to each other? As briefly discussed in Section 1, a single simulation 
run requires a road layout map, a signalling scheme, and a traffic load. The users must be 
able to save maps, schemes and loads for later use in repeated or varied simulation runs, and 
recombine them to observe the effects of different combinations.  

One way of structuring the basic elements of each simulation into parts that can be usefully 
combined is shown in Figure 6:  

 the simulation infrastructure part is common to all simulations executed by the system, 
and consists only of the clock object; 

 the layout map part consists of the layout model and sensors objects;  
 the signalling scheme part consists of the controllers and signals objects; and 
 the traffic load part consists of the arrivals and cars objects.  

The objects belonging to the traffic load part are positioned (v,f) at specific locations in the 
layout map; the signalling scheme objects, too, are positioned (a,b) at specific locations. 
Each load and scheme can therefore be combined only with maps that provide exactly those 
locations.  

 

 

 

 

 

 

 

 

 

Figure 6.  Simulation parts for combinations 

Careful software design will allow the relationships e and g to be ignored for purposes of 
combining simulation parts. Intuitively, the signals that a real-world driver can see and a 
simulated driver must obey (e) are determined by the driver’s location (f) in the layout. In 
the simulation, therefore, the cars model objects need not communicate directly with the 
signals model objects. This freedom will make it easier to exploit the treatment of signalling 
states proposed in the preceding section and illustrated in Figure 4. In the same way, the cars 
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model objects need not communicate directly with the sensors model objects in the 
simulation. A traffic load part is therefore compatible with any map providing the positions 
required by the relationships (a, b, v, f), regardless of the presence or absence of sensors at 
those layout positions.  

The ease which simulation parts can be defined and combined to form simulations will play 
a large part in the convenience and attraction of the system. As one of the teams expressed it, 
users should be able “to create something without fussing with it too much.” There are many 
design concerns to be examined here, several of them focused on the dynamics of user 
interaction at more than one level. For example, defining a signal control scheme will be 
easier if the system provides what one team called ‘cyclable defaults’. Default local schemes 
are defined, each with the span of one intersection, and can then be reproduced at as many 
additional intersections as desired, the user switching between different defaults for different 
groups of selected intersections. At a larger span, simulation parts can be conveniently 
defined by modification in the context of a particular simulation. Having run a simulation 
and observed its effects, the user can modify the scheme or load, defining and storing a new 
scheme or load for immediate use in the next simulation. In this way both the definition of 
parts and the comparison of their combined effects can be easy and convenient.  

8 Software system design 

Discrete complexity should be a major determinant of design decisions for software systems. 
The designer must address the inevitable complexity arising from non-negotiable 
requirements, and must also aim to minimise additional system complexity by avoiding it 
wherever reasonably possible. The traffic simulation problem demands decisions where 
avoidance of complexity may be crucial.  

One example is the definition of routes for individual cars. A possible way of defining a 
route that starts at a given entry point to the map is simply to specify its exit point. The 
simplest route has its entry and exit at opposite ends of the same road, and no turns are 
necessary. Slightly less simple is a route which leaves by a road perpendicular to its entry. 
At least one turn is necessary; if there are intersections at which left turn is altogether 
prohibited then more turns may be necessary. Even less simple is a route which leaves by a 
road parallel to its entry, allowing more than one choice of turns for crossing from the entry 
to the exit road. Several design questions arise. Is the car’s route fully predetermined when 
the car is created on arrival, or does the car model object execute an algorithm to choose 
appropriate intersections as turning points? In either case, how can routes be easily worked 
out if the map is not a simple rectangular grid? In a map in which some left turns are 
altogether prohibited, may there not be some pairs of entry and exit points between which 
there is no possible route? These issues must be considered—and addressed or 
circumvented—to avoid a growth of complexity that could produce an unreliable system, 
break the project’s resource budget, or both.  

An important example of circumventing difficult issues concerns the meaning of ‘lane’ in 
the map. In real-world traffic the meaning is clear. Wide roads have two or more lanes in 
each direction. At intersections cars are often funnelled into lanes dedicated to straight-ahead 
travel or to left or right turns. The signals at an intersection may have a phase of the kind 
represented by the lower left symbol in Figure 4, in which the left-turning traffic lanes in 
opposite directions proceed simultaneously while traffic in all other lanes must wait. A 
driver intending to negotiate such an intersection must be careful to arrive in the appropriate 
lane. Changing lane between intersections is an unavoidable manoeuvre for many journeys, 
and is often hard to achieve in dense traffic: it may involve an interaction between the driver 
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changing lanes and another who courteously gives way. This real-world behaviour is hard to 
formalise and therefore hard to simulate.  

The design question, then, is whether this aspect of traffic movement can be neglected, and, 
if not, how it is to be simulated. One possible option is to circumvent the difficulty 
altogether, by supposing each road to have only one lane in each direction. Each lane at an 
intersection necessarily contains both those cars intending to turn left and those intending to 
turn right or proceed straight ahead. To prevent cars with different turning intentions from 
blocking each other, signal phases of the kind represented at the lower left in Figure 4 must 
never occur at any intersection: left turns are permitted only in phases of the kind 
represented by the symbol in the top right of Figure 4. This design choice ensures that 
straight-ahead travel is never permitted when left-turns are forbidden, and vice versa. The 
result is that in every signalling phase at an intersection either every vehicle in a lane can 
proceed or none can proceed. Whether this option is an acceptable solution to the difficulty 
depends on how far it damages the fidelity of the simulation. Professor E must be consulted 
once again.  

Software system design activity is subject to characteristic distortions of technique. One 
distortion arises from the widespread tendency to focus attention on the software artifact 
itself, most often narrowly conceived as an object-oriented computer program. The problem 
world and the users are then relegated to a secondary position in which they attract no 
explicit attention but are considered—if at all—only implicitly and indirectly. This distortion 
was conspicuous in some of the recorded design sessions. It was especially notable that the 
teams rarely, if ever, discussed the behaviour of real-world traffic: for the most part, if any of 
the designers thought about it explicitly they did so only dimly through the distorting lens of 
programming objects.  

To a large extent this failure to pay sufficient attention to the problem world is engendered 
and encouraged by a confusion between things in the problem world and the programming 
objects that serve to model them. In theory the software developer should consider these two 
subjects separately, and should also consider explicitly the respects in which each has 
properties and behaviours that are not reflected by the other. This is a counsel of perfection: 
in practice most developers consider only the programming objects directly. The UML 
notations commonly used by most software developers were derived from notations for 
fragmented descriptions of object-oriented program code. In many respects they are ill-suited 
to describe the problem world, but most software developers have few others in their 
toolbox.  

The most important single factor in design is relevant previous experience. The three design 
teams were drawn from companies whose products are very different from the kind of 
system the teams were asked to design. Inadequacies in their design work were attributable 
in part to the very short allotted time for the design work, and in part to the artificial 
conditions of the design sessions; but the teams’ evident unfamiliarity with this kind of 
simulation played a very large part indeed. In the term used by Vincenti (1993) they were 
engaged in radical design:  

“In radical design, how the device should be arranged or even how it works is largely 
unknown. The designer has never seen such a device before and has no presumption 
of success. The problem is to design something that will function well enough to 
warrant further development.” 

Much—too much—software design is radical design in this sense. One team recognised their 
situation quite explicitly. They saw their design as a prototype at best. Later versions would 
have improved features motivated by a better understanding of the requirements to be 
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acquired from users’ experience of the system and from continuing discussion with the 
customer, Professor E. This recognition is more profound than it may first appear. 
Dependable success in designing software systems can only be a product of specialised 
experience and the attendant evolution of a discipline of normal design. In normal design, in 
Vincenti’s words:  

“... the engineer knows at the outset how the device in question works, what are its 
customary features, and that, if properly designed along such lines, it has a good 
likelihood of accomplishing the desired task.” 

In software development, as in the established engineering disciplines, the existence of 
firmly established normal design is the essential prerequisite of dependable success. Many 
software developers hanker after the excitement of daring innovation when their customer 
would have preferred the comforts of reliable competence based on experience.  

9 Some general observations  

A realistic software system has more complexity than any other kind of design artifact. The 
complexity arises from the essential purpose of the software: to automate the multiple 
system features, and their interactions with each other and with the heterogeneous parts of 
the problem world. An established normal design for artifacts of a particular class embodies 
a design community’s evolved knowledge of the structures by which these complex 
interactions can be brought under intellectual control.  

Although the highest degrees of discrete complexity are uniquely associated with software 
systems, complexity of interactions more generally seems to be a common theme in many 
design fields. Certainly this kind of complexity in architecture was recognised by 
Christopher Alexander (1979):  

“It is possible to make buildings by stringing together patterns, in a rather loose way. 
A building made like this is an assembly of patterns. It is not dense. It is not 
profound. But it is also possible to put patterns together in such a way that many 
patterns overlap in the same physical space: the building is very dense; it has many 
meanings captured in a small space; and through this density it becomes profound.” 

Alexander writes here of aesthetic qualities of density and profundity, but this kind of 
composition—“many meanings captured in a small space”—is also of the greatest practical 
importance in engineering. The introduction of the tubeless tyre was a major advance in the 
design of road vehicles. Previously, a tyre consisted of an outer cover providing the interface 
with the road surface and an inner inflatable tube to absorb shocks; the tubeless tyre 
combined the two in one component providing both functions. Another example from 
automobile engineering is the unitary body, acting both as the framework to which the 
engine, transmission, driving controls, suspension and running gear are attached, and as the 
coachwork providing seating and weather protection for the driver and passengers.  

Even in quite simple design tasks this need to combine different functions in one unified 
design—though not necessarily in one physical component—plays a major part. A teapot 
must be easily filled; it must keep the tea hot, and hold it without leaking; it must stand 
stably on a flat horizontal surface; it must be easy to pick up by the handle and must pour 
without dripping; the handle must not become too hot to hold comfortably; the teapot must 
be easy to carry and easy to clean; it must have an attractive appearance. Each function 
considered in isolation is easily achieved. The virtue of a classic teapot design—that is, a 
normal design—is to combine all these functions in a way that reliably serves the needs of a 
significant class of teapot users.  
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In any design task there must be some combination of radical and normal design. An entirely 
normal design demands no design work whatsoever: it is merely an exact copy of an existing 
design. Realistic design work can never be completely normal: even a modest difference in 
the scale of an artifact can reveal otherwise unsuspected functional factors. In typography the 
8-point version of a typeface is not simply a copy of the 12-point version reduced in size, 
and the teapot designer should not expect the 0.75 litre version to be an exact copy of the 1 
litre teapot. At the other end of the spectrum that runs from radical to normal, there can be no 
entirely radical design. A designer must bring some relevant experience and knowledge to 
the task: this is necessarily experience and knowledge of existing designs of similar artifacts. 
An essential aspect of tackling any design problem and its difficulties is to relate it to similar 
problems already known.  

The traffic simulation problem was of a kind unfamiliar to all three design teams. All three 
quite rightly tried immediately to assimilate the problem to something they already knew. 
Two teams took the view that the problem was an instance of the Model-View-Controller 
(MVC) software pattern; the third identified the problem as ‘like a drawing program’. 
Unfortunately, these hasty classifications were inadequate; but in every case they were 
accepted uncritically and never explicitly questioned. By locking themselves into these first 
assumptions, the teams determined the direction, perspective and content of most of their 
subsequent work. Interestingly, although the MVC software pattern is used in drawing 
programs, the focus of the third team’s work was very different from the first two. Perhaps 
motivated by the word ‘drawing’, the third team focused on the user interface for specifying 
the road map and the signalling scheme, while the first two teams focused on the control of 
execution during the simulation. Prior knowledge and experience was immediately translated 
into preconceptions about the design problem and its solution. No team devoted a balanced 
amount of time and effort to the two design aspects called for by the design prompt: the user 
interface and the software structure.   

This readiness to fix preconceptions is strengthened by a designer’s focus on the artifact that 
seems to be the obviously direct product of the design work. In software design this means 
focusing on the software itself—the program texts and the program execution within the 
computer—at the expense of the problem world and the customer’s requirements. In design 
more generally it means focusing on the object being directly designed rather than on the 
experience and affordances that it will provide to its users in the environment for which it is 
intended. The result is likely to be very unsatisfactory. Donald Norman (1988) presents 
many classic cases, including the ubiquitous designs for doors that offer no clue to whether 
they should be opened by pushing, pulling or sliding.  

The true product of design is not the designed artifact itself: the true product is the change 
the artifact brings about in the world, and especially the experience it eventually provides to 
its users. A fundamental factor for design success is therefore a good understanding of what 
is expected from this experience. Conveying this understanding is a crucial purpose of a 
statement of requirements, but it may be difficult to convey this understanding by a written 
document alone. The design prompt document for the traffic simulation system was skilfully 
written; yet every team misunderstood some important aspect of the system’s intended 
purpose. Unsurprisingly, the team that focused on the user interface reached a better 
understanding than the two teams that focused on the internal mechanisms for executing the 
simulation. Focusing on the user interface led them naturally to think about how the users 
would experience the system, and to consider how to make that experience more convenient.  

A good understanding of the system’s purpose should inform the design choices, especially 
those concerned with modelling the road layout and traffic behaviour. The designer must 
balance costs and benefits. A more elaborate model of the road layout and traffic behaviour 
would allow simulations to correspond more closely to the complexities of real-world traffic. 
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So each complication—diagonal roads, vehicle breakdowns, parking lots, complex car 
routings, realistic treatment of left-turn lanes—brings a benefit. But it also brings many 
costs. Designing and programming the software will be more expensive. The program text 
will be larger, and the additional complexities may damage the system by increasing the 
likelihood of execution failures. More elaborate simulations will also demand more elaborate 
specification of the maps, schemes and loads, making the system harder to learn and more 
cumbersome to use. The system’s clearly intended purpose is to convey an intuitive 
understanding: as the design prompt says, “This program is not meant to be an exact, 
scientific simulation.” Most of the additional complications, then, offer little or no benefit to 
set against their costs. Adapting the words of Antoine de Saint-Exupery, the design of this 
system will be complete, not when there is nothing left to add, but when there is nothing left 
to take away.  
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