
Open Research Online
The Open University’s repository of research publications
and other research outputs

UML in practice

Conference Item
How to cite:

Petre, Marian (2013). UML in practice. In: 35th International Conference on Software Engineering
(ICSE 2013), 18-26 May 2013, San Francisco, CA, USA (forthcoming), pp. 722–731.

For guidance on citations see FAQs.

c© 2013 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://2013.icse-conferences.org/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copy-
right owners. For more information on Open Research Online’s data policy on reuse of materials please consult
the policies page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://2013.icse-conferences.org/
http://oro.open.ac.uk/policies.html

UML in Practice

Marian Petre
Centre for Research in Computing

The Open University
Milton Keynes, UK
m.petre@open.ac.uk

Abstract—UML has been described by some as “the lingua
franca of software engineering”. Evidence from industry does
not necessarily support such endorsements. How exactly is UML
being used in industry – if it is? This paper presents a corpus of
interviews with 50 professional software engineers in 50
companies and identifies 5 patterns of UML use.

Index Terms—UML, software development, software design,
notation, empirical studies.

I. INTRODUCTION: ‘WHERE’S THE UML’?
The Unified Modeling Language (UML) has been heralded

by many as “the lingua franca” (e.g., [23], [24]) or the “de facto
standard” (e.g., Sjøberg, interviewed in [26], [6]) of software
engineering. And yet there are others who argue that it is not
fulfilling this role, because of issues such as size, complexity,
semantics, consistency, and model transformation (e.g., [16],
[8], [25]). Budgen et al. [6], in their systematic literature
review of empirical evidence about UML, conclude that:
“There is little to give confidence that the UML has really been
evaluated as an artefact in its own right” and “There are few
studies of adoption and use in the field” (p. 387). How exactly
is UML being used in industry – is it, in practice, the universal
notation that it is intended to be? This paper presents a corpus
of interviews with professional software engineers about their
use (or not) of UML.

Introduced in 1994, UML arose from the unification of
three object-oriented design methods: the Booch Method [5],
the Object Modelling Technique (OMT) [22], and the
Objectory Method [15]. The UML standard was set and is
managed by the Object Management Group (OMG). UML
offers a framework to integrate many kinds of diagrams, but it
also inherits many interpretations. If we treat ‘UML use’ as a
variable, it would have to be continuous, not discrete. Some
people use class diagrams; some scribble sequences on a
whiteboard; some use UML for model-driven development. To
someone arguing that UML is the ‘lingua franca’, any such use
might be sufficient; but the different uses are not equivalent –
they have different purposes and different consequences.

The issues associated with interpreting what it means to
‘use UML’ are familiar. One informant related a story about
attending a workshop for software professionals in which the
speaker was a UML exponent from IBM who asked how many
people in the audience used UML. Of the 50 or so people in the
audience, about 47 raised their hands. The IBM speaker
understood this to mean that 47 people had adopted full use of

UML “with rigor” (as he later expressed to the informant). In
contrast, the informant concluded that probably 45 of the 47
were like him: “selective borrowers” … “who use some of the
principles sometimes”. The IBM speaker and the informant
had very different models of what ‘using UML’ means in
practice, with different implications.

Budgen et al. [6] point out that UML development has been
guided more by expert opinion than by empirical evidence or
cognitive theory. They call for “more and deeper studies of
[UML’s] longer term use in the field” (p. 387). The work
reported here is based on the notion that understanding the
nature of actual UML use is important to the discipline, and
that understanding how software professionals ‘use’ UML can
inform the development of software design notations and tools.

The study reported in this paper has its origins in a
discrepancy of experience. After conducting empirical studies
of software design in industry for decades, the author found
recently that some of her papers on design representation were
challenged by academic referees who asked: “Where’s the
UML?” Discussions at conferences such as ICSE and
ESEC/FSE reinforced the discrepancy, with delegates surprised
or even distrustful that the reported professional software
design practice did not include use of UML. The response was
predictable: to seek new evidence.

II. BACKGROUND: UML USE IN INDUSTRY
For their systematic review, Budgen et al. [6] identified 49

papers published up to the end of 2008 that report empirical
studies of UML. The majority of papers reported studies
concerning UML metrics (12 papers), comprehension (14.5),
and model quality (7.5) (with half values indicating papers
addressing more than one focus); only 2 papers addressed
adoption per se. They note a preponderance of laboratory
experiments – and correspondingly little use of field studies.
They identify deficiencies in the evidence base, noting that the
reported experiments tend to have a single focus and make
extensive use of student participants, and that the few reported
studies in realistic settings used relatively simple forms of data
collection. They concluded that: “There is therefore a real
need for more and deeper studies of its longer term use in the
field.” (p. 387) There are some case study accounts of
experiences employing UML on substantial projects (e.g., [1],
[2]), and there are a few surveys of UML use in industry,
described below.

Similarly, Grossman et al. [12], in introducing their own
web-based survey of UML adoption and use in the software

development community, argued that “Much of the existing
literature elating to UML usage focuses on … shortcomings”
and that “there is still very little empirical evidence available
describing the actual usage patterns or performance impacts of
UML.” (p. 384) They surveyed only participants who were
“directly involved with UML” (p. 385), accessing their 131
informants via various online newsgroups. They report “a
wide diversity of opinion regarding UML”; for example, on
one hand respondents did not find UML’s complexity an
impediment to its usage; on the other “Nearly, 62% of those
surveyed agreed with the statement that UML is insufficiently
specified which allows for misinterpretation.” (p. 387) They
conclude: “Developers clearly seem eager to use this highly
hyped technology…Yet, they are lacking an adequate enough
understanding of the technology to determine if it is making
any real difference in the way they are performing their
development tasks.” (p. 396)

Dobing and Parsons [7] report on a survey of 171 UML
users (plus 11 who use UML components within another OO
methodology) undertaken in 2003 and 2004. They reported
that their respondents used a subset of the modelling notations
available in UML 1.5: “Only Class Diagrams are being used
regularly by over half the respondents, with Sequence and Use
Case Diagrams used by about half.” (p. 112). Collaboration /
communication diagrams were the least popular. They also
report disappointing effects of UML on communication, with
55% saying that UML was at best moderately successful in
facilitating communication with clients. Explanations given by
their respondents for not using UML included that it is: “Not
well understood by analysts” and “insufficient value to justify
the cost.”

Nugroho and Chaudron [19] also argue that “Despite the
fact that UML is widely used in practice, little is known about
how UML is actually used.” Their 2007 survey of 80
professional software developers who use UML (80% from the
Netherlands; 56% from 3 companies) focused on “the impact
of UML modeling styles on quality and productivity issues
from the point of view of software engineers.” (p. 91) They
found that most UML models are incomplete – they specify
only part of the required system elements. Developers tend to
focus modelling efforts on the more complex or critical parts of
systems. 29% of their respondents reported that problems of
understandability of UML models led to problems in
implementation ‘often’ or ‘very often’. A further 64% reported
that it happened ‘sometimes’. Their previous survey [18]
focused on synchronization between model and code and found
that systematic approaches to maintaining correspondence are
rarely used in practice.

Lange et al. [17] conducted a web-based survey of 80
software architects, supported by analysis of UML models in
14 industry case studies. Their study focused on UML use and
model quality in actual projects, rather than on its adequacy as
a notation. On the basis of the responses, they identified four
main classes of problems encountered: scattered information
(e.g., design choices dependencies); incompleteness,
disproportion (more detail for some parts than others),

inconsistency. Additional (contributory) issues included:
diagram quality, informal use, lack of modeling conventions.

Forward and Lethbridge [9] surveyed 113 software
practitioners in 2007 “to uncover their attitudes and
experiences regarding software modelling” (p. 27). UML was
identified as the dominant notation in their survey, with 52%
usage. They found that modeling tools are used primarily for
early design work; code generation is not widely used. “The
participants seem to really want to incorporate modeling into
their processs, but…at present they are not doing so.” (p. 30)
The biggest perceived problem of model-centric approaches is
keeping the model up-to-date with the code (68% agreement).
Their sub-sample analysis is particularly interesting, finding
that “…‘programmers’ are more likely to agree that modelling
tools are too ‘heavyweight’”; “Participants working on real-
time systems are more likely to agree that their organizational
culture does not like modelling”, and “Participants that
generate code from models are less likely to agree that
modelling tools hide too many details.” (p. 31)

It must be noted that many of these studies focused on
software developers who use UML; there is little consideration
in the academic literature about how representative that sub-
population is of the software development community as a
whole. In contrast, two industry surveys by MediaDev and BZ
Research addressed the issues of penetration and obstacles.

MediaDev [21] carried out a cross-European survey of 500
developers to investigate the penetration of UML into the
marketplace and the usage of UML tools within software
development. “The majority said that UML tools are not
considered as an important part of their development process.
More specifically, 41% of the developers that participated in
the survey claimed that they did not regard UML as important
to the way they work. 29% regarded the UML tool as
important, but emphasized that it was not essential to the
development processes. 30% viewed UML as an essential
development tool, and that the tool was an important part of
their development processes.” The survey found that there are
conflicting views about the importance of UML even within
the same department, and that views and preferences are
“highly individual”. Cost was an important issue that impeded
use.

A survey of 226 developers conducted in 2002 by BZ
Research [27] found that “In fact, only about one-third of
developers recently surveyed said they use UML – and not a
single respondent believes that code generated from models is
production-ready.” “Why don't those 62 percent of developers
use UML? The largest number, 30 percent, said that they didn't
see any benefit, while 25 percent said that their tools do not
support UML. An almost equal number, 24 percent, said that
UML-based modeling was too expensive to implement, while
17 percent said that it’s too complex to use. Interestingly, 15
percent complained that the code generated by modeling tools
isn’t production-ready, while 13 percent said that UML is too
complex to learn. Also, 23 percent of respondents said they had
additional reasons for not adopting UML, and 15 percent said
they didn’t know why it wasn’t used.”

The discourse on UML has been informed largely by expert
reflection and opinion rather than empirical evidence. There
have been repeated calls for deeper investigation of actual
UML use in realistic settings. Studies of use in industry so far
(typically reflections on individual cases or surveys) identify
both examples of effective use and a number of concerns; the
software development community appears divided in its
assessment of UML. Whether or not UML is the ‘de facto’
standard, there remain questions about the extent to which it is
used and the nature of its use. The study reported here attempts
to add to the body of empirical evidence about actual use in
professional practice, addressing an omission identified by
Budgen et al. [6] and others, with richer practitioner accounts
drawn from interviews.

III. METHOD
The empirical study reported here is a series of interviews

conducted over 2 years with more than 50 practicing
professional software developers. Informants were identified
with an eye to gathering a broad range of perspectives, from
corporate large-scale commercial software developers to
independent consultants, and across a variety of application
areas. Informants came primarily from countries in Europe and
North America, but there were also informants from Brazil,
India, and Japan, and many had worked in more than one
country. Informants were identified opportunistically, via
networks of collaborators, colleagues and contacts – people
who could act as ‘brokers’ for introductions of various kinds:
at meetings and conferences, via mailing lists, via social
networks such as the Requirements Engineering Specialist
Group (RESG) on LinkedIn, and via personal emails. All
informants were practising professional software developers in
roles ranging from requirements engineering, to software
architecture, software development, and quality assurance (and
most identified themselves as fulfilling more than one role).
Only one informant per company was included in the reported
data, reducing the sample size to 50.

The sample is arguably broadly representative of
professional software engineering, covering a variety of
organizational contexts and sizes, practitioner roles, and
application areas. The industries represented included:
financial services (including insurance and banking), search
engines and browsers, social networking, digital audio, digital
video, computer games, automotive systems, aerospace, CAD
systems, real-time systems, enterprise software, control
systems, telecommunications, web development, software
tools, civil service, heritage, medical information systems,
retail systems, automation. Company sizes ranged from
independent consultancies to global, ‘household name’
corporations. If anything, the sample may be biased slightly
toward informants who had something to say about UML,
given that some participation was solicited via mailing lists and
social networks. For example, one volunteer replied: “We
could probably find a couple of people who use UML for you
to talk to.” As such, any counts in the paper are offered for the
purpose of description and are not held to be statistically
characteristic of the whole population of software engineers.

Simple, semi-structured interviews were conducted over the
phone, on Skype, or in face-to-face meetings, as convenient.
The protocol was straightforward, starting with background
questions about the professional’s experience, role,
organizational context, and software projects. The key
question was: ‘Do you use UML?’ Depending on the
response, the second question was either: ‘Can you tell me
about how you use it?’ or ‘Why not?’ Subsequent questions
followed up responses and elicited examples of use of UML or
other design representations. When appropriate, the informant
was asked if his or her usage was typical of the organization.
Hand-written or typed notes were captured for all interviews,
and, subject to the informant’s preference, some interviews
were audio-recorded. Some informants provided actual
examples of design representations, within confidentiality
agreements.

Discussions at times extended beyond the informants’
current practice to past projects, past organizations, or other
experiences. At times the discussion distinguished between the
use by the informant and the use preferred or mandated by the
organization. All accounts of UML use offered by the
informants were collected, but a distinction was made in the
data collection between the informants’ own current use
(identified in this paper as ‘declared current use’) and accounts
of their own practice in the past or in other organizational
contexts, accounts of organizational preferred practices, or
accounts of their colleagues’ practices which they have
observed directly (identified as ‘secondary reports’). This
paper focuses on responses to do with current practice but
includes, where relevant, discussion on ‘secondary reports’.

The analysis was inductive, allowing categories of use to
emerge from the data. The initial sorting into ‘use’ and ‘non-
use’ was obvious. Additional categories were identified in
terms of what the informants presented as characteristic of their
use. The categories, along with a representative selection of
anonymized data, were presented to two experienced
professional software developers for independent review, as a
form of validation.

IV. OVERALL RESULTS
Five patterns of use were identified. The numbers in

parentheses (repeated in Table I) indicate informants whose
declared current usage fits within that category.
1. No UML (35/50);
2. Retrofit (1/50): don’t really use UML, but retrofit UML

in order to satisfy management or comply with customer
requirements;

3. Automated code generation (3/50): UML is not used in
design, but is used to capture the design when it stabilizes,
in order to generate code automatically (typically in the
context of product lines);

4. Selective (11/50): UML is used in design in a personal,
selective, and informal way, for as long as it is considered
useful, after which it is discarded;

5. Wholehearted (0/50 – but described in secondary
reports): organizational, top-down introduction of UML,

with investment in champions, tools and culture change, so
that UML use is deeply embedded.

TABLE I. DECLARED CURRENT UML USE AMONG 50 PROFESSIONAL
SOFTWARE DEVELOPERS FROM 50 COMPANIES.

Category of UML Use Instances of Declared
Current Use

no UML 35
retrofit 1
automated code generation 3
selective 11
wholehearted 0

Each will be described and discussed in turn, using

representative excerpts from the interviews. The counts
address declared current usage only, although information from
‘secondary reports’ are included in the discussion, where
relevant.

V. NO UML
The majority of informants (35/50) do not use UML. One

stated categorically that his global corporation “doesn’t use
UML”. There is a consistent pattern to the responses
concerning why practitioners do not use UML: they have
considered it, often having adopted it for a project or two, and
found that it did not offer them advantages over their current,
evolved practices and representations. As one informant
phrased it, and many others expressed: “What was good about
UML was not new, and what was new about UML was not
good.” Another identified where elements of UML notation
originated pre-UML, arguing that use of those prior notations
alone does not constitute UML use. Some felt that UML came
with too much ‘philosophy’ or ‘ideology’, that it required them
to make changes to their culture or ethos that were not
warranted by adding benefits: “Why would I [use UML]?
Doesn’t add anything except religion.” Although phrased
strongly, these opinions were not baseless. Most informants
spend time regularly engaging with the literature and
investigating proposed methods, tools and representations. A
number of informants in this group remarked that they had
studied and used UML within formal education. One
informant, who summarized that “UML does things we already
had ways of doing. The notation doesn’t really matter”, also
set out a specific series of equivalences in his practice for
elements of UML (e.g., “flowcharting, activity diagrams (I see
them as equivalent) – swim lanes have been around since the
1920s”, “ER diagrams (or class diagrams, roughly
equivalent)”; “state diagrams – we’ve been expressing state
machines for decades”; “the whole front of identifying context
– a context diagram is rather better than trying to do anything
with classes”).

Some of the informants who do not currently use UML
offered specific criticisms. The most frequent were:

A. Lack of Context
Informants remarked that UML deals primarily with

software architecture rather than the ‘whole’ system, and hence
that it lacks context. For example: “You don’t get context
with UML. It assumes: ‘If they all do their own bit to the spec

it will work.’ That’s a bad assumption.” Another informant
reported that his company had worked on variations and
extensions of UML to address their needs, before abandoning it
for another in-house formalism that addresses the ‘whole’
system “i.e. software, hardware and how they fit together,
along with context, requirements (functional and non-
functional), decisions, risks, etc.”

B. The Overheads of Understanding the Notation.
Issues of comprehension included both software developers

and stakeholders. UML is considered “unnecessarily
complex”. Several informants reported variations in
understanding and interpretation among developers that led to
problems. For example, “There are challenges in the formal
semantics of UML: e.g., ‘align’ means different things to
different people.” In another example: “We worked with a
group of people from [another large company], and what they
did was rubbish. Their use of UML was so distorted that it was
unrecognizable.”

Others noted that the complexities of the notation limited its
utility – or demanded targeted use – in discussions with
stakeholders (including highly technical stakeholders). Two
informants gave detailed accounts of past experiences of
adopting UML on projects in response to client requests.
However, those experiences were described as “disastrous”:
the clients “…refused to sign it off, just too much detail, and
they couldn’t make sense of it”. This was echoed by a third
informant: “The best reason not to use UML is that it is not
‘readable’ for all stakeholders. How much is UML worth if a
business user (the customer) can not understand the result of
your modelling effort? He would be asked to sign off
something that he isn’t able to comprehend…”

A related issue is the intrusion of the notation into the
discussion or reasoning process. One informant explained:
“UML seems to be very much based on programming concepts
rather than analysis concepts”, making it problematic for
discussions with stakeholders. “If you’re talking to a client,
you map out the concepts that are there in what their business
does; you can use an entity model or an object model. The
entity model allows you to more or less map the concepts that
someone has directly onto a piece of paper, whereas a class
model… some of the concepts they have don’t appear in the
diagram, and some of the things you end up putting in the
diagram are not things the person has told you about. You start
making decisions about how you’re going to implement
classes, inheritance and so on, when you need to be mapping
out what their business does.” A number of informants
remarked on the intrusion of the notation into design
discussions with both clients and colleagues, because it
required explanation or alignment of interpretation, because the
notational choices/constraints were not a good fit for the
context, or because the use of UML diverted attention from the
primary focus onto notational concerns.

C. Issues of Synchronisation/Consistency.
A number of informants identified issues of

synchronization or consistency as a barrier for wholesale
adoption of UML. One informant described the issues this

way: “…as mentioned by both Clifford and Geoffrey, UML is
a graphical representation. There is no check on consistency,
redundancy, completeness or quality of the model what so ever.
Modeling a small project may not be a problem, but handling
large projects in UML forces you to go over the entire model
every time you want to change anything, to see what the
consequences for the rest of the model will be.” Another
expressed it in terms of commitment: “Need to use it all the
way, in order to maintain sync.”

Several informants volunteered preferred alternatives. For
example: “Object models… they’re not a compelling way of
describing things. I prefer entity diagrams, which are a bit
better.” Another argued: “There are a number of advantages
of CoRE that are not available using UML. The key
difficulties are the inability to assess cross-system performance
prior to the detail design stage and the ability of domain experts
to access information from UML models. Failure to assess
system performance early in the design process during the
system architecture definition phase leads to increased rework
costs.” A third reported: “I’ve previously used SSADM, entity
modeling, data flow diagramming, and I’m afraid I’ve reverted
to using those rather than UML. A bit more rigorous, more
suited to taking something through from requirements to
design.”

VI. RETROFIT
One informant (1/50), plus three secondary reports, report

using only UML because it is demanded by the bill-payer,
either management or a client. ‘Retrofit’ UML use means, by
and large, documenting things after-the-fact. These informants
report using their own practices during design, and then retro-
fitting UML when the design has stabilized, either to satisfy a
corporate edict (in a large company where the decision to use
UML and the business decisions are separated from design
practice) or to satisfy a client who is complying with some
form of industry or corporate standard. For example, one
informant responded to “Do you use UML?” with “Well, not
unless the client demands it for some reason” before clarifying
that his relevant examples were in the past, rather than in
current practice. In his examples, clients asked for UML for
requirements documents or design proposals. Another
explained that “Use Case diagrams are primarily used only to
please the IT Auditors / compliance documentation.” One
considered that UML is requested because it “gives an illusion
of accuracy”. In the context of retro-fitting, the translation into
UML is usually handed to a junior member of the team (i.e., it
is treated as a mechanical, low-priority task).

VII. AUTOMATED CODE GENERATION
In this case (3/50), UML is not used in software design (i.e.,

not typically during the creative stages of design), but is used to
capture the design when it stabilizes, in order to generate code
automatically. The three informants who described this usage
were all working in product lines or embedded software, all
contexts in which the software was a ‘sub-system’ rather than
the main product in its own right, and in which software per se
was not the sole business or primary focus of the company. In

product line development, UML is used to capture a complete
architecture with all of the options and variants in it, so that a
selection can be made. This also implies a mapping onto the
code base, and using the UML spec to drive the derivation
process. One informant reported that his company operates on
the assumption that “there will be later releases”, and so turn-
around on releases was valued above producing optimal or
complete software.

VIII. SELECTIVE USE
Most (11/50) of those informants who do use UML – and

who use it in software design in particular (i.e., in the creative
phase, rather than just for documentation or code generation) –
use it in a personal, selective and informal way, characterized
by one informant as “soft use”. Some use it infrequently; for
example, one informant described his use as: “Very rarely and
very selectively – emphasis on rarely”, which he quantified as
three to four times in seven years. Others use it regularly. They
use it for as long as it is considered useful, after which it is set
aside or even discarded. For many, this means that UML
features only in early design, when the problem is explored,
requirements are elicited, and design alternatives are
considered. Sometimes it is for personal use only, as a
‘thought tool’. Sometimes it is used to “prototype ideas”.
More often it is used in design discussions, whether in the
“instruction of ideas” (i.e., conveying ideas to others) or in
collaborative dialogues. Some find it useful for requirements
elicitation with key stakeholders (where the stakeholders tend
to be highly technical), then discard the UML diagrams when
they are through with the discussions. For other informants,
selective UML use carries on throughout the design and
development process, with UML representations being
included in the technical documentation. Different aspects of
selective use are discussed in the sections that follow.

A. UML as a ‘Thought Tool’
Many of the ‘selective’ informants use UML as a ‘thought

tool’: “to help me think about code” … “it’s a scratch pad”.
One informant clarified: “I use the concepts.” Another
explained: “Architects use UML for context for describing
detailed solutions in the relationship between different
components and the description of components and how they
interact. The formality of the notation helps them think about
all the interactions … ‘a thought framework’ … kept in their
documentation, but not carried forward into design.”

B. Communicating with Stakeholders
Most of the informants talked about using UML in

communication with stakeholders, especially technical
stakeholders. As one summarized: “UML – mainly sequence
diagrams – is useful for requirements elicitation with key
stakeholders.” The dominant elements of UML in this context
were sequence diagrams and activity diagrams, used to elicit
requirements and to consider key behaviors. Several
informants pointed out that their UML use varied depending on
the context, including the audience, for example: “I change the
diagrams for different dialogues: the boss, colleagues,
stakeholders”. Conversely, another informant articulated the

danger of not varying UML use to adapt to the context: “A
diagram for a purpose, re-applied, ends up with a mess.”

All of the informants who talked about using UML in
communication with stakeholder emphasized the importance of
keeping diagrams focused and as simple as possible, e.g.: “It
can be very hard to communicate with people, except in a very
simplified way.” Another informant emphasized that, to be
effective for dialogues with clients, UML: “Needs to be used
to communicate, not just to represent or as a product in its own
right.” Another emphasized abstraction and context: “Key
diagrams, with structure at a high enough level. Gives them a
way in…” Another echoed this approach, while also
acknowledging the need to avoid premature implementation
decisions: “Full-blown modeling is too much for most cases,
and for most people...The aim is getting people to ask tough
questions: why; who wants that; are there conflicts that need to
be resolved? Using goal modeling all the way through is
jumping the gun a bit. You end up pre-judging design
decisions and you may easily get them wrong.”

C. Collaborative Dialogues
Many informants reported using UML in collaborative

dialogues. For example: “Architecture colleagues use it as
part of the design description, to make “an implementation
proposal.” Another reported: “Especially when working with
teams: use cases, decomposition help us talk through the
project”. Another described a large integration project that
combined software from two different teams, when UML was
useful for presenting “… our own system in class diagrams and
sequence diagrams, so people understood the lifecycles of the
data.” One informant found UML particularly helpful in
international collaborations: “UML helps a lot when talking to
[international] speakers – it provides a language bridge”
allowing participants to “…resolve the ambiguity using lower
language skills”. In each of these cases, UML is used to
provide a common representation from which to drive
discussion and build a shared model of the problem context and
design proposals – potentially overcoming discrepancies in
perspective, history, culture, or language proficiency.

D. Adaptation
Selective users are explicit about taking license with the

notation or using it “not by the book”. Many echoed the report
of one informant, that: “I adapt UML to the task.” Many
identified variations or annotations that they use. For example:
“I use variants of activity diagrams for communication
purposes or … as part of the thinking process to map out what
needs to be done. I use something that’s in-between a use case
view and an activity view: the user roles, the things going on
in the computer, the things in other places, like the back office
of the customer.” In another example: “I do a swim laney
thing for web applications or showing what’s in the front end
of the application and the back end.” One reason for adaptation
was to make explicit the relationships between views: “How
can I connect all those pictures … interaction between the
pictures?” Another reason is to address perceived deficiencies
in UML: “Difficult to represent tasks, threads, processes…”

E. Keeping It Small – Selective Traction
Those who reported using UML most enthusiastically use it

in a focused way that narrows the scope and hence keeps the
UML artefacts manageable in size and fit for purpose. For
example: “UML is useful for some architecture” and “Little
conceptual models are nicely expressed.” Another informant
articulated a principle for choosing the focus: “80/20 rule:
express that key part of the system that gives context for
everything else.” Another explained that he uses it only for “a
very-high-level view of the classes and the flow”, because
otherwise “it clutters the information; it complicates the view”.

Many expressed the principle of using UML as long as it
was useful – and only that long: “I do as much as the problem
demands.” Issues of synchronization and consistency arose in
this discussion, and focused use was described as a way of
avoiding such issues: “Relations between representations?
Inconsistency between different views? Interactions between
abstraction layer and detailed layers? I focus on functions and
create one possible candidate of the class diagram…” and “I
don’t elaborate if a high-level description is sufficient for
decision-making.”

The interest is in providing traction for solving problems or
making decisions without incurring undue costs: “I like to help
people do things better than they do now, without big
overheads.” There were repeated references to cost-benefit
balance: “To try to use rigor on principle to make things better
just adds cost; better to use what works and to use rigor when
you really need it.” Similarly: “‘Meanwhile, in the real
world’, it’s just too much work to go the whole hog all the
time.” Another informant, who works for a company whose
software tools support UML, offered a secondary report, that
consumers use the UML tools his company produces
selectively “as a means to get a start point in the code” and
don’t persist in using it over time.

F. Which Parts of UML Were Selected?
Which parts of UML these informants use depends on the

problems they are addressing (e.g., those who focus on
networks tend to use sequence diagrams) and on whether they
are using it to assist their own thinking or to facilitate
discussions with stakeholders (e.g., the only informants who
report using state machine diagrams are those who use them to
assist their own thinking only). Informants whose declared use
is selective were asked which elements of UML they use.
Table 2 summarizes their responses.

TABLE II. ELEMENTS OF UML USED BY THE 11 ‘SELECTIVE’ USERS.

UML diagrams Number
of users

Reported to be used for…

Class diagrams 7 structure, conceptual models,
concept analysis of domain,
architecture, interfaces

Sequence diagrams 6 requirements elicitation, eliciting
behaviors, instantiation history

Activity diagrams 6 modeling concurrency, eliciting
useful behaviors, ordering processes

State machine diagrams 3
Use case diagrams 1 represent requirements

The UML elements identified in secondary reports were the
same as those in the table, with class, activity and sequence
diagrams identified most frequently.

Some informants also specified elements of UML that they
never use: state machines, use case diagrams. Some elements
of UML were never mentioned: communication / collaboration
diagrams.

G. What’s a Use Case?
As one informant expressed it: “It’s hard to design without

something that you could describe as a use case.” Most of the
informants who use UML selectively mentioned use cases, but
only one found use case diagrams to be of use. The informants
were careful to draw a distinction between use cases and use
case diagrams when describing their practice. Many described
use cases informally, for example, as: “Structure plus pithy
bits of text to describe a functional requirement. Used to
communicate with stakeholders.” Others described use cases
as user stories, scenarios, narratives. In contrast, one regular,
long-term selective user was explicit that he never uses use
case diagrams, because they are “totally useless”. Another
“…tried to teach use cases at a company – couldn’t. They
roadblocked on the implementation details. Black box use case
specification is hard for people.”

H. Contexts, Tools, Other Representations
Selective users generate their UML both manually (via

pencil-and-paper, post-its, whiteboards) and within UML tools
(e.g., Rational Software Architect, Astah, MagicDraw, Eclipse
plug-ins, in-house tools). Some keep it simple: “Whiteboard
and digital camera are all I need – for 95% of usage.” Some
combine UML tools with wikis and other systems. Many
integrate UML with other representations: “Not just UML:
DFDs and other things – [my use is] goal oriented.”

A variety of alternatives were identified as representations
these informants use: algebras (“more concise, faster to think
on paper”), ADS (described as “UML on steroids”), flow
charts, block diagrams, entity-relationship (ER) diagrams,
SBVR and BPMN. One informant prefers “GML: galactic
modeling language – boxes and arrows”. Predecessors (from
past use) were also identified, including CoRE, SSADM and
Booch notation.

IX. WHOLEHEARTED USE
Although none of the informants declared this as their

current use, there were secondary reports of organization-wide
introduction of UML, with commitment from management and
associated investment in champions, tools and culture change,
with the intention that UML be used throughout the software
development process. Two of the informants came from
companies that invested in wholehearted, top-down
commitment to UML in the past; in neither case had UML use
persisted in that model, although pockets of UML use (both
selective use and wholehearted use by particular groups) persist
in both organizations. Other informants provided secondary
reports about other groups or divisions in their organizations
that attempted wholehearted adoption of UML. These
secondary reports had recurrent features in common:

A. Investment in Examples, Tools and Education
Wholehearted use of UML is characterized by an

organizational commitment to a change of culture and practice.
Investment is made in tools and education, and ‘champions’ or
visible early adopters are influential, because they provide
authentic examples of relevance to the company, they help to
develop and promote conventions (e.g. naming conventions)
that assist communication, and because they are available for
advice. For example: “… there were also a pretty large number
of UML zealots in the services divisions at the time ... I think
mostly because there was much better support for UML:
education materials, tools, etc. Also, UML did evolve in the
whole system direction, so that helped more people see their
way to clear to adopting it.”

B. Not ‘Strict’ But Adaptive Use
Even those in companies that set out to adopt wholehearted

use found themselves adapting elements of the notations and
developing tools or tool extensions. One informant described a
merger of class and activity diagrams in order to facilitate
discussions in the context of business processes. Another
reported that his group developed management reporting tools
for use cases which weren’t in the software engineering tools:
“We needed to compromise between technical and
management views.” Several remarked on in-house
developments, either tools or conventions, that allowed
informal annotations of diagrams, in order to assist dialogue
and help with coordination between perspectives and views.

C. UML Was Not a Panacea
Using UML did not necessarily lead to success. Many of

the secondary reports of wholehearted use were bound together
with reports of projects that did not reach the market, despite
the investment, or projects that did not satisfy clients, who
found the UML representations (e.g., requirements, design
proposals) complex and difficult to encompass, and therefore
remained unconvinced that their needs were satisfied. One
informant described producing a “massive UML diagram of
their whole software structure” that encompassed pages of
diagrams, accompanied by thousands of words of explanation
in an associated wiki, and took several days to present. He
expressed doubt that the documentation would be maintained
as the system evolved.

X. DISCUSSION
A number of pervasive themes emerged from the

interviews, many of which resonate with the findings of other
studies. UML use is by no means universal. For example,
Aranda [3] reported results consistent with this study; he
interviewed ~100 software developers, consultants, and
entrepreneurs from 15 relatively small organizations, as well as
Microsoft and IBM employees. None of them practiced model-
driven development. A single firm among those studied used
UML to some significant extent, and Aranda also spent three
weeks conducting observations there (reported as “Bespoker”
in [4]). Aranda concluded that, in the case of this firm, the data
suggest that UML is used primarily for contractual and

business relations reasons, by analysts, and is largely ignored in
the rest of the development process.

Even among those who adopt model-driven development,
UML is not yet universally accepted as the modeling language
of choice. Hutchinson et al. [13, 14] found, in their study of
model-driven engineering in industry, that people tend to use
multiple modeling languages. Companies using MDE tend to
be building on domain-specific languages (DSLs), and their
notion of DSL is very product/implementation focused.

Evidence from this study suggests that UML is used in both
‘greenfield’ and ‘brownfield’ contexts. For example, one
informant described how UML representations of existing
software were used in collaborative discussions about
integration. Hutchinson et al. (ibid.) found that productivity
gains from code generation tended to outweigh losses from
integration with existing code – but the implementation-
focused use they observed was associated with a risk that MDE
may prevent organizations from responding to new business
opportunities.

A. Not by Me, But by Someone Else
There was a tendency for informants in large organizations

who did not themselves use UML, or who used it selectively, to
assume that colleagues in other roles were likely to use it more.
One informant, a software architect who declared selective use,
suggested that UML plays a greater role in implementation:
“Generating structured code from a UML model – is gaining
increasing use.” Yet another informant, a developer, offered a
contrasting view: “Usually used at the front end – then we
transfer [attention] to the code itself.” Many could envisage
more intensive UML usage, for example: “I can imagine that
there are times for rigorous UML…very software intensive…
safety or security applications may want that sort of rigor.”
Across the sample, analysts pointed to software architects as
more likely users, software architects pointed to
implementors/developers, developers pointed back to architects
or to developers of other types of software, and so on. There
was no one ‘role’ that claimed UML particularly.

However, the belief that ‘someone else’ used UML was not
universal; many informants observed explicitly that colleagues
who might be expected to use UML did not, e.g.: “My
experience is that the majority of the developers and software
architects (interestingly) do not use UML. Some of the
software architects use BPMN.” In another example: “Most of
my work over the last few years has been on the side of
understanding the domain, and thinking about what users need
to support their thinking and work. Then other folks on the
team do the design/architecture and
implementation/development of the tool software. That having
been said, even they didn’t do much UML.”

B. Support for Communication as a ‘Lingua Franca’
The observation by one informant (see ‘selective use’,

above) that UML can be particularly helpful in international
collaborations, because it provides a bridge to help participants
with lower spoken language proficiency discuss ideas and
resolve ambiguity, puts a different perspective on the ‘lingua
franca’ label. In this case, UML is truly being used as a

‘language of exchange’ between people of different mother
tongues. Arguably, we need to look more closely at the
differences between using UML to communicate models (and
to overcome differences in perspective in reaching a common
understanding of those models), and using UML for
collaborative discussion in order to build models. The key to
collaborative dialogues is discussion over a shared
representation that either means the same thing to all parties or
enables them to identify and correct differences of
understanding – and then re-represent in a way that’s more
accurate. For some, UML serves this purpose. However, for
others it does not: “The translation costs of bridging across
different people and different levels and different ways of
thinking – are just too high.” In another example: “I started
using UML 15 years ago, and to be honest I’ve been using it
less and less. It can be very hard to communicate with people,
except in a very simplified way.”

C. Early and Late – But Not by the Same People
Responses concerning UML use tend to be polarized,

between design use and implementation use (cf. [9]). Fowler
[10] distinguishes three types of UML use: sketch, blueprint,
programming language. Responses suggest selection among
these, rather than transition. As articulated by one informant:
“Both ends of the spectrum – but not by the same people.”
Another observed of his own organization: “Most UML use is
implementation, but much of early design is also UML”.
Despite the notional accommodation of the whole process,
informants tend to use UML either in early design, or in
implementation, rarely both (even when informants’ roles
include the whole process).

D. Fluid Enough for Design vs. Precise Enough for Detail
Several informants noted the conflict between what they

want from a modeling notation – useful abstraction – and what
they need for implementation – precise formalism. Lange et al.
[17] remark on this conflict: “The generality and freedom that
enable UML to cater to this wide range of purposes are also the
source of its weakness. UML has no formal semantics. This
poses a problem when different people use a UML model; and
because one of UML’s main purposes is to communicate about
a design, different ways of using UML are potential causes of
communication problems.” (p. 43)

Those who use UML during early design tend to use it
selectively and informally. Lange et al. [ibid.] also found that:
“…adherence to the [UML] specification is rather loose. This
might be a result of UML’s lack of formal semantics and large
degree of freedom in its application. On the other hand, it
might be that informal use is “good enough” for many
practitioners’ purposes” (p. 41). This resonates with the
informant’s explanations, e.g.: “ I guess that’s because … it
was felt that the software was small, and being completely re-
done regularly, and … the developers were ‘high end’ and
could keep the design in their head effectively and
communicate effectively without formal diagrams etc.” Those
who use UML as a thought tool want flexibility. “You have to
follow the rules or you can’t use the tool. But I’m always
cavalier with the rules.”

Those who use UML in design tend to use it to express
models, abstractions. Their use stops when then think more
concretely and specifically about implementations, e.g.:
“Usually used at the front end – then transfer to the code
itself.” Comprehensive UML diagrams of large systems are
reported as complex and unwieldy by those who have
experience of wholehearted use. “The latest Rational tool is so
bloated that it screams ‘Don’t use me!’” Informants also
express concern about the “clutter” and complexity of UML,
with consequent issues of completeness, consistency, and
synchronization (cf. [12]). Informants explain that using UML
selectively keeps the complexity under control and avoids
issues about completeness (because completeness is not a goal
of their use) and consistency across representations (because
they address consistency within their selection and use of a
UML subset for a focused purpose). They find better support
for analysis of implementations in tools associated with
program code. Similarly: “These explanations support the
argument that the UML may be too complex. … Focusing on a
smaller set of components … may be a better strategy for both
analysis and students in the early stages of using UML, and
may reduce the cost of ensuring consistency across different
components.” ([7], p. 112)

E. What Is Useful About UML?
The utility of UML for the practitioners in this study rests

in its fitness to address their purposes. The informants
identified as useful representations that, as they use them:
• are understandable and fit for purpose (that is, for the

practitioners’ purpose, not one imposed by methodology or
ideology);

• capture structure at the right level (e.g., class diagrams are
considered useful; object and use case diagrams are not
identified as useful);

• make behaviour explicit (e.g., by showing a sequence of
actions).

Informants criticized UML for its complexity, lack of
formal semantics, inconsistency, and issues of synchronization
between different diagrams (and between models and code).
This resonates with [8], p. 83: “…the human thought process
in system architecture, analysis, and design involves the
constant interplay between a system’s structure and its
behavior. However, rather than supporting this thought process,
UML’s separation of the system model into different views,
represented by different diagram types, dictates and enforces
the damaging segregation of structure and behavior, thereby
obscuring the developer’s overall system comprehension.”

F. The Lingua Franca of SE Education?
Professional practitioners on the whole are simply not

thoughtless, ignorant, bigoted or stupid. There is an implicit
assumption in the academic discourse that declining to use a
specific methodology or formalism equates to declining
methodology or methodical practice. On the contrary,
evidence from empirical studies of professional software
developers (e.g., [20]) shows clearly that professional software
developers who decline specific tools nevertheless demonstrate
that they have thoughtful, systematic practices. Many

practitioners already have a repertoire of tools and
representations that have been thoughtfully developed and
evolved over time to fit their effective practices. There is a
need to design tools that relate to existing needs and practices,
rather than dictating costly change. One of the major reasons
for declining to use UML is, as one informant phrased it:
“UML is not just a notation, it’s an ideology.”

On the other hand, students typically don’t already have
such a repertoire, and they may benefit from exposure to useful
concepts, methods, and notations. Even an informal survey of
current textbooks and course syllabi shows that UML has
achieved penetration in software engineering education. One
of the informants pointed out: “Based on my experience in IT,
I came to the conclusion that UML is primarily an academic
thing.” Several informants perceived that UML is a useful
credential, even if it is not used in practice: “A friend of mine
says that it’s essential to learn UML to land a job as a business
analyst, even though you’ll probably not use it once you got
your job, by the way.” One might conjecture that UML is
effective in software engineering education, because of what it
captures, and where it directs attention, rather than as a
prescription for design actions. This is a matter for further
research.

XI. THREATS TO VALIDITY
The work reported here is indicative, rather than definitive.

The sample is large enough to give confidence that it represents
significant views; it is not large enough to claim
comprehensiveness. On one hand, the study characterizes
authentic use (or non-use); on the other, there may well be
other categories of use that were not represented in this sample.
We attempted to mitigate this risk by intentionally sampling a
broad range of organizations, small and large, across a broad
range of industries, and a broad range of age of companies –
and by limiting the sample to one informant per company.

The study relies on self-report. We mitigated this risk in
two ways. First, some interviews were augmented with
observation when opportunity arose, which allowed
independent verification of the informants’ reports. Second,
informants were asked to provide actual examples of their
UML (in confidence). The observations and examples confirm
the responses and instill confidence that self-reporting in this
particular study is appropriate and reliable. Previous studies
(e.g., [20]) that combined interview with observation (allowing
independent verification of informants’ accounts) also suggests
that experienced professionals are reliable in their accounts of
their practice.

The categories of use emerged from the data-driven
analysis conducted by the author. To mitigate the risk of
researcher bias, the analysis was subjected to a limited form of
validation: expert review by two independent, experienced,
professional software developers. Each reviewer was
presented with the categories and with a representative
selection of anonymized data, and each was asked both to
assess the adequacy of the categories for characterizing the data
and to place the examples into categories. The reviewers
agreed that the categories reflected the data appropriately –

with one exception: one reviewer considered that the ‘retrofit’
category did not merit a separate heading and suggested that it
should be included within ‘no UML’. The reviewers
categorized the examples with complete agreement both with
each other’s categorization and with the original categorization,
i.e., inter-coder reliability was 100%.

XII. CONCLUSION
This empirical study complements and resonates with other

studies of UML use in industry, finding (as others do) that
practitioners take a broad view of what constitutes ‘modeling’,
and that, even if UML is viewed as the ‘de facto’ standard, it is
by no means universally adopted. The majority of those
interviewed simply do not use UML, and those who do use it
tend to do so selectively and often informally.

What the study adds to the discourse is clear evidence of
different patterns of use, expressed in the voices of the software
developers who were interviewed, in the context of genuine
professional practice. The observations are informed by a
sample that represents the software development community,
rather than just the UML user community. Even within these
different patterns of use, there are a number of issues that
challenge the effectiveness of UML as a lingua franca – but
there are also practices that employ UML effectively in
reasoning about and communicating about design, both
individually and in collaborative dialogues.

The different patterns imply different purposes and needs –
and hence different implications for tool support. They also
highlight some of the fundamental tensions within UML,
resonating with arguments [8], [25], [17] that UML’s intended
strengths (i.e., generality, accommodating different levels of
abstraction) are intimately associated with its observed
weaknesses (e.g., latent complexity, issues of transformation
and coordination between views) and arise from fundamental
properties of UML (e.g. lack of formal semantics, separation of
expressions of structure and behavior).

The study highlights the need to consider the relationship of
tools, including notation, to both the community of practice and
to the domain of application. It makes clear that software
developers are open to useful concepts and tools, but will not
adopt tools and ideologies at odds with their considered
practice.

ACKNOWLEDGMENTS
Thanks to the professional software developers who shared their

experience and examples. Thanks also to: Jorge Aranda, David
Bowers, David Budgen, Andre van der Hoek, Shailey Minocha, Dave
Roberts, Kevin Waugh, Jon Whittle. This research has been supported
by a Royal Society Wolfson Research Merit Award.

REFERENCES
[1] Anda, B., Hansen, K., Gullesen, I., and Thorsen, H.K. (2006)

Experiences from introducing UML-based development in a large
safety-critical project. Empirical Software Engineering, 11, 555-581.

[2] Andersson, H., Herzog, E., Johansson, G., and Johansson, O. (2010)
Experience from introducing Unified Modeling Language/Systems
Modeling Language at Saab Aerosystems. Systems Engineering, 13 (4),
369-380.

[3] Aranda, J. (2010) A Theory of Shared Understanding for Software
Organizations. PhD thesis, University of Toronto.

[4] Aranda, J., Easterbrook, S., and Wilson, G. (2007) Requirements in the
wild: How small companies do it. 15th IEEE International Requirements
Engineering Conference (RE’07), 39-48.

[5] Booch, G. (1994) Object-oriented analysis and design with applications,
second edition. Redwood City: Benjamin/Cummings.

[6] Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., and
Pretorius, R. (2011) Empirical evidence about the UML: a systematic
literature review. Software: Practice and Experience, 41 (4), 363–392.

[7] Dobing, B., Parsons, J. (2006) How UML is used. CACM 49, 109-113.
[8] Dori, D. (2002) Why significant UML change is unlikely. CACM, 45

(11), 82-85.
[9] Forward, A., and Lethbridge, T.C. (2008) Problems and opportunities

for model-centric versus code-centric software development: a survey
of software professionals. Models in Software Engineering workshop
(MiSE ’08) at ICSE, ACM, 27-32.

[10] Fowler, M. (2003) UML Distilled Third Edition: A Brief Guide to the
Standard Object Modelling Language. Addison-Wesley, 2003.

[11] Glinz, M. (2000) Problems and deficiencies of UML as a requirements
specification language. Tenth International Workshop on Software
Specification and Design. 11-22.

[12] Grossman, M., Aronson, J.E., and McCarthy, R.V. (2005) Does UML
make the grade? Insights from the software development community.
Information and Software Technology 47, 383-397.

[13] Hutchinson, J., Whittle, J., Rouncefield, M., and Kristoffersen, S.
(2011a) Empirical assessment of MDE in industry. ICSE’11. 471-480.

[14] Hutchinson, J., Rouncefield, M., and Whittle, J. (2011b) Model-driven
engineering practices in industry. ICSE’11. 633-642.

[15] Jacobson, I., Jonsson, P., and Overgaard, G. (1992) Obect-Oriented
Software Engineering: A Use Case Driven Approach. Reading: ACM
Press / Addison-Wesley.

[16] Kobryn, C. (2002) Will UML 2.0 be agile or awkward? CACM, 45 (1),
107-110.

[17] Lange, C.F.J., Chaudron, M.R.V., and Muskins, J. (2006) In practice:
UML software architecture and design description. IEEE Software,
March/April 2006, 40 -46.

[18] Nugroho, A., and Chaudron, M.R.V. (2007) A survey of the practice of
design – code correspondence amongst professional software engineers.
International Symposium on Empirical Software Engineering and
Measurement (ESEM ’07), ACM, 467-469.

[19] Nugroho, A., and Chaudron, M.R.V. (2008) A survey into the rigor of
UML use and its perceived impact on quality and productivity.
International Symposium on Empirical Software Engineering and
Measurement (ESEM ’08), ACM, 90-99.

[20] Petre, M. (2009) Insights from expert software design practice.
ESEC/FSE'09, ACM, 233-242.

[21] PR9.NET (2005) Wide gap amongst developers’ perception of the
importance of UML tools. Press release, 20 April 2005.
http://www.pr9.net/comp/development/1674april.html

[22] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,F., Lorenson, W. (1991)
Object-Oriented Modeling and Design. Englewood Cliffs: Prentice-
Hall.

[23] Selic, B., Kent, S. and Evans, A. (2000) UML 2000 – Advancing the
Standard. Springer-Verlag, LNCS number 1939.

[24] Störrle, H. (2001) Describing process patterns with UML. Software
Process Technology, 2077/2001, 173-181.

[25] Thomas, D. (2004) MDA: Revenge of the modelers or UML utopia?
IEEE Software, May/June 2004, 22-24.

[26] Tichy, W. (2011) Empirical software research: an interview with Dag
Sjøberg, University of Oslo, Norway. ACM Ubiquity, June 2011, 1-14.

[27] Zeichek, A. (2002) Modelling usage low: developers confused about
UML 2.0, MDA. SD Times, 15 July 2002.
http://www.sdtimes.com/link/26637

