
SWE 265P – Reverse Engineering and Modeling 1

SWE 265P
Reverse Engineering and Modeling

Lecture 10

Duplication of course material for any purpose without the explicit written permission
of the professor is prohibited.

SWE 265P – Reverse Engineering and Modeling 2

Reality

“Who the f*** wrote this” – Jonathan Boccara [Author “The
Legacy Programmer’s Toolbox”]

SWE 265P – Reverse Engineering and Modeling 3

Reality

“Before you rewrite a piece of code, make sure you understand
how it got to its current state. Understanding the history is

important for avoiding repeating the same mistakes.” – Owen
O’Malley [Founder and technical fellow, Cloudera]

SWE 265P – Reverse Engineering and Modeling 4

Reality

“I look for the original developer if I have access to that
person.” – Leyna Cotran [Staff systems engineer, Lyft]

SWE 265P – Reverse Engineering and Modeling 5

Today

• Last week’s material

• Key expert practices

• Miscellaneous
– advanced important topics

– attitude

– enduring principles

• Final

• Wrap-up

SWE 265P – Reverse Engineering and Modeling 6

Last week’s material

• Key expert practices
– play the fool

– are alert to evidence that challenges their theory

– adjust to the degree of uncertainty present

• Testing as a mechanism for code understanding
– reading

– running

– writing

• Any questions?

SWE 265P – Reverse Engineering and Modeling 7

Last week’s homework – pull request

• What change does your pull request contain?

• How difficult is it to implement the pull request?

• Did you submit it yet and, if so, did you get a response from
the maintainers?

• What did you learn about your system?

• Any questions?

SWE 265P – Reverse Engineering and Modeling 8

Last week’s homework – old test cases

• How difficult was it to find three existing, interesting test
cases for your system?

• What approach(es) did you use to do so?

• What did you learn about your system?

• Any questions?

SWE 265P – Reverse Engineering and Modeling 9

Last week’s homework – new test cases

• How difficult was it to develop three new test cases for your
system?

• What approach(es) did you use to do so?

• What did you learn about your system?

• Any questions?

SWE 265P – Reverse Engineering and Modeling 10

KEP #19: know when to stop

SWE 265P – Reverse Engineering and Modeling 11

KEP #20: reassess the landscape

SWE 265P – Reverse Engineering and Modeling 12

KEP #21: keep learning

SWE 265P – Reverse Engineering and Modeling 13

Miscellaneous

• Advanced topics

• Attitude

• Enduring principles

SWE 265P – Reverse Engineering and Modeling 14

Advanced topic #1: history

SWE 265P – Reverse Engineering and Modeling 15

Advanced topic #1: history

SWE 265P – Reverse Engineering and Modeling 16

Advanced topic #1: history

SWE 265P – Reverse Engineering and Modeling 17

Advanced topic #1: history

SWE 265P – Reverse Engineering and Modeling 18

Advanced topic #1: history

SWE 265P – Reverse Engineering and Modeling 19

Advanced topic #1: history

SWE 265P – Reverse Engineering and Modeling 20

Advanced topic #2: visualization

SWE 265P – Reverse Engineering and Modeling 21

Advanced topic #2: visualization

SWE 265P – Reverse Engineering and Modeling 22

Advanced topic #2: visualization

SWE 265P – Reverse Engineering and Modeling 23

Advanced topic #3: refactoring

• Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the
code yet improves its internal structure.

SWE 265P – Reverse Engineering and Modeling 24

Advanced topic #3: refactoring

SWE 265P – Reverse Engineering and Modeling 25

All-too-frequent attitude

• This code is a pile of crap

• The person who wrote it had no idea what they were doing

• I would have done such a better job

• I am way better than this, maybe I should find another place
[organization] that deserves my skills

SWE 265P – Reverse Engineering and Modeling 26

More fruitful attitude

• Legacy code made the application grow

• Legacy code has time on its side

• Seeing legacy code for who it really is

• I will not complain if I do not intend to improve the code

SWE 265P – Reverse Engineering and Modeling 27

Enduring principles

1. Respect old code and the wisdom it contains

2. Accept you cannot understand it all

3. Realize every situation is unique

4. Check the details

5. Verify assumptions

6. Proceed with change carefully

7. Leave the code in a better place than you found it

SWE 265P – Reverse Engineering and Modeling 28

Homework (team)

• Make sure to finish last week’s homework

• (Due date: 17th at noon)

SWE 265P – Reverse Engineering and Modeling 29

Homework (individual)

• Make sure to regularly update your personal diary, including
an entry for today’s lecture

• (Due date: 17th at noon)

SWE 265P – Reverse Engineering and Modeling 30

Final

• Similar to the midterm (format tbd)

SWE 265P – Reverse Engineering and Modeling 31

Parting quote #1

“This is one of the most difficult tasks in programming because
you are not really reading code, but the intentions and mind

set of the person who wrote it. Sometimes you seem to
understand the code itself, but you may ask yourself, why

he/she did that? At some point you may ask yourself, did the
programmer understand what they were doing or is it me?

How do you decide?” – Mario Burges
[https://www.quora.com/How-do-I-learn-to-read-code]

SWE 265P – Reverse Engineering and Modeling 32

Parting quote #3

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand” –

Martin Fowler [ThoughtWorks]

SWE 265P – Reverse Engineering and Modeling 33

Reality

“Read with an objective. Read by being selectively ignorant.
Read bravely and patiently. Read with an understanding of the

domain.” – Lee Martie [Research staff engineer, MIT-IBM
Watson AI Lab]

SWE 265P – Reverse Engineering and Modeling 34

The end

Thank you.

