
SWE 265P – Reverse Engineering and Modeling 1

SWE 265P
Reverse Engineering and Modeling

Lecture 2

Duplication of course material for any purpose without the explicit written permission 
of the professor is prohibited.



SWE 265P – Reverse Engineering and Modeling 2

Reality

“Reading code, like writing it, is an iterative process. Don’t 
expect to understand the whole system all at once. If you 

understand one function or object, you can build on that to 
gain an understanding of the code that uses it or is used by it.” 

– Sara Triplett [Lead development actuary, FIS]



SWE 265P – Reverse Engineering and Modeling 3

Today

• Last week’s material

• Basic strategies

• In-class practice

• Principles

• Ping Chen (Google)



SWE 265P – Reverse Engineering and Modeling 4

Last week’s material

• Complexity of modern software, beyond just the source code

• Importance of build systems

• Proper Git pull requests

• Any questions?



SWE 265P – Reverse Engineering and Modeling 5

Basic strategies

• Top-down comprehension
– reconstructing knowledge of the domain of the program and mapping 

this knowledge to the source code

• Bottom-up comprehension
– reading code statements and mentally chunking or grouping these 

statements into higher level abstractions, and aggregate these 
abstractions further until a high-level understanding of the program is 
attained



SWE 265P – Reverse Engineering and Modeling 6

Basic strategies

• Systematic comprehension
– reading the code in detail, tracing through the control-flow and data-

flow abstractions in the program to gain a global understanding of it

• Opportunistic comprehension
– as-needed focusing only on the code relating to the task at hand 



SWE 265P – Reverse Engineering and Modeling 7

Reality

top-down

bottom-up

systematic

opportunistic



SWE 265P – Reverse Engineering and Modeling 8

Reality

top-down

bottom-up

systematic

opportunistic



SWE 265P – Reverse Engineering and Modeling 9

Information foraging theory

• The theory of optimal foraging stipulates that foraging 
animals attempt to maximize their energy intake (by finding 
food) over the time required to find that food

• The theory of information foraging stipulates that information 
seeking humans attempt to maximize the value of processing 
information and minimize the cost of ‘traveling’ to find that 
information



SWE 265P – Reverse Engineering and Modeling 10

Impact of familiarity

Familiar Non-familiar

Hypothesis-driven Inference-driven

Beacons Chunks

Programming plans Abstractions

Iteration Iteration



SWE 265P – Reverse Engineering and Modeling 11

Reality

• Most often, programmers use both
– use domain knowledge to form hypotheses

– react to counter evidence with more detailed reading

• Professionals focus on getting a task done, rather than on 
understanding the code



SWE 265P – Reverse Engineering and Modeling 12

Goal-driven

• Ultimately, how developers approach the problem of reverse 
engineering a software system depends on the goal that they 
have
– learning

– fixing a bug

– reviewing a pull request

– adding/changing some functionality

– assessing a component before adopting it

– vulnerability analysis

– …



SWE 265P – Reverse Engineering and Modeling 13

Let’s practice: JPacMan1

• Use IntelliJ to clone https://github.com/SWE-265P/jpacman1

• Open the project



SWE 265P – Reverse Engineering and Modeling 14

JPacMan goal #1 (fixing a bug)

• Fix the direction that PacMan moves, because right now it 
moves in the direction opposite of the key that the player 
presses



SWE 265P – Reverse Engineering and Modeling 15

JPacMan goal #2 (change to the code)

• Change the amount earned per pellet to 25 points



SWE 265P – Reverse Engineering and Modeling 16

Let’s practice: JPacMan2

• Use IntelliJ to clone https://github.com/SWE-265P/jpacman2

• Open the project



SWE 265P – Reverse Engineering and Modeling 17

JPacMan goal #3 (learn)

• How does JPacMan animate the PacMan character?



SWE 265P – Reverse Engineering and Modeling 18

JPacMan goal #4 (learn)

• Are there fruits in this particular implementation of PacMan?



SWE 265P – Reverse Engineering and Modeling 19

Let’s practice: JPacMan3

• Use IntelliJ to clone https://github.com/SWE-265P/jpacman3

• Open the project



SWE 265P – Reverse Engineering and Modeling 20

JPacMan goal #5 (code review)

• By what rules does the cyan ghost move?



SWE 265P – Reverse Engineering and Modeling 21

JPacMan goal #6 (change functionality)

• Each keystroke makes PacMan move 2 spots



SWE 265P – Reverse Engineering and Modeling 22

Principles

• Respect old code and the wisdom it contains

• Accept you cannot understand it all

• Realize every situation is unique

• Check the details

• Verify assumptions

• Proceed with change carefully

• Leave the code in a better place than you found it



SWE 265P – Reverse Engineering and Modeling 23

Homework (team)

• With your team, decide upon a large open source system that 
you want to use as the basis for your course project
– 100,000 lines of code or more

• Claim your open source system with a pull request for 
projects.md

• Each open source system can only be claimed by a single 
team

• Must claim your system by Sunday morning, 9am



SWE 265P – Reverse Engineering and Modeling 24

Homework (individual)

• Continue to explore JPacMan3 by answering the following 
questions:
– what is the role of EmptySprite?

– what is the role of MOVE_INTERVAL and INTERVAL_VARIATION?

– if you wanted to add a fruit, which files would you need to change?

• Answers should be submitted in a simple, written document, 
perhaps with code snippets embedded
– document to be submitted as a pull request

– deadline is Wednesday at 3pm



SWE 265P – Reverse Engineering and Modeling 25

Homework (continued)

• How to read code without ripping your hair out
– https://medium.com/launch-school/how-to-read-source-code-

without-ripping-your-hair-out-e066472bbe8d

• 7 Ways to improve your code reading skills
– https://dzone.com/articles/7-ways-to-improve-your-code-reading-

skill

• How to read source code
– https://github.com/aredridel/how-to-read-code/blob/master/how-to-

read-code.md

https://medium.com/launch-school/how-to-read-source-code-without-ripping-your-hair-out-e066472bbe8d
https://dzone.com/articles/7-ways-to-improve-your-code-reading-skill
https://github.com/aredridel/how-to-read-code/blob/master/how-to-read-code.md


SWE 265P – Reverse Engineering and Modeling 26

Homework (continued)

• Make sure to regularly update your personal diary, including 
an entry for today’s lecture



SWE 265P – Reverse Engineering and Modeling 27

Break



SWE 265P – Reverse Engineering and Modeling 28

And now…

• …welcome Ping!


