
CS 143A

CS143A
Principles of Operating Systems

Discussion 01: Project Setup
Instructor: Prof. Ardalan Amiri Sani

TA: Ping-Xiang (Shawn) Chen

1

CS 143A

Acknowledgement

2

The slides are based on the previous discussions from Dr. Saehanseul Yi.

CS 143A

About me

● 3rd year CS PhD student
● Research interests: Optimizing I/O stacks for emerging storage devices.
● Email: p.x.chen@uci.edu
● Office hour: Tue 4:00pm-5:00pm (DBH 3075)

3

CS 143A

Agenda

● Remote development environment
● Brief introduction to Linux system
● Project setup demo

4

CS 143A

Project

● Lab0 & Lab1
● Pintos: a simple operating system
● 32-bit x86 emulators: Bochs vs. qemu
● Required programs

○ Remote connection: terminal or putty, X11 client(for GUI)
○ Development tools: make, gcc, gdb, …
○ Source code editors: vim, Visual Studio Code, ...

5

CS 143A

Remote Development Environment

Over-simplified
internet

IP Address
169.29.35.66

Domain: openlab-1.xxx.edu

ICS Server (Nodes)
6

CS 143A

Remote Development Environment

● For the OS in each node,
○ The core of the OS is kernel
○ Kernel is responsible for fairly distributing

resources to multiple users (or programs)
○ Users submit requests via shell (shell ≃

terminal ≃ console)
○ There is one kernel, but could be multiple

shells (for each user)
○ Can we talk to a shell remotely?

7

CS 143A

Remote Development Environment: Protocols

● Frequently used protocols:
○ SSH (Secure Shell Protocol) : characters
○ X11: graphical stuff
○ FTP (File Transfer Protocol): files
○ SFTP (Secure File Transfer Protocol): files
○ SCP (Secure Copy Protocol): files

8

https://www.businessnewsdaily.com/11035-how-to-use-x11-forwarding.html

CS 143A

Work Locally (Your computer)

9

CS 143A

Work Remotely (using UCI Openlab)

Putty or WSL + Xming
(for putty, make sure X11
Forwarding is checked in
option)

built-in terminal + Xquartz
(ssh with –X option)

built-in terminal
(ssh with –X option)

Windows MacOS Linux

Microsoft Visual Studio Code (VS Code)

10

https://code.visualstudio.com/docs/remote/remote-overview

CS 143A

Work Remotely (using UCI Openlab)

● $ ssh UCInetID@openlab.ics.uci.edu -X
● Passwords are invisible. Just type it
● Case matters, “A” and “a” are different
● If you have login problems please visit:

○ https://www.ics.uci.edu/~lab/students/

11

https://www.ics.uci.edu/~lab/students/

CS 143A

Welcome to Linux!

● /: root directory
● The “path” always starts with /
● In a path, directories are separated with /
● After login, you will be at your home directory: /home/UCINetID
● First command:

○ pwd (Print Working Directory)

12

CS 143A

Welcome to Linux!

● Shell types: GUI vs. CUI
○ Character/graphical user interface
○ CUI has its own advantages over GUI and used very widely these days

● Basics of CUI
○ Users are given a prompt to type a command (usually a $ sign)
○ Then you enter a command and its arguments. ($ cp a.txt b.txtècopy a.txt into b.txt)
○ Each of these “commands” is actually a program stored in a pre-defined directory
○ E.g., to open chrome, double click the icon OR type “chrome” in a CUI shell

13

CS 143A

Welcome to Linux!

● Pre-defined directory? Where is it stored?
● Environment variables (env vars)

○ volatile variables that are used by shell
○ PATH=/bin:/usr/bin:/usr/sbin programs here can be executed by its name
○ SHELL=/bin/bash
○ PWD=/home/pingxiac

● Volatile?
○ Any modification to these variables that you want to save should be stored in a file (~/.bashrc)
○ Otherwise, it will be reset to default.

14

CS 143A

Welcome to Linux!

● man <command>: manual for the command
● E.g. man pwd

15

CS 143A

Pintos Project Setup (1/7)

● Create a directory
○ $ mkdir Pintos

16

Command Short for… Description

mkdir <dir_name> make directory

touch <file_name> create an empty file

mv <source> <dest> move move files(dirs.) or rename

cp <source> <dest> copy copy files(dirs.) + rename

rm <file_name> remove remove file

rm –r <dir_name> remove recursively remove directories

Note: rm is not reversible; no way to recover the files! Be careful

Linux command: file handling

CS 143A

Pintos Project Setup (2/7)

● Get Pintos source code
○ $ cd Pintos
○ $ git clone https://github.com/trusslab/pintos.git

17

Linux command: Navigation

Command Short for… Description

pwd Print Working Directory Current working directory

ls List List files and directories

cd Change directory go to home directory

cd .. go out to parent directory

cd <directory_name> go inside the directory

● ./ (dot followed by a slash): means the current
directory (relative path).

● An absolute path is the path starts from the root
directory. i.e. /home/UCNetID

https://github.com/trusslab/pintos.git

CS 143A

Pintos Project Setup (3/7)

● Make an empty directory for Bochs
○ $ mkdir bochs
○ we are at ~/Pintos

18

CS 143A

Pintos Project Setup (4/7)

● Build Bochs
○ $ cd pintos/src/misc/
○ $./bochs-2.6.2-build.sh ~/Pintos/bochs

● File extensions are not strictly required in Linux systems
● Though, we often put extensions to easily identify files
● .sh here implies ‘shell script’; it executes a series of commands for building

Bochs: downloading source code, build, patch bugs, ...

19

CS 143A

Pintos Project Setup (5/7)

● Build Pintos utilities
○ $ cd ~/Pintos/pintos/src/utils/
○ $ make

● make is a program for building executables from source code
● it uses a file called makefile which contains a set of rules for building

20

CS 143A

Pintos Project Setup (6/7)

● Directories for executables
○ $ cd ~/Pintos/pintos
○ $ mkdir bin
○ $ mkdir misc
○ $ cd ~/Pintos/pintos/src/utils
○ $ cp backtrace pintos* Pintos.pm setitimer-helper squish-* ~/Pintos/pintos/bin/
○ $ cp ~/Pintos/pintos/src/misc/gdb-macros ~/Pintos/pintos/misc/

21

CS 143A

Pintos Project Setup (7/7)

● Update environment variables
○ $ vi ~/.bashrc

● Add the following to ~/.bashrc
○ export PATH=$PATH:~/Pintos/pintos/bin
○ export PATH=$PATH:~/Pintos/bochs/bin

● Then
○ $ source ~/.bashrc

22

CS 143A

Verifying Pintos Project Setup

● $ which pintos
● $ which bochs
● Unsuccessful

○ $ which pintos
■ /usr/bin/which: no pintos in (/home/pingxiac/....)

● Successful
○ $ which pintos

■ ~/Pintos/pintos/bin/pintos

23

CS 143A

Verifying Pintos Project Setup

● Directory/file structure check

24

CS 143A

Booting Pintos

● $ cd ~/Pintos/pintos/src/threads
● $ make
● $ cd build
● $ pintos --bochs -- run alarm-zero

○ (or pintos -v --bochs -- run alarm-zero)
○ With -v option, it will be verbose, no

additional windows
○ To quit, hit Ctrl + c (default shortcut for

canceling tasks in Linux)

25

CS 143A

Pintos, Infinite Loop?

26

● Pintos is an old program, so not
compatible with latest toolchains installed
on Openlab

● The toolchain build instructions on the
course webpage needs an update

● For convenience, we are distributing
pre-built toolchains

CS 143A

Pintos, Infinite Loop?

● In your home folder (/home/YOUR_UCINET_ID)
● $ wget http://www.ics.uci.edu/~ardalan/courses/os/pintos-toolchains.tgz
● $ tar -xvf pintos-toolchains.tgz
● (add this line in your ~/.bashrc)

○ export PATH=/home/YOUR_UCINET_ID/pintos-toolchains/x86_64/bin:$PATH
● (the last “:$PATH” is extremely important)
● Exit and reconnect
● If you have previously built Pintos, go to threads directory

(~/Pintos/pintos/src/threads) and remove build directory (rm -rf build)
● Type make again

27

CS 143A

How to debug? Read here!

● E.1 printf()
● E.2 ASSERT
● E.3 Function and Parameter Attributes
● E.4 Backtraces
● E.5 GDB

28

https://ics.uci.edu/~ardalan/courses/os/pintos/pintos_11.html#SEC155

CS 143A

The fatal python error

● $ pintos-gdb
○ Fatal Python error:

_PyOS_InterruptOccurred: the function
must be called with the GIL held, but the
GIL is released (the current Python thread
state is NULL) Python runtime state:
unknown

● change the content of:
/home/UCInetID/Pintos/pintos/bin/pintos-g
db

29

gdb

CS 143A

How to use GDB?

● GDB, or the GNU Debugger, is a powerful debugger that allows you to step-by-step execute
a program.

● start Pintos with the --gdb option (terminal 1)
○ $ pintos --bochs --gdb -- run alarm-zero

● Open another terminal
○ Make sure both GDB and pintos are running on the same machine by running hostname in each terminal.

● Go to build directory to find the built kernel.o (terminal 2)
○ $ cd ~/Pintos/pintos/src/threads/build

● Use pintos-gdb to invoke GDB on kernel.o (terminal 2)
○ $ pintos-gdb kernel.o --tui
○ $ debugpintos

● TUI option means invoke GDB Text User Interface
○ More information about GDB Text User Interface

● Now, you are able to use GDB to debug Pintos

30

https://www.youtube.com/watch?v=AxsSXMPD3N4

CS 143A

Lab0: Kernel Monitor

● Standard C library functions (printf, scanf, ...) are often unavailable in
kernel-level programming (printf is provided by pintos)

● In Pintos, there often exists a low-level alternative for those functions
● For scanf, check out input_getc in devices/input.c
● Please be aware

○ he result of whoami command should only contains upper- and lower-case letters.

31

CS 143A

Project Submission (1/4)

● The source code should also contain your screenshot and design doc in the
folder

○ ~/Pintos/pintos/src/p0
● Compress the pintos source code with your modification

○ $ cd ~/Pintos
○ $ tar -zcvf pintos.tar.gz pintos

32

CS 143A

Project Submission (2/4)

● Copy your compressed project to your laptop with SCP (Secure Copy
Protocol:

○ $ scp UCInetID@openlab.ics.uci.edu:/home/UCInetID/Pintos/pintos.tar.gz
taget_folder_in_your_local_comouter

33

CS 143A

Project Submission (3/4)

● Upload your project 0 to gradescope

34

CS 143A

Project Submission (4/4)

35

● The grading result will show up after
a short period of time.

● Project grading contains 2 parts
○ Autograder: your code

correctness
○ Manual grade: TAs will grade

your design doc manually.

You can edit your group members of
your submission. (maximum 3
students per group)

