
CS 143A

CS143A
Principles of Operating Systems

A Brief C Crash Course
Instructor: Prof. Ardalan Amiri Sani

TA: Ping-Xiang (Shawn) Chen

1

CS 143A

Acknowledgement

2

The slides are based on the previous discussions from Dr. Claudio A. Parra.

CS 143A

Agenda

3

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

Agenda

4

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

Get Some Editor
● Go and get an editor.
● Get familiar with it.
● Learn its tricks.
● Get comfortable using it in a terminal.

5

Vim

Microsoft Visual Studio Code

CS 143A

Compilation Process

● Prepossessing
○ Remove comments
○ Expands Macros (#define)
○ Expand Included files (#include)

● Compilation
○ Generates text files with assembly

language.
○ Specific to the target machine.

6
NerdyElectronics, 15.1 - Compilation Process of a C Program - Theory - Master C and Embedded C Programming
https://www.youtube.com/watch?v=LOWQg8BNQJ4

https://www.youtube.com/watch?v=LOWQg8BNQJ4

CS 143A

Compilation Process

● Assembly
○ Convert the assembly into machine

code.
○ This is 0s and 1s.
○ Also known as “Object code”

● Linking
○ Merges all the object codes from

multiple modules into a single binary.
○ If we are using libraries, those libraries

get linked (referenced or copied).

7
NerdyElectronics, 15.1 - Compilation Process of a C Program - Theory - Master C and Embedded C Programming
https://www.youtube.com/watch?v=LOWQg8BNQJ4

https://www.youtube.com/watch?v=LOWQg8BNQJ4

CS 143A

Agenda

8

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

Basic Types

● char, short, int, long, size_t store integers
● float, double store numbers with fractional parts.

○ You don’t need this to work in an OS.
● xxxx* are pointers, they store addresses of memory.
● These definitions are machine dependent.

9

CS 143A

Basic Types

10

#include <stdio.h>
#include <stdint.h>
#include <float.h>
#include <limits.h>

int main(int argc, char *argv[]) {
 printf("|%10s|%7d bits|%22s|%22s|\n", "",CHAR_BIT,"","");
 printf("|%10s|%12s|%22s|%22s|\n", "type","bytes","min","max");
 printf("|----------+------------+----------------------+----------------------|\n");
 printf("|%10s|%12ld|%22d|%22d|\n", "char",sizeof(char),CHAR_MIN,CHAR_MAX);
 printf("|%10s|%12ld|%22d|%22d|\n", "uchar",sizeof(unsigned char),0,UCHAR_MAX);
 printf("| | | | |\n");
 printf("|%10s|%12ld|%22d|%22d|\n", "short",sizeof(short),SHRT_MIN,SHRT_MAX);
 printf("|%10s|%12ld|%22d|%22d|\n", "ushort",sizeof(unsigned short),0,USHRT_MAX);
 printf("| | | | |\n");
 printf("|%10s|%12ld|%22d|%22d|\n", "int",sizeof(int),INT_MIN,INT_MAX);
 printf("|%10s|%12ld|%22d|%22u|\n", "uint",sizeof(unsigned int),0,UINT_MAX);
 printf("| | | | |\n");
 printf("|%10s|%12ld|%22ld|%22ld|\n", "long",sizeof(long),LONG_MIN,LONG_MAX);
 printf("|%10s|%12ld|%22d|%22lu|\n", "ulong",sizeof(unsigned long),0,ULONG_MAX);
 printf("| | | | |\n");
 printf("|%10s|%12ld|%22lld|%22lld|\n", "llong",sizeof(long long),LLONG_MIN,LLONG_MAX);
 printf("|%10s|%12ld|%22d|%22llu|\n", "ullong",sizeof(unsigned long long),0,ULLONG_MAX);
 printf("| | | | |\n");
 printf("|%10s|%12ld|%22d|%22lu|\n", "size_t",sizeof(size_t),0,SIZE_MAX);
 printf("|----------+------------+----------------------+----------------------|\n");
 printf("|%10s|%12ld|%8s+-%12g|%8s+-%12g|\n", "float",sizeof(float),"",FLT_MIN,"",FLT_MAX);
 printf("|%10s|%12ld|%8s+-%12g|%8s+-%12g|\n", "double",sizeof(double),"",DBL_MIN,"",DBL_MAX);
 printf("|----------+------------+----------------------+----------------------|\n");
 printf("|%10s|%12ld|%22s|%22s|\n", "void*",sizeof(void*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "char*",sizeof(char*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "short*",sizeof(short*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "int*",sizeof(int*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "long*",sizeof(long*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "long long*",sizeof(long long*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "size_t*",sizeof(size_t*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "float*",sizeof(float*),"- ","- ");
 printf("|%10s|%12ld|%22s|%22s|\n", "double*",sizeof(double*),"- ","- ");
 printf("+----------+------------+----------------------+----------------------+\n");
 return 0;
}

CS 143A

Variables and Constants

11

● Variables and constants are the basic data
objects in a program.

● Constants are read only. Variables are
rewritable.

● Both have a data type associated to it. (integer,
decimal, character...)

#define MAXSIZE 1000 //int constant
#define THREE 3L //long constant
#define PI 3.1415 //double constant
#define HALF 0.5F //float constant

int main() {
 int lucky_number; //declare and define
 lucky_number = 42; //initialize (assign) later

 char initial = 'C';

 //we can use the constants
 double use_constants = PI;
 float use_dot_for_floats = 5.0;

 // invalid, we cannot assign constants.
 THREE = 4; // ERROR

 // case sensitive, these are different
 long DIFFERENT = 3984756768;
 long different = 8731408705;

 // variable already used
 float lucky_number = 42.51; // ERROR

 nope = 300; // ERROR, variable never declared!!
 char 4nope = 'X'; // ERROR, invalid variable name!!
 return 0;
}

CS 143A

Variables and Constants

12

● Declaration:
○ Introduction of a new data object name

to the program.
● Definition:

○ Explanation of what is the size and
shape of the declared data object.

● Assignment:
○ Act of binding a value to a name.

● Initialization:
○ First assignment of a value to the name.

#define MAXSIZE 1000 //int constant
#define THREE 3L //long constant
#define PI 3.1415 //double constant
#define HALF 0.5F //float constant

int main() {
 int lucky_number; //declare and define
 lucky_number = 42; //initialize (assign) later

 char initial = 'C';

 //we can use the constants
 double use_constants = PI;
 float use_dot_for_floats = 5.0;

 // invalid, we cannot assign constants.
 THREE = 4; // ERROR

 // case sensitive, these are different
 long DIFFERENT = 3984756768;
 long different = 8731408705;

 // variable already used
 float lucky_number = 42.51; // ERROR

 nope = 300; // ERROR, variable never declared!!
 char 4nope = 'X'; // ERROR, invalid variable name!!
 return 0;
}

CS 143A

Enumeration
● Useful to assign meaningful names to integral

constants.
● Thus, the code is cleaner and easier to

maintain/understand.
● Often used in the kernel of an OS.
● Values start from 0 unless values are specified

explicitly.
● For not explicit specification, the values

continue in progression.

13

#include <stdio.h>
enum course_status { FAIL, PASS, INCOMPLETE, DROP };
enum score { BAD = 1, AVERAGE, GREAT };
//AVERAGE is 2, GREAT is 3

int main(void) {
 enum course_status pass_course = PASS;
 enum score how_was_it;
 how_was_it = GREAT;
 printf("Course Status? %d.\n", pass_course);
 printf("How was the course? %d.\n", how_was_it);
 return 0;
}

CS 143A

Operators and their
Precedence

● Operator associativity is used when two
operators of the same precedence appear in an
expression.

● Associativity can be either from Left to Right or
Right to Left.

14

#include <stdio.h>

int main(void){
 int a = 3, b = 4, c = 5;
 a = b = c;
 printf("a=%d, b=%d, c=%d\n", a, b , c);
}

C Operator Precedence,
https://en.cppreference.com/w/c/language/operator_precedence

https://en.cppreference.com/w/c/language/operator_precedence

CS 143A

Operators and their
Precedence

15

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

CS 143A

Operators and their
Precedence

16

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

a = -5

CS 143A

Operators and their
Precedence

17

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

a = -4

b = -28

CS 143A

Operators and their
Precedence

18

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

a = -3

c = -21

CS 143A

Operators and their
Precedence

19

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

d = 1

CS 143A

Operators and their
Precedence

20

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

e = 1

CS 143A

Operators and their
Precedence

21

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

f = 0

CS 143A

Operators and their
Precedence

22

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

● The comma operator (represented by the
token ,) is a binary operator that evaluates
its first operand and discards the result.

● The use of the comma token as an
operator is distinct from its use in function
calls and definitions, variable declarations,
enum declarations, and similar constructs,
where it acts as a separator.

i = 1

CS 143A

Operators and their
Precedence

23

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

j = 2

CS 143A

Operators and their
Precedence

24

#include<stdio.h>
int main(){
 int a,b,c,d,e,f,g,h,i,j,k;
 a = 3 - 4 * 2;
 b = ++a * 7;
 c = a++ * 7;
 d = 3 < 2 != 2;
 e = 1 || 0 && 1;
 f = g = h = 7 == 1;
 i = 1 , 2;
 j = (1 , 2);
 k = 7 > 8 ? 0 : 3 != 3 ? 15 : 17;

 printf("a:%d\nb:%d\nc:%d\nd:%d\n"
 "e:%d\nf:%d\ng:%d\nh:%d\n"
 "i:%d\nj:%d\nk:%d\n",
 a,b,c,d,e,f,g,h,i,j,k);
 return 0;
}

k = 17

CS 143A

Agenda

25

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

Statements

● A statement is a command given to the computer that instructs the computer
to take a specific action, such as display to the screen, collect input, assigning
a value to a variable, etc.

● A computer program is made up of a series of statements. Statements are
delimited by a semicolon at the end.

26

a = 3 - 4 * 2;

CS 143A

Blocks

● A compound statement or Block is the way C groups multiple statements into
a single statement. It consists of multiple statements and declarations within
braces.

27

{
statement;
statement;
statement;
...

}

CS 143A

Selection Statements

28

if (expression) statement
● statement is executed only iff expression is non-zero.

if (expression) 1st-statement else 2nd-statement
● Similarly, but now 2nd-statement is executed iff expression is zero.

switch (expression) statement
● expression is integer or character. The statement is usually compound and it contains case-labeled

statements and optionally a default-labeled statement.

if(var > 0){
 var -= 1;
 f = foo(var);
 }

if(i * n + j < n * n){
 if(i<j)
 bar(i * n + j);
 else

i += 1;
}

else{
 i = 0;
 j = 0;
}

switch(my_char){
 case ’a’:
 foo(var);

break;
 case ’b’:

bar(var);
break;

 default:
printf("not known\n");

}

CS 143A

Iteration Statements

29

while (expression) statement
● statement is executed repeatedly only iff expression is non-zero.

do statement while (expression)
● Similarly, but now statement is executed at least once.

for (exp1 ; exp2 ; exp3) statement
● exp1 is executed once, before the “for” iteration. statement is executed repeatedly as long as exp2

is non-zero. exp3 is executed right after every execution of the statement.

while(var < MAX){
 var += 1;
 foo(var);
}

do{
 c = read_char();
 store_char(c);
} while(c != 'x')

for(int i = 0; i < length; ++i){
 if(is_prime(i)){
 store(i);
}

CS 143A

Jump Statements

30

break;
● Used within iteration statements and switch statements to pass control flow to the statement

following the while, do-while, for, or switch.
continue;

● Used within iteration statements to transfer control flow to the place just before the end of the
statement. In for loops, right before exp3

return expression;
● Used to return control to the caller of the current function. If it is accompanied by an expression, its

value become available to the caller.

while(1){
 if(r < 0)

break;
 else

r -= 1;
}

int i = 0;
for(int pair = getN(); i < len; pairs = getN()){
 if(pair % 2 != 0)

continue;
 else{

process(pair);
i += 1;

 }
}

CS 143A

Agenda

31

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

When to create functions

● Break problems into small parts. Reuse
your code. Easy readability. Parameters
and return values are always copied.

32

ret_type name(args declaration){
declarations and statements

}

int main(int argc, char **argv) {
 //check validity of the arguments
 for(all a in arguments){

if(wrong argument)
 print error and exit;
 }
 //get user input
 print "what operation to execute";
 op = user input;
 if(op is wrong operation)
 print error and exit;
 //execute the requested operation
 if(operation is X){

allocate memory;
some computation;

 }
 else if(operation is Y){

allocate memory;
another computation;

 }
 return 0;
}

void check_args(int argc, char **argv) {
 for(all a in argv){

if(wrong argument)
print error and exit;

 }
}
int input_operation(void) {

print "what operation to execute";
op = user input;

 if(op is wrong operation)
print error and exit;
return op;

}
void run_operation(int oper) {
 if(operation is X){
 allocate memory;

some computation;
 }
 else if(operation is Y){

allocate memory;
another computation;

 }
}
int main(int argc, char **argv) {
 check_args(argc, argv);
 ask what operation to execute;
 op = input_operation();
 run_operation(op);
 return 0;
}

CS 143A

External and Internal
Variables

● A program written in C consists of a set of
external objects, which are either variables or
functions.

● These objects can be across several source
files (“.c” files).

● A variable is external or internal if it is defined
outside or inside of any function. All functions
are external.

● An external variable is accessible from any
function in the file after their declaration.

● There must be only one DEFINITION of each
external object.

● Internal variables are destroyed on function
return. External variables are permanent.

33

#include <stdio.h>

int extvar;

void fn1(void){
 int invar = 42;
 extvar = 3;
}

void fn2(void){
 int invar = 57;
 extvar = 5;
}

int main(void){
 int invar;
 extvar = 2;
 invar = 57;
 printf("ext:%d int:%d\n",extvar,invar);
 fn1();
 printf("ext:%d int:%d\n",extvar,invar);
 fn2();
 printf("ext:%d int:%d\n",extvar,invar);
}

CS 143A

Declare, Define, Initialize
● Declare: telling the program a variable or

function exists, and what is its shape.
● Define: setting aside memory for the variable.
● Initialize: put the first value on the variable.
● If you use a variable in several files, you must

declare it for all files. But you must define it
only in one place.

34

#include <stdio.h>
void fn1(void){ // declare + define
 int invar = 42;
 //extvar = 3; //error, not declared yet
}

// declare, telling the program the
// variables and functions exist.
void fn2(void);
extern int extvar;
extern double arr[];
// define variables,
int extvar;
double arr[4];

int main(void){
 int invar; // declaration + definition
 arr[3] = 33;
 extvar = 2; // initialization
 invar = 57; // initialization
 printf("ext:%d int:%d\n",extvar,invar);
 fn1();
 printf("ext:%d int:%d\n",extvar,invar);
 fn2();
 printf("ext:%d int:%d\n",extvar,invar);
 printf("arr[3]:%f\n",arr[3]);
}

// define functions
void fn2(void){
 int invar = 57;
 extvar = 5; // this is fine
}

CS 143A

Header Files and Static
Objects

● Variables and functions are declared in the
header.

● They are defined in source2.c
● main.c must #include the header.
● The header file acts as a “contract” between

main and source2, defining how the variables
and functions can be used (for main) and how
they will be defined (for source2)

● If you want to make an object only visible for
that source file, use the word static.

35

#include <stdio.h>
#include "header_header.h"
int main(void){
 var = 4;
 var += fn1(15);
 //num_calls = 0; // error!!
 printf("var: %d\n",var);
 printf("fn2: %d\n",fn2());
}

extern int var;
extern int fn1(int i);
extern int fn2(void);

main.c

int var;
static int num_calls = 0;

int fn1(int i){
 num_calls += 1;
 return i + 3;
}

int fn2(void){
 num_calls += 1;
 return 2 * var;
}

header_header.h

source2.c

$ gcc -o main main.c source2.c -include header_header.h

CS 143A

Makefile
● Make is a build automation tool that builds

executable programs and libraries from source
code by reading files called makefiles which
specify how to derive the target program.

● For more information, please refer to the:
○ Makefile Tutorial

36

files := main.c source2.c
headers := header_header.h
binary := main

all:
 gcc -o $(binary) $(files) -include $(headers)
clean:

 rm -f $(binary)

#include <stdio.h>
#include "header_header.h"
int main(void){
 var = 4;
 var += fn1(15);
 //num_calls = 0; // error!!
 printf("var: %d\n",var);
 printf("fn2: %d\n",fn2());
}

extern int var;
extern int fn1(int i);
extern int fn2(void);

main.c

int var;
static int num_calls = 0;

int fn1(int i){
 num_calls += 1;
 return i + 3;
}

int fn2(void){
 num_calls += 1;
 return 2 * var;
}

header_header.h

source2.c

Makefile

https://makefiletutorial.com/#top

CS 143A

Agenda

37

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

Pointers: Addresses of
Objects

● Memory is a very long array of bytes, each with
an address. A pointer is a group of bytes
(normally 8) containing the address of some
other byte.

● Given an object in memory, the operator
reference (&) retrieves its address.

● Given an address, the operator dereference (*)
retrieves the object at that address.

● When * is used in a definition, it means “this is
a pointer to that type”.

● A pointer is a variable that contains an address
to an object.

● The object a pointer “points to”, may be another
pointer.

38

include <stdio.h>

int main(void){
 int var = 99;
 int *pv; //this is a pointer to int

 pv = &var; //store the address of var

 // print the address itself
 printf("pv : %p\n", pv);

 // obtain the object var using
 // a pointer to it
 printf("var: %d\n", *pv);
}

CS 143A

Pointers in Functions
● When you pass a pointer variable to a function,

just like with any other variable, you are
copying it.

● But if you dereference it inside of the function,
you access the original value that the caller
has.

● Never return pointers to automatic variables.
As the function ends, that memory is reclaimed.

● Instead, you can receive a pointer to something
from the caller, or allocate memory from the
heap.

● In the later case, note that at some point that
allocated memory from the heap must be freed
with free(pz).

39

#include <stdio.h>
#include <stdlib.h>
char *bad_idea(void){
 char c = 'w';
 return &c;
}
void good_idea(char *c){
 *c = *c + 1; //next character
 return;
}

char *also_good_idea(void){
 char *c = malloc(sizeof(char));
 *c = 'z';
 return c;
}

int main(void){
 char *pw, x, *pz;
 x = 'x';
 pw = bad_idea();
 good_idea(&x);
 pz = also_good_idea();
 printf("pw: %p\n", pw);
 printf("w : %c\n", *pw); // DANGER
 printf("x : %c\n", x);
 printf("z : %c\n", *pz);
}

CS 143A

Pointers in Functions
● When you pass a pointer variable to a function,

just like with any other variable, you are
copying it.

● But if you dereference it inside of the function,
you access the original value that the caller
has.

● Never return pointers to automatic variables.
As the function ends, that memory is reclaimed.

● Instead, you can receive a pointer to something
from the caller, or allocate memory from the
heap.

● In the later case, note that at some point that
allocated memory from the heap must be freed
with free(pz).

40

#include <stdio.h>
#include <stdlib.h>
void good_idea(char *c){
 *c = *c + 1; //next character
 return;
}

char *also_good_idea(void){
 char *c = malloc(sizeof(char));
 *c = 'z';
 return c;
}

int main(void){
 char x, *pz;
 x = 'x';
 good_idea(&x);
 pz = also_good_idea();
 printf("x : %c\n", x);
 printf("z : %c\n", *pz);
 free(pz);
}

CS 143A

Pointers, Arrays, and Address
Arithmetic

● Arrays and Pointers have a very strong
relationship. Any operation that can be
achieved with arrays, can be done with
pointers.

● L5: pa points to the first element of the array.
● L7: *(pa+1) points to the next element in the

array.
● L8: *(pa+n) points to the nth element in the

array.
● L10: By definition, the value of an array name

alone is the address of the first element of the
array.

● Therefore, L5 may be written as in L10.

41

 1 #include <stdio.h>
 2 int main(void){
 3 int arr[] = {101, 102, 103, 104, 105};
 4 int *pa, *pa2;
 5 pa = &arr[0];
 6 printf("*pa : %d\n", *pa);
 7 printf("*(pa+1) : %d\n", *(pa+1));
 8 printf("%d == %d\n", *(pa+4), arr[4]);
 9 printf("%p == %p\n", arr, pa);
 10 pa2 = arr;
 11 printf("%p == %p\n", arr, pa2);
 12
 13 printf("%d == %d\n", pa[3], *(arr+3));
 14
 15 pa += 1;
 16 //arr += 1; // error
 17
 18 char *name = "Claudio"; // plus ’\0’
 19 printf("name[2] : %c\n", name[2]);
 20 printf("Name : %s\n", name);
 21 }

CS 143A

Pointers, Arrays, and Address
Arithmetic

● L13: Additionally, we can use indices with the
pointer, or *(+n) with the array name.

● L15-16: There is one key difference: pointers
are variables, they can be assigned. An array
name is not.

● L18: Strings are just arrays of characters with
the null character “\0” at the end. Then, name
has 8 elements.

● L20: printf prints the whole array until it finds \0.
● When an array name is passed to a function,

internally, it is a pointer variable.

42

 1 #include <stdio.h>
 2 int main(void){
 3 int arr[] = {101, 102, 103, 104, 105};
 4 int *pa, *pa2;
 5 pa = &arr[0];
 6 printf("*pa : %d\n", *pa);
 7 printf("*(pa+1) : %d\n", *(pa+1));
 8 printf("%d == %d\n", *(pa+4), arr[4]);
 9 printf("%p == %p\n", arr, pa);
 10 pa2 = arr;
 11 printf("%p == %p\n", arr, pa2);
 12
 13 printf("%d == %d\n", pa[3], *(arr+3));
 14
 15 pa += 1;
 16 //arr += 1; // error
 17
 18 char *name = "Claudio"; // plus ’\0’
 19 printf("name[2] : %c\n", name[2]);
 20 printf("Name : %s\n", name);
 21 }

CS 143A

Pointers, Arrays, and Address
Arithmetic

● Pointer Comparison: ==, !=
○ Two pointer values are equal if they

point to the same location, or if they are
both null.

● Assignment: = Same type of pointers.
● Offset: +, - Pointer and Integer
● Distance: - You can subtract two pointers to

obtain the distance between them if they are
part of the same array.

● null: ==NULL, =NULL Always.
● All other operations are illegal.

43

 1 #include <stdio.h>
 2 int main(void){
 3 int arr[] = {101, 102, 103, 104, 105};
 4 int *pa, *pa2;
 5 pa = &arr[0];
 6 printf("*pa : %d\n", *pa);
 7 printf("*(pa+1) : %d\n", *(pa+1));
 8 printf("%d == %d\n", *(pa+4), arr[4]);
 9 printf("%p == %p\n", arr, pa);
 10 pa2 = arr;
 11 printf("%p == %p\n", arr, pa2);
 12
 13 printf("%d == %d\n", pa[3], *(arr+3));
 14
 15 pa += 1;
 16 //arr += 1; // error
 17
 18 char *name = "Claudio"; // plus ’\0’
 19 printf("name[2] : %c\n", name[2]);
 20 printf("Name : %s\n", name);
 21 }

https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Pointer-Comparison.html

CS 143A

Pointers to Functions
● L2: The second parameter is “a pointer to a

function that receives one character”
● L4: Call to the function.
● L14: fun is the name of the function, and acts

as a pointer.

44

 1 #include <stdio.h>
 2 void fn2(char my_char, int (*pfun)(char c)){
 3 int next;
 4 next = (*pfun)(my_char);
 5 printf("Done: %d\n", next);
 6 }
 7
 8 int fun(char c){
 9 printf("Char: %c\n", c);
 10 return (int) c + 1;
 11 }
 12
 13 int main(void){
 14 fn2('K', fun);
 15 }

CS 143A

Agenda

45

● Workflow
● Types, Operators and Expressions
● Control Flow
● Functions
● Pointers and Arrays
● Structures

CS 143A

Syntax
● L2: Struct declaration.
● L7,8,28: Elements of struct’s addresses

accessed with ->
● L6: You can pass a pointer to struct to

functions.
● L10: You can return a struct, the whole struct

being copied.
● L20: You can assign all members of a struct at

definition time.
● L26: You can obtain pointers to structs.

46

 1 #include <stdio.h>
 2 struct Point{
 3 int x;
 4 int y;
 5 };
 6 void init(struct Point *p){
 7 p->x = -1;
 8 p->y = -2;
 9 }
 10 struct Point init2(void){
 11 struct Point p;
 12 p.x = -10;
 13 p.y = -20;
 14 return p;
 15 }
 16 void print_struct(struct Point p){
 17 printf("x,y: %d, %d\n", p.x, p.y);
 18 }
 19 int main(){
 20 struct Point p1 = {23, 74}, *pp1;
 21 printf("p1.x, p1.y: %d, %d\n", p1.x, p1.y);
 22 init(&p1);
 23 print_struct(p1);
 24 p1 = init2();
 25 printf("p1.x, p1.y: %d, %d\n", p1.x, p1.y);
 26 pp1 = &p1;
 27 printf("pp1->x, pp1->y: %d, %d\n",\
 28 pp1->x, pp1->y);
 29 }

CS 143A

Thank you. Any Questions?

47

