
Principles of
Operating Systems

Lecture 2 - Processes and Threads
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from : previous slides by Prof. Nalini Venkatasubramanian,
and course text slides © Silberschatz]

1

mailto:ardalan@uci.edu

Outline

■ Processes
■ Threads
■ Interprocess Communication

2

Process Concept

■ An operating system executes a variety of
programs

■ job and program used interchangeably

■ Process - an instance of a program in
execution (with limited rights)

■ For now, we assume that the process has a single
thread of execution. Therefore, the process execution
proceeds in a sequential fashion

■ A process address space contains
■ Stack, heap, data and code sections

3

Process =? Program

❑ A process is one instance of a program in execution
❑ I run Vim on lectures.txt, you run it on homework.java – Same program,

different processes
❑ A program can invoke more than one process

■ A web browser launches multiple processes, e.g., one per tab

main ()
{

 …;

}

A() {

 …;

}

main ()
{

 …;

}

A() {

 …;

}

Heap

Stack

Program Process

4

Data

Process States

■ A process changes state as it executes.
new admitted

interrupt

I/O or
event
completion

Scheduler
dispatch I/O or

event wait

exit terminated

waiting

ready running

5

Process States

■ New - The process is being created.
■ Running - Instructions are being executed.
■ Waiting - Waiting for some event to occur.
■ Ready - Waiting to be assigned to a

processor.
■ Terminated - Process has finished execution.

6

Process Control Block
■ Kernel maintains a PCB for each

process
■ Contains information associated

with each process
■ Process state – running, waiting, etc
■ Program counter – location of

instruction to next execute
■ CPU registers – contents of all

process-centric registers
■ CPU scheduling information-

priorities, scheduling queue pointers
■ Memory-management information –

memory allocated to the process
■ Accounting information – CPU used,

clock time elapsed since start, time
limits

■ I/O status information – list of open
files

Process
Control
Block

7

Enabling Concurrency: Context
Switch
■ Operation that switches CPU from one

process to another process
❑ the CPU must save the state of the old process into its PCB

and load the state of the new process from its PCB.

■ Context-switch time is overhead
❑ System does no useful work while switching
❑ Overhead sets minimum practical switching time; can

become a bottleneck

■ Time for context switch is dependent on
hardware support (typically 1- 1000
microseconds).

8

CPU Switch From Process to
Process

■ Code executed in kernel above is overhead
❑ Overhead sets minimum practical switching time

■ The scheduler decides which process to execute next (scheduler will be
discussed in the next lecture)

9

Process Creation

■ Processes are created by other processes
❑ The kernel implements the mechanism to create a

new process in the form of a syscall.
■ Process which creates another process is

called a parent process; the created process
is called a child process.

■ Result is a tree of processes
■ Resources required when creating process

■ CPU time, files, memory, I/O devices etc.

10

A tree of processes in Linux

11

Fun question: who creates the init
process?
■ Resources required when creating process

■ CPU time, files, memory, I/O devices etc.

12

Fun question: who creates the init
process?
■ Kernel, all on its own.
■ Resources required when creating process

■ CPU time, files, memory, I/O devices etc.

13

What does it take to create a
process?
■ Must construct new PCB

❑ Inexpensive
■ Must set up the address space (e.g., set up new page

tables for address space)
❑ More expensive

■ Copy data from parent process? (Unix fork())
❑ Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory
❑ Originally very expensive
❑ Much less expensive with “copy on write”

■ Copy I/O state (file handles, etc)
❑ Medium expense

14

UNIX Process Creation

■ Address space
❑ First, child’s address space is duplicate of parent’s

❑ Then, child can load a new program

■ Fork system call creates new processes

■ exec() system call is used after a fork to replace the
processes memory space with a new program.

15

Process Termination

■ Process executes last statement and then asks the operating
system to delete it using the exit() system call.

❑ Returns status data from child to parent (via wait())
❑ Process’ resources are deallocated by operating system

■ Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:

❑ Child has exceeded a threshold for allocated resources
❑ Task assigned to child is no longer required
❑ The parent is exiting and wants to terminate the child process

too

16

Process Termination

■ Zombie process: a child process that has terminated,
but its parent hasn’t called wait() yet.

■ Orphan process: a child process, whose parent process
has died. Orphan process is adopted by the init
process.

17

Threads

■ Processes do not share resources well and they have
high context switching overhead

■ Idea: Separate concurrency from protection
■ Multithreading: a single program made up of a number of

different concurrent activities
■ A thread (or lightweight process)

❑ basic unit of CPU execution; it has separate:
▪ program counter, register set, and stack space

■ A thread shares the following with peer threads:
▪ memory address space including code section, data section, heap,

etc. (Q. can one thread access another thread’s stack?)
▪ OS resources (open files)
▪ No protection between threads

■ Collectively called a task.

■ Heavyweight process is a task with one thread.
18

Single and Multithreaded
Processes

■ Threads encapsulate execution and concurrency: “Active” component
■ Process encapsulates protection: “Passive” part

❑ Keeps buggy program from trashing the system 19

Threads (Cont.)

■ In a multi-threaded process, while one thread
is blocked and waiting, a second thread in the
same task can run.

■ Cooperation of multiple threads in the same job results
in higher throughput and improved performance.

■ Applications that require sharing a common buffer (i.e.
producer-consumer) benefit from thread utilization.

■ Threads provide a mechanism that allows
sequential processes to make blocking
system calls while also achieving parallelism.

20

Thread State

■ State shared by all threads in the process
❑ Content of memory (global variables, heap)
❑ I/O state (open files, network connections, etc.)

■ State “private” to each thread
❑ Kept in TCB = Thread Control Block
❑ CPU registers (including, program counter)
❑ Execution stack
❑ Thread (execution) state -

■ new, ready, waiting, running, terminated
■ Parameters, Temporary variables
■ return PCs are kept while called procedures are

executing
21

Threads (cont.)

■ Switching between two threads in the same
process still requires a register set switch, but
no memory management related work!

■ Only one thread can run on a CPU at a time.
■ No protection among threads.

22

Types of Threads

■ Kernel-supported threads
■ User-level threads
■ Hybrid approach implements both user-level

and kernel-supported threads (Solaris 2).

23

Kernel Threads

■ Supported by the Kernel
❑ Threads created and managed directly by the kernel
❑ Every thread can run or block independently
❑ One process may have several threads waiting on different things

■ Downside of kernel threads: a bit expensive
❑ Need to make a crossing into kernel mode for scheduling

■ Example
❑ Linux

24

User Threads
■ Supported above the kernel, via a set of library calls

at the user level.
■ Thread management done by user-level threads library

❑ User program provides scheduler and thread package
■ May have several user threads per kernel thread
■ User threads may be scheduled non-preemptively relative to

each other (only switch on yield())
❑ Advantages

■ Cheap, Fast
❑ Threads do not need to cross to the kernel for scheduling

❑ Disadv: Threads will not run in parallel, only one thread at a
time per kernel thread

■ Example thread libraries:
❑ POSIX Pthreads can support user threads,

25

Signal Handling
● Signals are used in UNIX systems to notify a process that a

particular event has occurred.
● A signal handler is used to process signals

1. Signal is generated by a particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

● Every signal has default handler that runs when handling
signal
● User-defined signal handler can override default

■ Can’t override SIGKILL and SIGSTOP
● For single-threaded, signal delivered to process

Multi (processing, programming, threading)
■ Definitions:

❑ Multiprocessing: Multiple processors/CPUs
❑ Multiprogramming: Multiple jobs/processes
❑ Multithreading: Multiple threads per process

■ What does it mean to run two threads “concurrently”?
❑ Scheduler is free to run threads in any order and interleaving: FIFO, Random,

…
❑ Dispatcher can choose to run each thread to completion or time-slice in big

chunks or small chunks

A B C

BA ACB C B

Multiprogramming

A

B

C

Multiprocessing

27

Interprocess Communication
● Processes within a system may be independent or cooperating
● Reasons for cooperating processes:

● Information sharing
● Computation speedup
● Modularity
● Convenience

● Cooperating processes need to communicate and share data. For
this purpose, they use interprocess communication (IPC)

● Two models of IPC
● Shared memory
● Message passing

28

Interprocess Communication –
Shared Memory

● An area of memory shared among the processes that wish
to communicate

● The communication is under the control of the processes
not the operating system.

● Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

● Synchronization will be discussed in future lectures.

29

Interprocess Communication –
Shared Memory

30

Producer-Consumer Problem
● Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer
process
● unbounded-buffer places no practical limit on the size

of the buffer
● bounded-buffer assumes that there is a fixed buffer

size

31

Bounded-Buffer –
Shared-Memory Solution

● Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

32

Bounded-Buffer – Producer
item next_produced;

while (true) {

/* produce an item in next_produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

33

Bounded Buffer – Consumer
item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

34

Bounded-Buffer –
Shared-Memory Solution

● How many elements can be stored in the buffer at most at a
given time?

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next
consumed */

}

ConsumerProducer

35

Bounded-Buffer –
Shared-Memory Solution

● Can only use BUFFER_SIZE-1 elements

36

Interprocess Communication –
Message Passing

● Mechanism for processes to communicate and to synchronize
their actions

● Message system – processes communicate with each other
without resorting to shared variables

● IPC facility provides two operations:
● send(message)
● receive(message)

● The message size is either fixed or variable

37

Interprocess Communication –
Message Passing

38

Message Passing (Cont.)
● If processes P and Q wish to communicate, they need to:

● Establish a communication link between them
● Exchange messages via send/receive

● Implementation issues:
● How are links established?
● Can a link be associated with more than two processes?
● How many links can there be between every pair of

communicating processes?
● What is the capacity of a link?
● Is the size of a message that the link can accommodate fixed or

variable?
● Is a link unidirectional or bi-directional?

39

Message Passing (Cont.)
● Implementation of communication link

● Physical:

 - Main memory (Figure in slide 38)

 - Hardware bus

 - Network

40

Direct Communication
● Processes must name each other explicitly:

● send (P, message) – send a message to process P
● receive(Q, message) – receive a message from process Q

● Properties of communication link
● Links are established automatically
● A link is associated with exactly one pair of communicating

processes
● Between each pair there exists exactly one link
● Link may be unidirectional or bi-directional
● The link may be unidirectional, but is usually bi-directional

41

Indirect Communication
● Messages are directed and received from mailboxes (also referred

to as ports)
● Each mailbox has a unique id
● Processes can communicate only if they share a mailbox

● Properties of communication link
● Link established only if processes share a common mailbox
● A link may be associated with many processes
● Each pair of processes may share several communication links
● Link may be unidirectional or bi-directional

42

Indirect Communication
● Operations

● create a new mailbox (port)
● send and receive messages through mailbox
● destroy a mailbox

● Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

43

Synchronization
● Message passing may be either blocking or non-blocking
● Blocking is considered synchronous

● Blocking send -- the sender is blocked until the message is
received

● Blocking receive -- the receiver is blocked until a message
is available

● Non-blocking is considered asynchronous
● Non-blocking send -- the sender sends the message and

continues
● Non-blocking receive -- the receiver receives:

● A valid message, or
● Null message

● Different combinations possible
● If both send and receive are blocking, we have a rendezvous

44

Message passing (Cont.)
● Producer-consumer becomes trivial

 message next_produced;

 while (true) {
 /* produce an item in next produced */

 send(next_produced);

 }

message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

Consumer

Producer

45

Message passing (Cont.)
● Q. What are the send and receive here? Blocking or non-blocking?

 message next_produced;

 while (true) {
 /* produce an item in next produced */

 send(next_produced);

 }

message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

Consumer

Producer

46

Buffering
● Queue of messages attached to the link is implemented in one of

three ways
1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

47

Examples of IPC Systems - POSIX
● POSIX Shared Memory

● Process first creates shared memory segment
shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

● Also used (without the O_CREAT flag) to open an existing
segment to share it

● Set the size of the object
ftruncate(shm_fd, 4096);

● Now the process could write to the shared memory
sprintf(shared_memory_addr, "Writing to shared
memory");

48

IPC POSIX Producer (no synchronization)

49

IPC POSIX Consumer (no synchronization)

50

Other IPC solutions
● Sockets
● Remote Procedure Calls
● Pipes
● Remote Method Invocation (Java)

51

Sockets
● A socket is defined as an endpoint for communication

● Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

● The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

● Communication consists between a pair of sockets

● All ports below 1024 are well known, used for standard
services

● Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

52

Socket Communication

53

Sockets example ● Three types of sockets
● Connection-oriented (TCP)
● Connectionless (UDP)
● MulticastSocket class– data can be sent to multiple recipients

● Consider this “Date” server:

54

int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in *serv_addr;
 char buffer[256];

 portno = ...;
 server_addr = …;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");

 if (connect(sockfd, serv_addr, sizeof(*serv_addr)) < 0)
 error("ERROR connecting");

 /* Here, fill up the buffer with the message to send */

 n = write(sockfd, buffer, strlen(buffer));
 if (n < 0)
 error("ERROR writing to socket");

 /* Here, empty the buffer */

 n = read(sockfd, buffer, 255);
 if (n < 0)
 error("ERROR reading from socket");
 printf("%s\n",buffer);
 close(sockfd);
 return 0;
}

based on:
http://www.linuxhowtos.org/data/6/client.c

Remote Procedure Calls
● Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems
● Again uses ports for service differentiation

● Stubs – client-side proxy for the actual procedure on the
server

● The client-side stub locates the server and marshalls the
parameters

● The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

● On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

55

Pipes
● Acts as a conduit allowing two processes to communicate

● Ordinary pipes – cannot be accessed from outside the
process that created it. Typically, a parent process creates a
pipe and uses it to communicate with a child process that it
created.

● Named pipes – can be accessed without a parent-child
relationship.

56

Ordinary Pipes
● Ordinary Pipes allow communication in standard producer-consumer

style
● Producer writes to one end (the write-end of the pipe)
● Consumer reads from the other end (the read-end of the pipe)
● Ordinary pipes are therefore unidirectional
● Require parent-child relationship between communicating processes

● Windows calls these anonymous pipes
● See Unix and Windows code samples in textbook

57

Ordinary Pipes
(see full example in the book)

#define READ_END 0
#define WRITE_END 1
int main (void)
{

char write_msg[BUFFER_SIZE] = “Greetings”;
char read_msg[BUFFER_SIZE];
int fd[2];
pid_t pid;

if (pipe(fd) == -1) {
/* handle error */

}

pid = fork();

if (pid < 0) {
/* handle error */

}

If (pid > 0) { /* parent process */
close(fd[READ_END]);
write(fd[WRITE_END], write_msg, strlen(write_msg) + 1);
close(fd[WRITE_END]);

} else { /* child process */
close(fd[WRITE_END]);
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf(“read %s”, read_msg);
close(fd[READ_END]);

}
return 0;

} 58

Named Pipes

● Named Pipes are more powerful than ordinary pipes
● Communication is bidirectional
● No parent-child relationship is necessary between the

communicating processes
● Several processes can use the named pipe for communication
● Provided on both UNIX and Windows systems

59

