
Principles of
Operating Systems

Lecture 3 - CPU Scheduling
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and
course text slides © Silberschatz]

mailto:ardalan@uci.edu

2

Motivation

● CPU-I/O Burst Cycle
● Process execution consists of a cycle

of CPU execution and I/O wait.

Schedulers
● Long-term scheduler (or job scheduler) –

selects which processes should be brought into
the ready queue
● Long-term scheduler is invoked infrequently

(seconds, minutes) ⇒ (can be slow)
● The long-term scheduler controls the degree of

multiprogramming

● Short-term scheduler (or CPU scheduler) –
selects which process should be executed next
and allocates CPU
● Sometimes the only scheduler in a system
● Short-term scheduler is invoked frequently

(microseconds/milliseconds) ⇒ (must be fast)

Schedulers
● Processes can be described as either:

● I/O-bound process – spends more time doing
I/O than computations; has short CPU bursts

● CPU-bound process – spends more time
doing computations; has long CPU bursts

● Long-term scheduler strives for good process mix

● Maintains scheduling queues of processes

● Ready queue – set of all processes residing in main
memory, ready and waiting to execute

● Device queues – set of processes waiting for an I/O
device

● Processes migrate among the various queues

CPU Scheduler

Ready Queue And Various I/O
Device Queues

7

Different types of CPU Scheduling
● Non-preemptive Scheduling

● Once CPU has been allocated to a process, the process keeps the
CPU until

● Process exits OR
● Process switches to waiting state

● Preemptive Scheduling
● Process can be interrupted and must release the CPU.

• Need to coordinate access to shared data

8

CPU scheduling decisions
● CPU scheduling decisions may take place when a

process:
a. switches from running state to waiting state
b. switches from running state to ready state
c. switches from waiting to ready
d. terminates
e. is admitted

● Scheduling under (a) and (d) is non-preemptive.
● All other scheduling is preemptive.

9

CPU scheduling decisions

new admitted

interrupt

I/O or
event
completion

Scheduler
dispatch I/O or

event wait

exit terminated

waiting

ready running

10

Dispatcher
● Dispatcher module gives control of the CPU to the

process selected by the short-term scheduler.
This involves:

• switching context
• switching to user mode
• jumping to the proper location in the user program to restart that

program

● Dispatch Latency:
● time it takes for the dispatcher to stop one process and start

another running.
● Dispatcher must be fast.

11

Scheduling Criteria
● CPU Utilization

● Keep the CPU as busy as possible

● Throughput
● # of processes that complete their execution per time unit.

● Turnaround time
● amount of time to execute a particular process from its entry

time.

12

Scheduling Criteria (cont.)
● Waiting time

● amount of time a process has been waiting in the ready queue.

● Response Time (in a time-sharing environment)
● amount of time it takes from when a request was submitted until

the first response (and NOT the final output) is produced.

13

Optimization Criteria
● Maximize CPU Utilization
● Maximize Throughput
● Minimize Turnaround time
● Minimize Waiting time
● Minimize response time

14

● Policy: Process that requests the CPU FIRST is
allocated the CPU FIRST.

● FCFS is a non-preemptive algorithm.

● Implementation - using FIFO queues
● incoming process is added to the tail of the queue.
● Process selected for execution is taken from head of queue.

● Performance metric - Average waiting time in
queue.

● Gantt Charts are used to visualize schedules.

First-Come, First-Served (FCFS)
Scheduling

First-Come, First-Served (FCFS)
Scheduling

● Example ● Suppose all processes
arrived at around time 0
in the following order:

● P1, P2, P3

● Waiting time
● P1 = 0;
● P2 = 24;
● P3 = 27;

● Average waiting time
● (0+24+27)/3 = 17

0 24 27 30

P1 P2 P3

Gantt Chart for Schedule

15

FCFS Scheduling (cont.)

● Example ● Suppose the arrival order
for the processes is

● P2, P3, P1

● Waiting time
● P1 = 6; P2 = 0; P3 = 3;

● Average waiting time
● (6+0+3)/3 = 3 , better..

● Convoy Effect:
● short processes waiting

behind long process, e.g.,
one CPU bound process,
many I/O bound processes.

0 3 6 30

P1P2 P3

Gantt Chart for Schedule

16

17

Shortest-Job-First (SJF) Scheduling
● Associate with each process the length of its next CPU

burst. Use these lengths to schedule the process with
the shortest time.

● Two Schemes:
● Scheme 1: Non-preemptive

• Once CPU is given to the process it cannot be preempted until it
completes its CPU burst.

● Scheme 2: Preemptive
• If a new CPU process arrives with CPU burst length less than

remaining time of current executing process, preempt. Also called
Shortest-Remaining-Time-First (SRTF).

● SJF is optimal - gives minimum average waiting time for a given
set of processes.
• The difficulty is knowing the length of the next CPU request
• Could ask the user

18

Non-Preemptive SJF Scheduling
● Example

0 8 16

P1 P2P3

Gantt Chart for Schedule

P4

127

Average waiting time =
 (0+6+3+7)/4 = 4

19

Non-Preemptive SJF Scheduling
 Process Arrival Time Burst Time

 P1 0.0 0 6

 P2 2.0 2 8

 P3 4.0 5 7

 P4 5.0 0 3

● SJF Gantt chart

● Average waiting time = ((3-0) + (16-2) + (9-5) + 0) / 4 = 5.25

● Average turnaround time = ((9-0) + (24-2) + (16-5) + (3-0))/4 = 11.25

46

20

Preemptive SJF Scheduling (SRTF)
● Example

0 7 16

P1 P2P3

Gantt Chart for Schedule

P4

115

Average waiting time =
 (9+1+0+2)/4 = 3

P2 P1

2 4

21

Preemptive SJF Scheduling (SRTF)
● Now we add the concepts of varying arrival times and preemption to the

analysis

 ProcessA arri Arrival Time Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

● Preemptive SJF Gantt Chart

● Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

● Average turnaround time = ((17-0) + (5-1) + (26-2) + (10-3))/4 = 13 msec

0 7 6

22

Determining Length of Next CPU Burst
● One can only estimate the length of burst.
● Use the length of previous CPU bursts and

perform exponential averaging.
● tn = actual length of nth burst

● τn+1 = predicted value for the next CPU burst
● α = 0, 0 ≤ α ≤ 1
● Define

• τn+1 = α tn + (1- α) τn

23

Prediction of the length of the next CPU
burst

24

Exponential Averaging(cont.)
● α = 0

● τn+1 = τn; Recent history does not count

● α= 1
● τn+1 = tn; Only the actual last CPU burst counts.

● Expanding the formula:
● τn+1 = αtn + (1-α) αtn-1 + …+ (1-α)^j αtn-j + … + (1-α)^(n+1) τ0

• Each successive term has less weight than its predecessor.

● Commonly, α is set to 0.5

j

25

Priority Scheduling
● A priority value (integer) is associated with each

process. Can be based on
○ Cost to user
○ Importance to user
○ Aging
○ %CPU time used in last X hours.

● CPU is allocated to the process with the highest
priority.

○ Preemptive
○ Nonpreemptive

26

Priority Scheduling (cont.)
● SJF is a priority scheme where the priority is the

predicted next CPU burst time.
● Problem

● Starvation!! - Low priority processes may never execute.

● Solution
● Aging - as time progresses increase the priority of the process.

27

Priority Scheduling - Non-preemptive
 ProcessA Burst Time Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

● Assume all arrival times to be 0 when not specified

● Priority scheduling Gantt Chart

● Average waiting time = (6 + 0 + 16 + 18 + 1)/5 = 8.2 msec

28

Priority Scheduling - Preemptive
 ProcessA Burst Time Priority Arrival Time

 P1 6 3 12

 P2 8 2 0

 P3 7 4 4

 P4 3 1 2

 P5 5 5 30

● Gantt Chart

● Average waiting time = (0+3+(7+6)+0+0)/5 = 16/5 = 3.2 msec

● Average turnaround time = (6 + 11 + 20 + 3 + 5)/5 = 45/5 = 9 msec

● Average response time (assuming immediate response by a process when
executed) = (0 + 0 + 7 + 0 + 0) / 5 = 1.4 msec

● CPU utilization = 29 / 35 = 0.83 = 83%

● Throughput = 5 / 35 = 0.14 #process/msec

0

P2

2 5 11 12 18 24 30 35

P4 P2 P3 P1 P3 P5

Project note

● Asks to implement priority scheduling
○ Preemptive or non-preemptive?

Project note

● Asks to implement priority scheduling
○ Preemptive or non-preemptive?

■ Preemptive
● New concept: priority donation

○ A high-priority thread donates its priority to a
low-priority thread

○ Why?

Project note

● Asks to implement priority scheduling
○ Preemptive or non-preemptive?

■ Preemptive
● New concept: priority donation

○ A high-priority thread donates its priority to a
low-priority thread

○ Why?
■ To address priority inversion, which can happen if

a higher priority thread needs to wait for a lower
priority thread to release a resource, e.g., a lock.

32

Round Robin (RR)
● Each process gets a small unit of CPU time

• Time quantum usually 10-100 milliseconds.
• After this time has elapsed, the process is preempted and added

to the end of the ready queue.
● n processes, time quantum = q

• Each process gets 1/n CPU time in chunks of at most q time units
at a time.

• No process waits more than (n-1)q time units before it can run
(note that the overall wait time can be higher).

• Performance
– Time slice q too large - ?

33

Round Robin (RR)
● Each process gets a small unit of CPU time

• Time quantum usually 10-100 milliseconds.
• After this time has elapsed, the process is preempted and added

to the end of the ready queue.
● n processes, time quantum = q

• Each process gets 1/n CPU time in chunks of at most q time units
at a time.

• No process waits more than (n-1)q time units before it can run
(note that the overall wait time can be higher).

• Performance
– Time slice q too large - FIFO behavior
– Time slice q too small - ?

34

Round Robin (RR)
● Each process gets a small unit of CPU time

• Time quantum usually 10-100 milliseconds.
• After this time has elapsed, the process is preempted and added

to the end of the ready queue.
● n processes, time quantum = q

• Each process gets 1/n CPU time in chunks of at most q time units
at a time.

• No process waits more than (n-1)q time units before it can run
(note that the overall wait time can be higher).

• Performance
– Time slice q too large - FIFO behavior
– Time slice q too small - Overhead of context switch is too expensive.
– Heuristic - 70-80% of CPU bursts within timeslice

35

Round Robin Example
● Time Quantum = 20

0

P1 P4P3

Gantt Chart for Schedule

P1P2

20

P3 P3 P3P4 P1

37 57 77 97 117 121 134 154 162

Typically, higher average turnaround time than SRTF, but better response time

36

Round Robin Example
Process Burst Time
P1 24
 P2 3
 P3 3

● Assume all arrive at time 0 in the following order: P1, P2, P3

● The Gantt chart is (quantum = 4):

● Average waiting time = (6 + 4 + 7)/3 = 5.67
● Average turnaround time = (30 + 7 + 10)/3 = 15.67

0 4 7 10 14 18 22 26 30

Time Quantum and Context Switch Time

37

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

38

39

Multilevel Queue
● Ready Queue partitioned into separate queues

○ Example: system processes, foreground (interactive), background
(batch), student processes….

● Each queue has its own scheduling algorithm
○ Example: foreground (RR), background (FCFS)

● Processes assigned to one queue permanently.
● Scheduling must be done between the queues

○ Fixed priority - serve all from foreground, then from background.
Possibility of starvation.

○ Time slice - Each queue gets some CPU time that it schedules - e.g. 80%
foreground (RR), 20% background (FCFS)

40

Multilevel Queue scheduling

41

Multilevel Feedback Queue

● A process can move between the queues.
○ Aging can be implemented this way.

● Parameters for a multilevel feedback queue
scheduler:

○ number of queues.
○ scheduling algorithm for each queue and between queues.
○ method used to determine when to upgrade a process.
○ method used to determine when to demote a process.
○ method used to determine which queue a process will enter when that

process needs service.

42

Multilevel Feedback Queue
● Example: Three Queues -

○ Q0 - RR with time quantum 8 milliseconds
○ Q1 - RR with time quantum 16 milliseconds
○ Q2 - FCFS

● Scheduling
○ New job enters Q0 - When it gains CPU, it

receives 8 milliseconds. If job does not
finish, move it to Q1.

○ At Q1, when job gains CPU, it receives 16
more milliseconds. If job does not
complete, it is moved to queue Q2.

Project note: multilevel feedback queue
in 4.4BSD
● 64 priories, hence 64 queues
● The scheduler selects a process from the highest

priority queue that is not empty
● Priority calculated based on a “nice” value and the

recent CPU time usage
○ Higher nice means lower priority
○ More recent CPU time means lower priority

● No priority donation
● Priorities re-calculated every once in a while
● Each queue uses round-robin for its own

scheduling
Source: pintos documents: https://www.ics.uci.edu/~ardalan/courses/os/pintos/pintos_8.html#SEC141

Thread Scheduling

● When threads supported, threads scheduled, not
processes

● The CPU scheduler schedules the kernel threads.

44

45

Multiple-Processor Scheduling
● CPU scheduling becomes more complex when

multiple processors are available.
○ Have one ready queue accessed by each CPU.

● Symmetric multiprocessing (SMP)
○ Self scheduled - each processor dispatches a job from ready queue
○ All processes in common ready queue, or each processor has its own

private queue of ready processes
○ Homogeneous processors within multiprocessor
○ Currently, most common multiprocessor setup

○ Difficulties: access to shared data structure, making sure all processes
are scheduled and that no process is scheduled by separate processors

● Asymmetric multiprocessing
○ One main processor schedules the other processors
○ only 1 processor accesses the system data structures, alleviating the

need for data sharing

Multicore Processors

● Place multiple processor cores on same physical chip
● Faster and consumes less power

46

NUMA and CPU Scheduling: considers
processor affinity

Note that memory-placement algorithms can also consider affinity

47

NUMA and CPU Scheduling: considers
processor affinity

48Image source: https://www.supermicro.com/products/motherboard/Xeon/C620/X11DPi-N.cfm

Supermicro X11DPi-N motherboard

Hyperthreading

● Multiple threads per core
● Takes advantage of memory stall to make progress on

another thread while memory retrieve happens
● One CPU core looks like two cores to the operating system

with hyperthreading

49

Hyperthreading

50

