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Producer-Consumer Problem

● Paradigm for cooperating processes; 
● producer process produces information that is 

consumed by a consumer process.
● We need a buffer of items that can be filled by 

producer and emptied by consumer.
● Unbounded-buffer places no practical limit on the size of the buffer. 

Consumer may wait, producer never waits.
● Bounded-buffer assumes that there is a fixed buffer size. Consumer 

waits for new item, producer waits if buffer is full.

● Producer and Consumer must synchronize.
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Bounded Buffer - message passing

       message next_produced; 

       while (true) {
        /* produce an item in next produced */ 

           send(next_produced); 

       } 

message next_consumed;
while (true) {
   receive(next_consumed);
   
   /* consume the item in next consumed */
}

Consumer

Producer

● Producer
repeat

…
     produce an item in nextp;
   …
   send(consumer, nextp);
until false;

● Consumer
repeat

receive(producer, nextc);
…

     consume item from nextc;
   …
until false;
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Bounded Buffer - Shared Memory 
Solution

● Shared data
var n;
type item = ….;
var buffer: array[0..n-1] of item;
in, out: 0..n-1; 
in :=0; out:= 0; /* shared buffer = circular array */
/* Buffer empty if in == out */
/* Buffer full if (in+1) mod n == out */
/* noop means ‘do nothing’ */

● Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
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Bounded Buffer - Shared Memory 
Solution: producer

● Producer process - creates filled buffers
repeat

…
   produce an item in nextp
      …
   while in+1 mod n = out do noop;
   buffer[in] := nextp;
   in := in+1 mod n;
until false;

item next_produced; 

while (true) { 

/* produce an item in next produced */ 

while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

} 
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Bounded Buffer - Shared Memory 
Solution: consumer

● Consumer process - Empties filled buffers
repeat

   while in = out do noop;
          nextc := buffer[out] ;
           out:= out+1 mod n;
   …
   consume the next item in nextc
   …
until false

item next_consumed; 

while (true) {
while (in == out) 

; /* do nothing */
next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */ 

} 
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Problem with this solution 

● Shared memory solution to the bounded-buffer 
problem allows at most (n-1) items in the buffer 
at the same time.
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Solution
● A solution that uses all N buffers is not that 

simple.
● Modify producer-consumer code by adding a variable  

counter, initialized to 0, incremented each time a new item is 
added to the buffer 

● Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0; 8



Bounded Buffer - Shared Memory 
Solution: producer

item next_produced; 
while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
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Bounded Buffer - Shared Memory 
Solution: consumer

item next_consumed; 
while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

        counter--; 

/* consume the item in next consumed */ 

}  
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Problem with this solution? 
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item next_produced; 
while (true) {

/* produce an item in next 
produced */ 

while (counter == BUFFER_SIZE) 
; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 

item next_consumed; 
while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

        counter--; 

/* consume the item in next 
consumed */ 

}  

ConsumerProducer
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Problem with this solution 

● Concurrent access to shared data may result in 
data inconsistency.

● Maintaining data consistency requires 
mechanisms to ensure the orderly execution of 
cooperating processes.
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Access to shared data

● The statements
counter++;
counter--;

     must be executed atomically. 
● Atomic operations

● An indivisible operation that runs to completion without 
interruptions by other operations.
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Race Condition

● counter++ could be implemented with the following instructions in CPU:

     register1 = counter
     register1 = register1 + 1
     counter = register1

● counter-- could be implemented with the following instructions in CPU:

     register2 = counter
     register2 = register2 - 1
     counter = register2

● Consider this execution interleaving with “count = 5” initially (we expect count = 5 
in the end too):

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4 !!}
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● If processes are working on separate data, we don’t need to worry about 
race conditions:

Process A Process B
x = 1; y = 2;

● However, there can race conditions when we have shared data. Consider 
the following (Initially, y = 12):

Process A Process B
x = 1; y = 2;
x = y+1; y = y*2;
● What are the possible values of x?

Race Condition
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● If processes are working on separate data, we don’t need to worry about 
race conditions:

Process A Process B
x = 1; y = 2;

● However, there can race conditions when we have shared data. Consider 
the following (Initially, y = 12):

Process A Process B
x = 1; y = 2;
x = y+1; y = y*2;
● What are the possible values of x?  Answer = (13, 3, 5)

● Or, what are the possible values of x below?
Process A Process B
x = 1; x = 2;
● What are the possible values of x?

Race Condition
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● If processes are working on separate data, we don’t need to worry about 
race conditions:

Process A Process B
x = 1; y = 2;

● However, there can race conditions when we have shared data. Consider 
the following (Initially, y = 12):

Process A Process B
x = 1; y = 2;
x = y+1; y = y*2;
● What are the possible values of x?  Answer = (13, 3, 5)

● Or, what are the possible values of x below?
Process A Process B
x = 1; x = 2;
● What are the possible values of x? Answer = (1, 2)

● X’s value is non-deterministic in the past two examples

Race Condition
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● We use processes with some shared memory for the discussions in this 
lecture

● We also assume the processes to be single-threaded, hence use 
“process” instead of “thread”

● Our discussions however apply to threads within the same process as well 
since these thread share all the process address space

Note
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Critical Section Problem

● Consider system of n processes {p0, p1, … pn-1} competing to 
access shared data

● Each process has a critical section segment of code
● Process may be changing shared variables, updating 

shared table, writing to shared file, etc.
● When one process in critical section, no other may be in its 

critical section
● Critical section problem is to design protocol to achieve/solve 

this
● Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 
then remainder section

19



Critical Section

● General structure of process Pi  
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Critical Section Problem - 
Requirements

● Mutual Exclusion
• If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections.

● Progress
• If no process is executing in its critical section and there exists 

some processes that wish to enter their critical section, then 
the selection of the processes that will enter the critical section 
next cannot be postponed indefinitely.

● Bounded Waiting
• A bound must exist on the number of times that other 

processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and 
before that request is granted.
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Critical Section Problem - 
Assumptions

● Assume that each process executes at a 
nonzero speed in the critical section. That is, 
assume that each process finishes executing 
the critical section once entered

● No assumption concerning relative speed of the 
n processes.

● Assume that a process can get stuck in its 
remainder section indefinitely, e.g., in a 
non-terminating while loop.
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Solution: Critical Section Problem -- 
Initial Attempt
● Only 2 processes, Pi and Pj
● General structure of process Pi (Pj)

● Processes may share some common variables 
to synchronize their actions.
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Algorithm 1

● Shared Variable:
● int turn = i;
● (turn == i) means that Pi can enter its critical section and (turn == j) means 

that Pj can enter its critical section

● Process Pi                                                         Process Pj
do { 

while (turn == j); 

critical section 

turn = j; 

remainder section 

 } while (true); 

24

do { 

while (turn == i); 

critical section 

turn = i; 

remainder section 

 } while (true); 
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Algorithm 1
● Satisfies mutual exclusion

● The turn is equal to either i or j and hence one of Pi and Pj 
can enter the critical section

● Does not satisfy progress
● Example: Pi finishes the critical section and then gets stuck 

indefinitely in its remainder section. Then Pj enters the 
critical section, finishes, and then finishes its remainder 
section. Pj then tries to enter the critical section again, but it 
cannot since turn was set to i by Pj in the previous iteration. 
Since Pi is stuck in the remainder section, turn will be equal 
to i indefinitely and Pj can’t enter although it wants to. Hence 
no process is in the critical section and hence no progress.

● We don’t need to discuss/consider bounded wait 
when progress is not satisfied
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● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.
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Algorithm 2
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● Shared Variables
● boolean flag[2];
   flag[ i ] = false; flag[ j ] = false;
● (flag[ i ] == true) means that Pi ready to enter its critical section
● (flag[ j ] == true) means that Pj ready to enter its critical section

● Process Pi (Replace i with j and j with i for Pj)
do { 

flag[i] = true;

while (flag[j]); 

critical section 

flag[i] = false; 

remainder section 

 } while (true);
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Algorithm 2
● Satisfies mutual exclusion

● If Pi enters, then flag[ i ] = true, and hence Pj will not enter.
● Does not satisfy progress

● Example: There can be an interleaving of execution in which 
Pi and Pj both first set their flags to true and then both check 
the other process’ flag. Therefore, both get stuck at the entry 
section

● We don’t need to discuss/consider bounded wait 
when progress is not satisfied
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● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.
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Algorithm 3

● Shared Variables
● boolean flag[2];
    flag[ i ] = false; flag[ j ] = false;
● (flag[ i ] == true) means that Pi ready to enter its critical section
● (flag[ j ] == true) means that Pj ready to enter its critical section

● Process Pi (Replace i with j and j with i for Pj)
do { 

while (flag[j]); 

flag[i] = true;

critical section

flag[i] = false; 

remainder section 

 } while (true);

28



29

Algorithm 3
● Does not satisfies mutual exclusion

● Example: There can be an interleaving of execution in which 
both first check the other process’ flag and see that it is false. 
Then they both enter the critical section.

● We don’t need to discuss/consider progress and 
bounded wait when mutual exclusion is not satisfied
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● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.
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Algorithm 4
● Shared Variable:

● int turn = i;
● (turn == i) means that Pi can enter its critical section and (turn == j) means that Pj can 

enter its critical section
● boolean flag[2];
    flag[ i ] = false; flag[ j ] = false;
● (flag[ i ] == true) means that Pi ready to enter its critical section
● (flag[ j ] == true) means that Pj ready to enter its critical section

● Process Pi (Replace i with j and j with i for Pj)
do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn == j); 

critical section 

flag[i] = false; 

remainder section 

 } while (true);
30
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Algorithm 4
● Satisfies mutual exclusion

● If one process enters the critical section, it means that either 
the other process was not ready to enter or it was this 
process’ turn to enter. In either case, the other process will 
not enter the critical section

● Satisfies progress
● If one process exits the critical section, it sets its ready flag 

to false and hence the other process can enter. Moreover, 
there is no interleaving in the entry section that can block 
both.

● Satisfies bounded wait
● If a process is waiting in the entry section, it will be able to 

enter at some point since the other process will either set its 
ready flag to false or will set the turn to this process.

31

● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.
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Algorithm 4
● Meets all three requirements, solves the critical 

section problem for 2 processes.
● This is called the “Peterson’s solution”.
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● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.
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Bakery Algorithm

● Critical section for n processes
● Before entering its critical section, process receives a 

number.  Holder of the smallest number enters critical 
section.

● If processes Pi and Pj receive the same number, 
• if i < j, then Pi is served first; else Pj is served first (note that i 

and j cannot be the same numbers as process ID is unique).
● The numbering scheme always generates numbers in 

increasing order of enumeration; i.e. 1,2,3,3,3,3,4,4,5,5
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Bakery Algorithm (cont.)

● Notation -
● Lexicographic order(ticket#, process id#)

● (a,b) < (c,d) if (a<c) or if ((a=c) and (b < d))
● max(a0,….an-1) is a number, k, such that k >=ai  

for i = 0,…,n-1

● Shared Data
boolean choosing[n]; (all items initialized to false)
int number[n]; (all initialized to 0)
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Bakery Algorithm (cont.)
do { 

choosing[i] = true;

number[i] := max(number[0], number[1],…,number[n-1]) + 1;

choosing[i] = false; 

for (int j = 0; j < n, j++) { 

while (choosing[j]); 

while ((number[j] != 0) &&

((number[j], j) < (number[i],i));

}

critical section 

number[i] = 0; 

remainder section 

 } while (true);



Mutex Locks

● Previous solutions are complicated and generally inaccessible 
to application programmers

● OS designers build software abstractions to solve critical 
section problem

● Simplest is mutex lock
● Protect a critical section  by first acquire() a lock then 

release() the lock
● Boolean variable indicating if lock is available or not
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Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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Synchronization Hardware

● Software-based solutions such as Peterson’s solution and Bakery 
algorithm are not guaranteed to work on modern computer 
architectures due to how they perform basic machine-language 
instructions (e.g., out-of-order execution)

● Many systems provide hardware support for implementing the 
critical section.

● Our goal is to use synchronization hardware to implement lock
● Key idea: Use atomic execution to implement acquire() and 

release()
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Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can ?
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Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
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Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work?

41

acquire() 

    { disable interrupts }

release() 

    { enable interrupts }



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work? Yes, but inefficient as no other process can 

run as long as one process is in its critical section.
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acquire() 

    { disable interrupts }

release() 

    { enable interrupts }



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work?

43

acquire() 

    {   disable interrupts;

         if (!lock) {lock=true;}

         enable interrupts;}

release() 

    { disable interrupts;

       lock=false;

       enable interrupts;}



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work? No, does not satisfy mutual exclusion. Even if 

locked, the process still enters the critical section!
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acquire() 

    {   disable interrupts;

         if (!lock) {lock=true;}

         enable interrupts;}

release() 

    { disable interrupts;

       lock=false;

       enable interrupts;}



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work?

45

acquire() 

    {   disable interrupts;

         while (lock);

         lock=true;

         enable interrupts;}

release() 

    { disable interrupts;

       lock=false;

       enable interrupts;}



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work? No, does not satisfy progress. If locked, the 

process will keep checking the lock forever and no other 
process can ever run!
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acquire() 

    {   disable interrupts;

         while (lock);

         lock=true;

         enable interrupts;}

release() 

    { disable interrupts;

       lock=false;

       enable interrupts;}



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work? 

47

acquire() 

    {acquired = false;

     while (!acquired) {

        disable interrupts;

         if (!lock) {lock=true; acquired = true;}

         enable interrupts;}}

release() 

    { disable interrupts;

       lock=false;

       enable interrupts;}



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will this work? Yes! 
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acquire() 

    {acquired = false;

     while (!acquired) {

        disable interrupts;

         if (!lock) {lock=true; acquired = true;}

         enable interrupts;}}

release() 

    { disable interrupts;

       lock=false;

       enable interrupts;}
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● Locks prevent conflicting actions on shared data
● Lock before entering critical section and before accessing shared data
● Unlock when leaving, after accessing shared data
● Wait if locked

● Pintos uses interrupt disabling for synchronization

Project note



Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will it work on multiprocessor systems?
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Atomic execution

● We need atomic execution
● Atomic = non-interruptible and non-overlapping, as seen by 

others
● To do this, on uniprocessors, we can disable interrupts

● Currently running code would execute without preemption
● Will it work on multiprocessor systems?
● Generally too inefficient on multiprocessor systems

- Operating systems might use this but not broadly scalable
● Modern machines provide special atomic hardware instructions

● Either test memory word and set value
● Or compare and swap contents of two memory words
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test_and_set  Instruction 

   Definition:
       boolean test_and_set (boolean *target)
          {
               boolean rv = *target;
               *target = TRUE;
               return rv:
          }

1. Executes atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.
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Solution using test_and_set()

● Shared Boolean variable lock, initialized to FALSE
● Solution:
       do {

          while (test_and_set(&lock)) 

             ; /* do nothing */ 

                 /* critical section */ 

             lock = false; 

                 /* remainder section */ 

       } while (true); 
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● Satisfies mutual exclusion
● Only one process can hold the lock at any given time and 

hence only process can be in the critical section at any given 
time.

● Satisfies progress
● If one process holds the lock and one process tries to 

acquire it, it will succeed and then can enter the critical 
section.

● Does not satisfy bounded wait
● A process can end up trying to acquire the lock with no luck 

indefinitely.
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● Shared Variables:
● var turn: (0..1);
   initially turn = 0;
● turn = i  Pi can enter its critical section

● Process Pi
repeat
           while turn <> i do no-op;

critical section
              turn := j;
            remainder section

until false
Satisfies mutual exclusion, but not progress.

Solution using test_and_set()



compare_and_swap Instruction
Definition:
     int compare_and_swap(int *value, int expected, int new_value) { 

         int temp = *value; 

         if (*value == expected) 

            *value = new_value; 

         return temp; 

     } 

1. Executes atomically
2. Returns the original value of passed parameter “value”
3. Set  the variable “value” to be the value of the passed parameter 

“new_value” if “value” ==“expected”. That is, the swap takes place only 
under this condition.

55



Solution using compare_and_swap

● Shared integer  “lock”  initialized to 0; 
● Solution:
      do {

      while (compare_and_swap(&lock, 0, 1) != 0) 

            ; /* do nothing */ 

          /* critical section */ 

         lock = 0; 

          /* remainder section */ 

      } while (true); 
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Bounded-waiting critical section implementation with 
test_and_set

do {
   waiting[i] = true;
   key = true;
   while (waiting[i] && key) 

      key = test_and_set(&lock); 

   waiting[i] = false; 

   /* critical section */ 

   j = (i + 1) % n; 

   while ((j != i) && !waiting[j]) 

      j = (j + 1) % n; 

   if (j == i) 

      lock = false; 

   else 

      waiting[j] = false; 

   /* remainder section */ 

} while (true); 
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Spinlock

● The lock implementations we have seen using atomic 
instructions require busy waiting

● This lock therefore called a spinlock
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Semantics of acquire() and release() in a 
spinlock

●Semantics of 
● acquire() {
    while (!available) 

          ; /* busy wait */ 

         available = false; 

       } 

●Semantics of   
●  release() { 

          available = true; 

       }
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● Locks prevent conflicting actions on shared data
● Lock before entering critical section and before accessing shared data
● Unlock when leaving, after accessing shared data
● Wait if locked

● Synchronization involves waiting 
● Busy Waiting, uses CPU that others could use.  

● Waiting thread may take cycles away from thread holding lock (no one 
wins!)

● OK for short times since it prevents a context switch.
● Priority Inversion: If busy-waiting thread has higher priority than thread 

holding lock ⇒ problem!
● Should sleep if waiting for a long time (in the next couple of 

slides, we will see one such lock implementation using 
semaphores)

60
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● Locks prevent conflicting actions on shared data
● Lock before entering critical section and before accessing shared data
● Unlock when leaving, after accessing shared data
● Wait if locked

● Better to call it timer_wait()
● Could be implemented by either busy waiting or sleeping
● Sleeping: be suspended/blocked until an event of 

interest happens

Project note: timer_sleep()
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Semaphore
● Semaphore S - integer variable (non-negative)

• used to represent number of abstract resources

● Can only be accessed via two atomic operations
wait (S):       while (S <= 0); 
                        S--;
signal (S):    S++;

• P or wait used to acquire a resource, waits for semaphore to 
become positive, then decrements it by 1

• V or signal releases a resource and increments the semaphore 
by 1, waking up a waiting P, if any

• If P is performed on a count <= 0, process must wait for V or 
the release of a resource.

P():“proberen” (to test) ; V() “verhogen” (to increment) in Dutch

62



63

Example: Critical Section for n 
Processes

● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
do { 

wait(mutex); 

critical section

signal(mutex); 

remainder section 

 } while (true);
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● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
repeat
          wait(mutex);

critical section
             signal (mutex);
            remainder section

until false
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Semaphore as a General 
Synchronization Tool

● Execute B in Pj  only after A execute in Pi 
● Use semaphore flag initialized to 0
● Code:

               Pi                              Pj
                .                                .                .                                .                .                                .
               A                             wait(flag)
            signal(flag)                   B

64



65

Question: Is the mutex using 
semaphores a spinlock?

● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
do { 

wait(mutex); 

critical section

signal(mutex); 

remainder section 

 } while (true);
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● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
repeat
          wait(mutex);

critical section
             signal (mutex);
            remainder section

until false
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Question: Is the mutex using 
semaphores a spinlock? Depends on 
the implementation of the semaphore

● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
do { 

wait(mutex); 

critical section

signal(mutex); 

remainder section 

 } while (true);
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● Shared variables
semaphore mutex;
initially mutex = 1

● Process Pi
repeat
          wait(mutex);

critical section
             signal (mutex);
            remainder section

until false



Semaphore Implementation with no 
Busy waiting 

We need to implement wait() and signal() in a way that allows 
processes to block and resume.

● Solution:
● With each semaphore there is an associated waiting queue

● Two operations:

● block – place the process invoking the operation on the 
appropriate waiting queue

● wakeup – remove one of processes in the waiting queue 
and place it in the ready queue

● typedef struct{ 

       int value; 

       struct process *list; 

   } semaphore; 
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Implementation with no Busy waiting 
(Cont.)

wait(semaphore *S) { 

   S->value--; 

   if (S->value < 0) {
      add this process to S->list; 

      block(); 

   } 

}

signal(semaphore *S) { 

   S->value++; 

   if (S->value <= 0) {
      remove a process P from S->list; 

      wakeup(P); 

   } 

} 
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Implementation with no Busy waiting 
(Cont.)

wait(semaphore *S) { 

   S->value--; 

   if (S->value < 0) {
      add this process to S->list; 

      block(); 

   } 

}

signal(semaphore *S) { 

   S->value++; 

   if (S->value <= 0) {
      remove a process P from S->list; 

      wakeup(P); 

   } 

} 
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A mutex using this 
semaphore is not a 

spinlock. It can sleep.



Deadlock and Starvation
● Deadlock - two or more processes are waiting indefinitely for 

an event that can be caused by only one of the waiting 
processes.

● Let S and Q be semaphores initialized to 1
               P0                             P1
                  wait(S);                      wait(Q);
                  wait(Q);                      wait(S);                     .                                .                     .                                .                     .                                .
                signal (S) ;                      signal (Q);
               signal (Q);                        signal (S);
● Deadlock results in starvation: indefinite blocking. A process 

may never be removed from the semaphore queue in which it 
is suspended.
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Classical Problems of 
Synchronization

● Producer-Consumer with Bounded Buffer 
Problem

● Readers-Writers Problem
● Dining-Philosophers Problem
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Producer-Consumer with Bounded 
Buffer Problem

● Shared data
● n buffers, each can hold one item

● Semaphore mutex initialized to the value 1

● Semaphore full initialized to the value 0

● Semaphore empty initialized to the value n
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● Shared data
type item = ….;
var buffer: array[0..n-1] of item;
full, empty, mutex : semaphore; 
nextp, nextc :item; 
full := 0; empty := n; mutex := 1; 
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Bounded Buffer Problem 

● Producer process - creates filled buffers
 do { 

          ...
        /* produce an item in next_produced */ 

          ... 

        wait(empty); 

        wait(mutex); 

           ...
        /* add next produced to the buffer */ 

           ... 

        signal(mutex); 

        signal(full); 

     } while (true);
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● Producer process - creates filled buffers
repeat

…
   produce an item in nextp
      …
  wait (empty); 
  wait (mutex);
   …
   add nextp to buffer
   …
   signal (mutex); 
   signal (full); 
until false;
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Bounded Buffer Problem

● Consumer process - Empties filled buffers
 do { 

        wait(full); 

        wait(mutex); 

           ...
        /* remove an item from buffer to next_consumed */ 

           ... 

        signal(mutex); 

        signal(empty); 

           ...
        /* consume the item in next consumed */ 

           ...
  } while (true);
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● Consumer process - Empties filled buffers
repeat

 wait (full ); 
       wait (mutex);
          …
       remove an item from buffer  to  nextc
          ...
       signal (mutex); 
       signal (empty); 
          …
          consume the next item in nextc
          …
until false;



Discussion

● ASymmetry
● Producer does: P(empty), V(full)
● Consumer does: P(full), V(empty)
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Discussion

● ASymmetry
● Producer does: P(empty), V(full)
● Consumer does: P(full), V(empty)

● Is order of P’s important between P(mutex) and P(empty or full)?
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Discussion

● ASymmetry
● Producer does: P(empty), V(full)
● Consumer does: P(full), V(empty)

● Is order of P’s important between P(mutex) and P(empty or full)?
● Yes!  Can cause deadlock if reordered

● Is order of V’s important?
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Discussion

● ASymmetry
● Producer does: P(empty), V(full)
● Consumer does: P(full), V(empty)

● Is order of P’s important between P(mutex) and P(empty or full)?
● Yes!  Can cause deadlock if reordered

● Is order of V’s important?
● No, except that it might affect scheduling efficiency
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Readers-Writers Problem

● Motivation: Consider a shared database
● Two classes of users:

● Readers – never modify database
● Writers – read and modify database

● Is using a single lock on the whole database sufficient?

R
R

R

W
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Readers-Writers Problem

● Motivation: Consider a shared database
● Two classes of users:

● Readers – never modify database
● Writers – read and modify database

● Is using a single lock on the whole database sufficient?
● We’d like to have many readers at the same time
● Only one writer at a time

R
R

R

W
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Readers-Writers Problem

● Shared Data
● Data set

● Semaphore rw_mutex initialized to 1

● Semaphore mutex initialized to 1

● Integer read_count initialized to 0

● The structure of a writer process
     do {

       wait(rw_mutex); 

               ...
          /* writing is performed */ 

               ... 

          signal(rw_mutex); 

     } while (true);
81

● Shared Data
var mutex, wrt: semaphore (=1);
        readcount: integer (= 0);

● Writer Process
wait(wrt);
    …
   writing is performed
   ... 
signal(wrt);
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Readers-Writers Problem 

● The structure of a reader process
       do {

        wait(mutex);
        read_count++;
        if (read_count == 1) 

               wait(rw_mutex); 

           signal(mutex); 

            ...
        /* reading is performed */ 

            ... 

           wait(mutex);
        read_count--;
        if (read_count == 0) 

               signal(rw_mutex); 

           signal(mutex); 

       } while (true);
82

● Reader process
wait(mutex);
    readcount := readcount +1;
    if readcount = 1 then wait(wrt);
 signal(mutex); 
            ...
              reading is performed
            ... 
wait(mutex);
    readcount := readcount - 1;
    if readcount = 0 then signal(wrt);
 signal(mutex); 
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Dining-Philosophers Problem

        

● Philosophers spend their lives alternating thinking and eating
● Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from their bowls
● Need both to eat, then release both when done

● In the case of 5 philosophers
● Shared data

- Bowl of rice (data set)
- Semaphore chopstick [5] initialized to 1
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Dining Philosophers Problem

● The structure of Philosopher i:
do { 
        wait (chopstick[i] );

  wait (chopstick[ (i + 1) % 5] );

             //  eat

  signal (chopstick[i] );
  signal (chopstick[ (i + 1) % 5] );

                 //  think

} while (TRUE);
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● Philosopher i :
repeat

 wait (chopstick[i]); 
       wait (chopstick[i+1 mod 5]); 
          …
           eat
          ...
      signal (chopstick[i]); 
      signal (chopstick[i+1 mod 5]);
          …
          think
          …
until false;
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Dining Philosophers Problem

● The structure of Philosopher i:
do { 
        wait (chopstick[i] );

  wait (chopstick[ (i + 1) % 5] );

             //  eat

  signal (chopstick[i] );
  signal (chopstick[ (i + 1) % 5] );

                 //  think

} while (TRUE);
●   What is the problem with this algorithm?
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● Philosopher i :
repeat

 wait (chopstick[i]); 
       wait (chopstick[i+1 mod 5]); 
          …
           eat
          ...
      signal (chopstick[i]); 
      signal (chopstick[i+1 mod 5]);
          …
          think
          …
until false;
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Dining Philosophers Problem

● The structure of Philosopher i:
do { 
        wait (chopstick[i] );

  wait (chopstick[ (i + 1) % 5] );

             //  eat

  signal (chopstick[i] );
  signal (chopstick[ (i + 1) % 5] );

                 //  think

} while (TRUE);
●   What is the problem with this algorithm? Can result in a deadlock
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● Philosopher i :
repeat

 wait (chopstick[i]); 
       wait (chopstick[i+1 mod 5]); 
          …
           eat
          ...
      signal (chopstick[i]); 
      signal (chopstick[i+1 mod 5]);
          …
          think
          …
until false;
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Dining Philosophers Problem

● Deadlock handling
●  Allow at most 4 philosophers to be sitting simultaneously at the table.
●  Allow a philosopher to pick up the forks only if both are available 

(picking must be done in a critical section).
●  Use an asymmetric solution  -- an odd-numbered philosopher picks  up 

first the left chopstick and then the right chopstick. Even-numbered  
philosopher picks up first the right chopstick and then the left chopstick. 
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● Philosopher i :
repeat

 wait (chopstick[i]); 
       wait (chopstick[i+1 mod 5]); 
          …
           eat
          ...
      signal (chopstick[i]); 
      signal (chopstick[i+1 mod 5]);
          …
          think
          …
until false;



Problems with Semaphores

●  Incorrect use of semaphore operations can result in deadlock 
and/or starvation:

●  signal (mutex)  ….  wait (mutex)

●  wait (mutex)  …  wait (mutex)

●  Omitting  of wait (mutex) or signal (mutex) (or both)



Monitors

● A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

● Abstract data type, internal variables only accessible by code within the 
procedure

● Only one process may be active within the monitor at a time
● But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

  Initialization code (…) { … }
}

}



Schematic view of a Monitor



Monitor Solution to Dining Philosophers

monitor DiningPhilosophers
{ 

enum {THINKING, HUNGRY, EATING} state[5] ;
condition self[5];

int pickup (int i) { 
       state[i] = HUNGRY;
       test(i);

  If (state[i] == EATING) {
             return 0;
          } else {
             return 1;
          }
   }

   void putdown (int i) { 
        state[i] = THINKING;

   }



Solution to Dining Philosophers (Cont.)

void test (int i) { 
        if ((state[(i + 4) % 5] != EATING) &&
           (state[i] == HUNGRY) &&
           (state[(i + 1) % 5] != EATING) ) { 
              state[i] = EATING;
        }

   }

       initialization_code() { 
       for (int i = 0; i < 5; i++)
           state[i] = THINKING;
    }

}



● Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

          While (DiningPhilosophers.pickup(i));

                   EAT

          DiningPhilosophers.putdown(i);

● No deadlock, but starvation is possible

       

Solution to Dining Philosophers (Cont.)



● Busy waiting! The philosophers keep checking to see if they can eat 
or not.

       

What’s wrong with the previous solution?



Condition Variables

● condition x, y;
● Two operations are allowed on a condition variable:

● x.wait() –  a process that invokes the operation is 
suspended until x.signal() 

● x.signal() – resumes one of processes (if any) that  
invoked x.wait()

- If no x.wait() on the variable, then it has no effect on the 
variable



 Monitor with Condition Variables



Monitor Solution to Dining Philosophers
without busy waiting

monitor DiningPhilosophers
{ 

enum {THINKING, HUNGRY, EATING} state[5] ;
condition self[5];

void pickup (int i) { 
       state[i] = HUNGRY;
       test(i);
       if (state[i] != EATING) self[i].wait;

   }

   void putdown (int i) { 
        state[i] = THINKING;

                   // test left and right neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);

   }



void test (int i) { 
        if ((state[(i + 4) % 5] != EATING) &&
           (state[i] == HUNGRY) &&
           (state[(i + 1) % 5] != EATING) ) { 
              state[i] = EATING;
             self[i].signal () ;
        }

   }

       initialization_code() { 
       for (int i = 0; i < 5; i++)
           state[i] = THINKING;
    }

}

Monitor Solution to Dining Philosophers
without busy waiting (Cont.)



● Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

              DiningPhilosophers.pickup(i);

                   EAT

              DiningPhilosophers.putdown(i);

● No deadlock, but starvation is possible

       

Monitor Solution to Dining Philosophers
without busy waiting (Cont.)



Condition Variables Choices

● If process P invokes x.signal(), and process Q is suspended in 
x.wait(), what should happen next?
● Both Q and P cannot execute in parallel in the monitor. If Q is 

resumed, then P must wait
● Options include

● Signal and wait – P waits until Q either leaves the monitor or it 
waits for another condition

● Signal and continue – Q waits until P either leaves the monitor or it  
waits for another condition

● Both have pros and cons – monitor implementer can decide


