
Principles of  
Operating Systems

Lecture 8 - File-System Interface and Implementation
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and 
course text slides © Silberschatz]

mailto:ardalan@uci.edu


File Concept

❑ Contiguous logical address space for storage
■ OS creates the abstraction of a logical storage unit 

called file.
■ (Typically) persistent
■ OS maps files to physical devices.

❑ Types
■ Data

❑ numeric, character, binary
■ Program

❑ Source file, object file
■ Documents
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File Structure

❑ None - sequence of words/bytes
❑ Simple record structure

❑ Lines
❑ Fixed Length
❑ Variable Length

❑ Complex Structures
❑ Formatted document
❑ Relocatable executable file

❑ Can achieve last two with first method by inserting 
appropriate control characters

❑ Who decides 
❑ Operating System
❑ Program
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File Attributes
❑ Name 

❑ symbolic file-name; human-readable name
❑ Identifier

❑ Unique tag that identifies file within file-system; non-human readable name
❑ Type  

❑ for systems that support multiple types
❑ Location 

❑ pointer to a storage device and to file location on device
❑ Size 

❑ current file size, maximum possible size
❑ Protection  

❑ controls who can read, write, execute
❑ Time, date, and user (owner) identification 

❑ data for protection, security and usage monitoring

Where is this information stored?
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File Attributes
❑ Name 

❑ symbolic file-name; human-readable name
❑ Identifier

❑ Unique tag that identifies file within file-system; non-human readable name
❑ Type  

❑ for systems that support multiple types
❑ Location 

❑ pointer to a storage device and to file location on device
❑ Size 

❑ current file size, maximum possible size
❑ Protection  

❑ controls who can read, write, execute
❑ Time, date, and user (owner) identification 

❑ data for protection, security and usage monitoring

Where is this information stored?
Information about files are kept in the directory structure, 
maintained on disk
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File types - name.extension
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File Operations

❑ A file is an abstract data type. It can be defined by 
operations:

■ Create a file
■ Write a file
■ Read a file
■ Reposition within file - file seek
■ Delete a file
■ Truncate a file
■ Open(Fi)

❑ search the directory structure on disk for entry Fi, and move the 
content of entry to memory. 

■ Close(Fi)
❑ move the content of entry Fi in memory to directory structure on 

disk.
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Directory Structure

❑ Number of files on a system can be large
❑ Break file systems into partitions (treated as a separate 

storage device)
❑ Hold information about files within partitions.

❑ Device Directory: A collection of nodes containing 
information about all the files on a partition.

❑ Both the directory structure and files reside on 
disk.

❑ Backups of these two structures are kept on 
tapes.
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Operations Performed on Directory

❑ Search for a file
❑ Create a file
❑ Delete a file
❑ List a directory
❑ Rename a file
❑ Traverse the file-system
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Logical Directory Organization -- 
Goals
■ Efficiency - locating a file quickly
■ Naming - convenient to users

■ Two users can have the same name for different files.
■ The same file can have several different names.

■ Grouping
■ Logical grouping of files by properties (e.g., all Python 

programs, all games, all pictures…)
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Single Level Directory

■ A single directory for all users
■ Naming faces problems as file names must be unique

❑ As the number of files increases, difficult to remember 
unique names

❑ As the number of users increase, users must have unique 
names.

■ Grouping not possible
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Two Level Directory

■ Introduced to remove naming problem 
between users
❑ First Level contains list of user directories
❑ Second Level contains user files
❑ Need to specify Path name
❑ Can have same file names for different users. But 

each user must still use unique names among her 
own files.

❑ System files kept in separate directory or Level 1.
❑ Efficient searching
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Two Level Directory
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Tree structured Directories
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Tree Structured Directories

■ Arbitrary depth of directories
■ Leaf nodes are files, interior nodes are directories.

■ Efficient Searching
■ Grouping Capability
■ Current Directory (working directory)

■ cd spell/mail/prog, cd .. 
■ dir, ls

■ MS-DOS uses a tree structured directory
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Tree Structured Directories

❑ Absolute or relative path name
❑ Absolute from root
❑ Relative paths from current working directory pointer.

❑ Creating a new file or subdirectory (or deleting 
them) is done in current directory unless path is 
provided)

❑ Creating a new subdirectory is done in current 
directory, e.g. mkdir <dir-name>

❑ Delete a file , e.g. rm file-name
❑ Deletion of directory 

■ Option 1 : Only delete if directory is empty
■ Option 2: delete all files and subdirectories under 

directory
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Acyclic Graph Directories
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Acyclic Graph Directories

■ Acyclic graphs allow sharing
■ Implementation by links (symbolic link)

■ Links are pointers to other files or subdirectories
■ Need to resolve link to locate file.
■ Symbolic links or relative path name 

❑ Directory entry is marked as a link and name of real 
file/directory is given.

■ Implementation by shared files (hard link)
■ Duplicate information in sharing directories
■ Original and copy indistinguishable.
■ Need to maintain consistency if one of them is modified.
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Acyclic Graph Directories

❑ Naming : File may have multiple absolute path names
■ Two different names for the same file 

❑ Traversal  
❑ ensures that shared data structures are traversed only once.

❑ Deletion
■ Removing file when someone deletes it may leave dangling 

pointers. 
■ Preserve file until all references to it are deleted

❑ Keep a list of all references to a file or
❑ Keep a count of the number of references - reference count.
❑ When count = 0, file can be deleted.
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General Graph Directories
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General Graph Directories (cont.)

❑ How do we guarantee no cycles in a tree 
structured directory?

❑ Allow only links to file not subdirectories.
❑ Every time a new link is added use a cycle detection 

algorithm to determine whether it is ok.
❑ If links to directories are allowed, we have a 

simple graph structure
❑ Need to ensure that components are not traversed twice 

both for correctness and for performance, e.g. search 
can be non-terminating.

❑ File Deletion - reference count can be non-zero
❑ Need garbage collection mechanism to determine if file 

can be deleted.
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Access Methods

■ Sequential Access
read next
write next
reset
no read after last write (rewrite)

■ Direct Access ( n = relative block number)
read n
write n

or

position to n
      read next
      write next
rewrite n
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Protection
■ File owner/creator should be able to control

■ what can be done
■ by whom

■ Types of access
❑ read
❑ write
❑ execute
❑ append
❑ delete
❑ list

■ In UNIX, 3 fields of length 3 bits are used.
❑ Fields are user, group, others (u,g,o), 
❑ Bits are read, write, execute (r,w,x).
❑  E.g., chmod +rw file ,  chmod 761 game
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Allocation of Disk Space

■ Low level access methods depend upon the 
disk allocation scheme used to store file data
❑ Contiguous Allocation
❑ Linked Allocation
❑ Indexed Allocation
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Contiguous Allocation
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Contiguous Allocation

❑ Each file occupies a set of contiguous blocks on the disk.
❑ Simple - only starting location (block #) and length (number of 

blocks) are required.   
❑ Suits sequential or direct access.
❑ Fast (very little disk head movement)
❑ Easy to recover in the event of disk data corruption.

■ Problems
❑ Wasteful of space (dynamic storage-allocation problem). Use 

first fit, best fit, etc.  Leads to external fragmentation on disk.
❑ Files cannot grow if there’s no space - in this case, expanding 

file requires copying
❑ Users tend to overestimate space - internal fragmentation.

❑ Mapping from logical to physical - <Q,R>  
❑ File block number = Q -> block number on the disk = Q + file 

starting block
❑ Displacement into block = R
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Linked Allocation

■ Each file is a linked list of disk blocks
■ Blocks may be scattered anywhere on the disk.
■ Each node in list can be a fixed size physical block (or a 

contiguous collection of blocks called clusters).
■ Allocate as needed and then link together via pointers.

❑ Disk space used to store pointers: if disk block is 512 bytes, 
and pointer (disk address) requires 4 bytes, user sees 508 
bytes of data per block.

■ Pointers in list not accessible to user.
pointer

Block = 
Data
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Linked Allocation
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Linked Allocation

❑ Easy to add to the file
■ Can grow in middle and at ends.  No estimation of size 

necessary.
❑ Suited for sequential access but not random 

access.
❑ Simple directory structure - need only starting 

address. Directory Table maps files into head of 
list for a file.

❑ Mapping -  <Q, R>
❑ File block number = Qth block in the linked chain of blocks 

representing the file.
❑ Displacement into block = R (must consider the pointer 

space in the block)
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Linked Allocation (cont.)

❑ Slow - defies principle of locality.  
❑ Need to read through linked list nodes sequentially to find 

the record of interest.

❑ Not very reliable
❑ Disk data corruption can make it very hard to recover the 

files.

❑ Important variation on linked allocation method
■ File-allocation table (FAT) - disk-space allocation used 

by MS-DOS. and OS/2
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File ImplementationsCS-4513, D-Term 2007 31

File Allocation Table (FAT)

■ Instead of link on each 
block, put all links in 
one table
❑ the File Allocation Table 

— i.e., FAT
■ One entry per physical 

block in disk
❑ Directory points to first 

block of file
❑ Each block points to 

next block (or End Of 
File (EOF))
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FAT File Systems

■ Advantages
❑ Advantages of Linked File System
❑ FAT can be cached in memory
❑ Fast search, pseudo-random access

■ Disadvantages
❑ Not suitable for very large disks

■ FAT cache describes entire disk, not just open files!
❑ Not fast enough for large databases

■ Used in MS-DOS, early Windows systems
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File Implementations CS-4513, D-Term 2007 33

Disk Defragmentation

■ Re-organize blocks in disk so that file is 
(mostly) contiguous

■ Link or FAT organization preserved
■ Purpose:
❑ To reduce disk arm movement during sequential 

accesses
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Indexed Allocation

■ Brings all pointers together into the index 
block.

■ Logical view

Index table
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Indexed Allocation
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Indexed Allocation (cont.)

■ Need index table (space overhead).
■ Supports sequential and direct access.
■ No external fragmentation.
■ Mapping  - <Q,R>

❑ Q - file block number = displacement into index table
❑ R - displacement into block
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Indexed Allocation - Mapping

❑ Index table size limits the size of the file.
■ Example: assume we only allow 1 block for the index 

table. Also, assume that block size is 512 words and 
every pointer is one word. In this case, the max file size 
is ? words.
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Indexed Allocation - Mapping

❑ Index table size limits the size of the file.
■ Example: assume we only allow 1 block for the index 

table. Also, assume that block size is 512 words and 
every pointer is one word. In this case, the max file size 
is 256k words.
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Indexed Allocation - Mapping

Mapping from logical to physical in a file of 
large/unbounded length:
❑ Linked scheme - 

■ Link blocks of index tables (no limit on size)
❑ Multilevel Index

■ E.g., two Level Index - first level index block points to a 
set of second level index blocks, which in turn point to 
file blocks.

■ Increase number of levels based on maximum file size 
desired.

■ Maximum size of file is bounded.
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Indexed File - Linked Scheme
Index block file block

link

link
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Indexed Allocation - Multilevel 
index

Index block

2nd level Index

link

link
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Combined Scheme: UNIX Inode
mode

Size block count

owners
timestamps

Direct blocks

Single indirect
double indirect

Triple indirect

data

data

data

data
data

data

data
data

data

data

...
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What is an inode? 

■ An inode (index node) is a control structure that contains 
key information needed by the OS to access a particular 
file. Several file names may be associated with a single 
inode, but each file is controlled by exactly ONE inode.

■ On the disk, there is an inode table that contains the 
inodes of all the files in the filesystem. When a file is 
opened, its inode is brought into main memory and stored 
in a memory-resident inode table.
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Free Space Management

■ Bit Vector (n blocks) - bitmap of free blocks

■ Calculating the first free block number: 
(number of bits per word) * 
(number of 0-value words) +
offset of 1st 1-value bit

■ Bitmap requires extra space.
❑ E.g.,  Block size = 2^12 bytes, Disk size   = 2^30 bytes

 n = 2^30/2^12  = 2^18 bits (or 32 kbytes)
■ Easy to find contiguously free blocks
■ Example: BSD File system

bit[i] = 
0 1 2 n-1

0 implies block[i] occupied 

1 implies block[i] free { 
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Free Space Management

❑ Linked list
❑ Keep a linked list of free blocks
❑ Cannot get contiguous space easily, not very efficient because 

linked list needs traversal.
❑ No waste of space

❑ Linked list of indices - Grouping
❑ Keep a linked list of index blocks. Each index block contains 

addresses of free blocks and a pointer to the next index block.
❑ Can find a large number of free blocks quickly.

❑ Linked list of contiguous blocks
❑ Linked list of contiguous blocks that are free
❑ Free list node contains pointer and number of free blocks 

starting from that address.
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Recovery 

■ Tries to ensure that system failure does not 
result in loss of data or data inconsistency.

■ Consistency checker
■ E.g., compares data in directory structure with data 

blocks on disk and tries to fix inconsistencies, for 
example:
❑ A block cannot be marked as free and belonging to a file.
❑ A block cannot be marked as belonging to two files.

■ Backup and restore
■ Use system programs to back up data from disk to 

another storage device (e.g., magnetic tape).
■ Recover lost file or disk by restoring data from backup.
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