
Principles of
Operating Systems

Lecture 8 - File-System Interface and Implementation
Ardalan Amiri Sani (ardalan@uci.edu)

[lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and
course text slides © Silberschatz]

mailto:ardalan@uci.edu

File Concept

❑ Contiguous logical address space for storage
■ OS creates the abstraction of a logical storage unit

called file.
■ (Typically) persistent
■ OS maps files to physical devices.

❑ Types
■ Data

❑ numeric, character, binary
■ Program

❑ Source file, object file
■ Documents

2

File Structure

❑ None - sequence of words/bytes
❑ Simple record structure

❑ Lines
❑ Fixed Length
❑ Variable Length

❑ Complex Structures
❑ Formatted document
❑ Relocatable executable file

❑ Can achieve last two with first method by inserting
appropriate control characters

❑ Who decides
❑ Operating System
❑ Program

3

File Attributes
❑ Name

❑ symbolic file-name; human-readable name
❑ Identifier

❑ Unique tag that identifies file within file-system; non-human readable name
❑ Type

❑ for systems that support multiple types
❑ Location

❑ pointer to a storage device and to file location on device
❑ Size

❑ current file size, maximum possible size
❑ Protection

❑ controls who can read, write, execute
❑ Time, date, and user (owner) identification

❑ data for protection, security and usage monitoring

Where is this information stored?

4

File Attributes
❑ Name

❑ symbolic file-name; human-readable name
❑ Identifier

❑ Unique tag that identifies file within file-system; non-human readable name
❑ Type

❑ for systems that support multiple types
❑ Location

❑ pointer to a storage device and to file location on device
❑ Size

❑ current file size, maximum possible size
❑ Protection

❑ controls who can read, write, execute
❑ Time, date, and user (owner) identification

❑ data for protection, security and usage monitoring

Where is this information stored?
Information about files are kept in the directory structure,
maintained on disk

5

File types - name.extension

6

File Operations

❑ A file is an abstract data type. It can be defined by
operations:

■ Create a file
■ Write a file
■ Read a file
■ Reposition within file - file seek
■ Delete a file
■ Truncate a file
■ Open(Fi)

❑ search the directory structure on disk for entry Fi, and move the
content of entry to memory.

■ Close(Fi)
❑ move the content of entry Fi in memory to directory structure on

disk.

7

Directory Structure

❑ Number of files on a system can be large
❑ Break file systems into partitions (treated as a separate

storage device)
❑ Hold information about files within partitions.

❑ Device Directory: A collection of nodes containing
information about all the files on a partition.

❑ Both the directory structure and files reside on
disk.

❑ Backups of these two structures are kept on
tapes.

8

Operations Performed on Directory

❑ Search for a file
❑ Create a file
❑ Delete a file
❑ List a directory
❑ Rename a file
❑ Traverse the file-system

9

Logical Directory Organization --
Goals
■ Efficiency - locating a file quickly
■ Naming - convenient to users

■ Two users can have the same name for different files.
■ The same file can have several different names.

■ Grouping
■ Logical grouping of files by properties (e.g., all Python

programs, all games, all pictures…)

10

Single Level Directory

■ A single directory for all users
■ Naming faces problems as file names must be unique

❑ As the number of files increases, difficult to remember
unique names

❑ As the number of users increase, users must have unique
names.

■ Grouping not possible

11

Two Level Directory

■ Introduced to remove naming problem
between users
❑ First Level contains list of user directories
❑ Second Level contains user files
❑ Need to specify Path name
❑ Can have same file names for different users. But

each user must still use unique names among her
own files.

❑ System files kept in separate directory or Level 1.
❑ Efficient searching

12

Two Level Directory

13

Tree structured Directories

14

Tree Structured Directories

■ Arbitrary depth of directories
■ Leaf nodes are files, interior nodes are directories.

■ Efficient Searching
■ Grouping Capability
■ Current Directory (working directory)

■ cd spell/mail/prog, cd ..
■ dir, ls

■ MS-DOS uses a tree structured directory

15

Tree Structured Directories

❑ Absolute or relative path name
❑ Absolute from root
❑ Relative paths from current working directory pointer.

❑ Creating a new file or subdirectory (or deleting
them) is done in current directory unless path is
provided)

❑ Creating a new subdirectory is done in current
directory, e.g. mkdir <dir-name>

❑ Delete a file , e.g. rm file-name
❑ Deletion of directory

■ Option 1 : Only delete if directory is empty
■ Option 2: delete all files and subdirectories under

directory
16

Acyclic Graph Directories

17

Acyclic Graph Directories

■ Acyclic graphs allow sharing
■ Implementation by links (symbolic link)

■ Links are pointers to other files or subdirectories
■ Need to resolve link to locate file.
■ Symbolic links or relative path name

❑ Directory entry is marked as a link and name of real
file/directory is given.

■ Implementation by shared files (hard link)
■ Duplicate information in sharing directories
■ Original and copy indistinguishable.
■ Need to maintain consistency if one of them is modified.

18

Acyclic Graph Directories

❑ Naming : File may have multiple absolute path names
■ Two different names for the same file

❑ Traversal
❑ ensures that shared data structures are traversed only once.

❑ Deletion
■ Removing file when someone deletes it may leave dangling

pointers.
■ Preserve file until all references to it are deleted

❑ Keep a list of all references to a file or
❑ Keep a count of the number of references - reference count.
❑ When count = 0, file can be deleted.

19

General Graph Directories

20

General Graph Directories (cont.)

❑ How do we guarantee no cycles in a tree
structured directory?

❑ Allow only links to file not subdirectories.
❑ Every time a new link is added use a cycle detection

algorithm to determine whether it is ok.
❑ If links to directories are allowed, we have a

simple graph structure
❑ Need to ensure that components are not traversed twice

both for correctness and for performance, e.g. search
can be non-terminating.

❑ File Deletion - reference count can be non-zero
❑ Need garbage collection mechanism to determine if file

can be deleted.

21

Access Methods

■ Sequential Access
read next
write next
reset
no read after last write (rewrite)

■ Direct Access (n = relative block number)
read n
write n

or

position to n
 read next
 write next
rewrite n

22

Protection
■ File owner/creator should be able to control

■ what can be done
■ by whom

■ Types of access
❑ read
❑ write
❑ execute
❑ append
❑ delete
❑ list

■ In UNIX, 3 fields of length 3 bits are used.
❑ Fields are user, group, others (u,g,o),
❑ Bits are read, write, execute (r,w,x).
❑ E.g., chmod +rw file , chmod 761 game

23

Allocation of Disk Space

■ Low level access methods depend upon the
disk allocation scheme used to store file data
❑ Contiguous Allocation
❑ Linked Allocation
❑ Indexed Allocation

24

Contiguous Allocation

25

Contiguous Allocation

❑ Each file occupies a set of contiguous blocks on the disk.
❑ Simple - only starting location (block #) and length (number of

blocks) are required.
❑ Suits sequential or direct access.
❑ Fast (very little disk head movement)
❑ Easy to recover in the event of disk data corruption.

■ Problems
❑ Wasteful of space (dynamic storage-allocation problem). Use

first fit, best fit, etc. Leads to external fragmentation on disk.
❑ Files cannot grow if there’s no space - in this case, expanding

file requires copying
❑ Users tend to overestimate space - internal fragmentation.

❑ Mapping from logical to physical - <Q,R>
❑ File block number = Q -> block number on the disk = Q + file

starting block
❑ Displacement into block = R

26

Linked Allocation

■ Each file is a linked list of disk blocks
■ Blocks may be scattered anywhere on the disk.
■ Each node in list can be a fixed size physical block (or a

contiguous collection of blocks called clusters).
■ Allocate as needed and then link together via pointers.

❑ Disk space used to store pointers: if disk block is 512 bytes,
and pointer (disk address) requires 4 bytes, user sees 508
bytes of data per block.

■ Pointers in list not accessible to user.
pointer

Block =
Data

27

Linked Allocation

28

Linked Allocation

❑ Easy to add to the file
■ Can grow in middle and at ends. No estimation of size

necessary.
❑ Suited for sequential access but not random

access.
❑ Simple directory structure - need only starting

address. Directory Table maps files into head of
list for a file.

❑ Mapping - <Q, R>
❑ File block number = Qth block in the linked chain of blocks

representing the file.
❑ Displacement into block = R (must consider the pointer

space in the block)

29

Linked Allocation (cont.)

❑ Slow - defies principle of locality.
❑ Need to read through linked list nodes sequentially to find

the record of interest.

❑ Not very reliable
❑ Disk data corruption can make it very hard to recover the

files.

❑ Important variation on linked allocation method
■ File-allocation table (FAT) - disk-space allocation used

by MS-DOS. and OS/2

30

File ImplementationsCS-4513, D-Term 2007 31

File Allocation Table (FAT)

■ Instead of link on each
block, put all links in
one table
❑ the File Allocation Table

— i.e., FAT
■ One entry per physical

block in disk
❑ Directory points to first

block of file
❑ Each block points to

next block (or End Of
File (EOF))

File Implementations CS-4513, D-Term 2007 32

FAT File Systems

■ Advantages
❑ Advantages of Linked File System
❑ FAT can be cached in memory
❑ Fast search, pseudo-random access

■ Disadvantages
❑ Not suitable for very large disks

■ FAT cache describes entire disk, not just open files!
❑ Not fast enough for large databases

■ Used in MS-DOS, early Windows systems

32

File Implementations CS-4513, D-Term 2007 33

Disk Defragmentation

■ Re-organize blocks in disk so that file is
(mostly) contiguous

■ Link or FAT organization preserved
■ Purpose:
❑ To reduce disk arm movement during sequential

accesses

33

Indexed Allocation

■ Brings all pointers together into the index
block.

■ Logical view

Index table

34

35

Indexed Allocation

35

Indexed Allocation (cont.)

■ Need index table (space overhead).
■ Supports sequential and direct access.
■ No external fragmentation.
■ Mapping - <Q,R>

❑ Q - file block number = displacement into index table
❑ R - displacement into block

36

Indexed Allocation - Mapping

❑ Index table size limits the size of the file.
■ Example: assume we only allow 1 block for the index

table. Also, assume that block size is 512 words and
every pointer is one word. In this case, the max file size
is ? words.

37

Indexed Allocation - Mapping

❑ Index table size limits the size of the file.
■ Example: assume we only allow 1 block for the index

table. Also, assume that block size is 512 words and
every pointer is one word. In this case, the max file size
is 256k words.

38

Indexed Allocation - Mapping

Mapping from logical to physical in a file of
large/unbounded length:
❑ Linked scheme -

■ Link blocks of index tables (no limit on size)
❑ Multilevel Index

■ E.g., two Level Index - first level index block points to a
set of second level index blocks, which in turn point to
file blocks.

■ Increase number of levels based on maximum file size
desired.

■ Maximum size of file is bounded.

39

Indexed File - Linked Scheme
Index block file block

link

link

40

Indexed Allocation - Multilevel
index

Index block

2nd level Index

link

link

41

42

Combined Scheme: UNIX Inode
mode

Size block count

owners
timestamps

Direct blocks

Single indirect
double indirect

Triple indirect

data

data

data

data
data

data

data
data

data

data

...

Copyright ©: Nahrstedt, Angrave, Abdelzaher 43

What is an inode?

■ An inode (index node) is a control structure that contains
key information needed by the OS to access a particular
file. Several file names may be associated with a single
inode, but each file is controlled by exactly ONE inode.

■ On the disk, there is an inode table that contains the
inodes of all the files in the filesystem. When a file is
opened, its inode is brought into main memory and stored
in a memory-resident inode table.

43

Free Space Management

■ Bit Vector (n blocks) - bitmap of free blocks

■ Calculating the first free block number:
(number of bits per word) *
(number of 0-value words) +
offset of 1st 1-value bit

■ Bitmap requires extra space.
❑ E.g., Block size = 2^12 bytes, Disk size = 2^30 bytes

 n = 2^30/2^12 = 2^18 bits (or 32 kbytes)
■ Easy to find contiguously free blocks
■ Example: BSD File system

bit[i] =
0 1 2 n-1

0 implies block[i] occupied

1 implies block[i] free {

44

Free Space Management

❑ Linked list
❑ Keep a linked list of free blocks
❑ Cannot get contiguous space easily, not very efficient because

linked list needs traversal.
❑ No waste of space

❑ Linked list of indices - Grouping
❑ Keep a linked list of index blocks. Each index block contains

addresses of free blocks and a pointer to the next index block.
❑ Can find a large number of free blocks quickly.

❑ Linked list of contiguous blocks
❑ Linked list of contiguous blocks that are free
❑ Free list node contains pointer and number of free blocks

starting from that address.

45

Recovery

■ Tries to ensure that system failure does not
result in loss of data or data inconsistency.

■ Consistency checker
■ E.g., compares data in directory structure with data

blocks on disk and tries to fix inconsistencies, for
example:
❑ A block cannot be marked as free and belonging to a file.
❑ A block cannot be marked as belonging to two files.

■ Backup and restore
■ Use system programs to back up data from disk to

another storage device (e.g., magnetic tape).
■ Recover lost file or disk by restoring data from backup.

46

