
Minimizing a Smartphone’s TCB for Security-Critical Programs
with Exclusively-Used, Physically-Isolated,

Statically-Partitioned Hardware
Zhihao Yao

†∗
, Seyed Mohammadjavad Seyed Talebi

†∗
, Mingyi Chen

†
,

Ardalan Amiri Sani
†
, Thomas Anderson

‡
†
UC Irvine,

‡
University of Washington

{z.yao, mjavad, mingyi.chen, ardalan}@uci.edu, tom@cs.washington.edu

ABSTRACT
Smartphone owners often need to run security-critical programs

on the same device as other untrusted and potentially malicious

programs. This requires users to trust hardware and system soft-

ware to correctly sandbox malicious programs, trust that is often

misplaced. Our goal is to minimize the number and complexity

of hardware and software components that a smartphone owner

needs to trust. We present a split-trust hardware design composed

of statically-partitioned, physically-isolated trust domains. We in-

troduce a few simple, formally-verified hardware components to

enable a program to gain provably exclusive and simultaneous ac-

cess to both computation and I/O on a temporary basis. To manage

this hardware, we present OctopOS, an OS composed of mutually

distrustful subsystems. We present a prototype of this machine

(hardware and OS) on a CPU-FPGA board and show that it incurs

a small hardware cost compared to modern smartphone SoCs. For

security-critical programs, we show that this machine significantly

reduces the required trust compared to mainstream TEEs while

achieving usable performance. For normal programs, performance

is similar to a legacy machine.

CCS CONCEPTS
• Security and privacy→ Systems security;Mobile platform
security; Trusted computing.

KEYWORDS
Physical isolation, static partitioning, exclusive use

ACM Reference Format:
Zhihao Yao, Seyed Mohammadjavad Seyed Talebi, Mingyi Chen, Ardalan

Amiri Sani, Thomas Anderson. 2023. Minimizing a Smartphone’s TCB

for Security-Critical Programs with Exclusively-Used, Physically-Isolated,

Statically-Partitioned Hardware. In ACM International Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’23), June 18–22, 2023,
Helsinki, Finland. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3581791.3596864

1 INTRODUCTION
Because of their ubiquity and portability, modern smartphones are

often used to run security-critical programs along with diverse,

untrusted, and potentially malicious programs. For example, most

of us perform financial tasks, such as banking and payments [1]

∗
Equal contribution

MobiSys ’23, June 18–22, 2023, Helsinki, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0110-8/23/06.
https://doi.org/10.1145/3581791.3596864

on our smartphones. Many of us also run health-related programs,

e.g., to receive test results and diagnoses from our health providers.

There is also interest in using these devices to perform life-critical

tasks such as controlling an insulin pump [2] or monitoring breath-

ing [3], although security concerns currently pose a roadblock [2].

Realizing this computing paradigm should be straightforward.

The job of an operating system (OS) is to isolate security-critical

programs from other programs running on the same hardware. Yet,

this has proven to be challenging in practice due to vulnerabilities

in system software (e.g., OS, hypervisor, and device drivers) [4–

12] and hardware (e.g., processor, memory, interconnects, and I/O

devices including their firmware) [13–19]. Malicious programs

can exploit these vulnerabilities to take control of the machine

and any program running on it. We must trust that hardware and

system software can effectively sandbox and neutralize malicious

programs, but this trust often proves to be misplaced.

To address this challenge, a new approach has emerged. It uses

Trusted Execution Environments (TEEs) to host security-critical pro-

grams without requiring trust in the OS. Unfortunately, today’s

TEEs still require us to trust the hardware and the security monitor

implementing the TEE guarantees. This trust has also proven un-

justified. Existing TEEs have fallen victim to various attacks, e.g.,

hardware-based side-channel attacks [16, 20–28], attacks exploit-

ing software vulnerabilities [29–32], and attacks based on design

flaws [33–36].

In this paper, we present a solution to enable smartphones to be

used for both security-critical and non-critical programs. Our goal

is tominimize the Trusted Computing Base (TCB).More specifically,

our goal is to minimize the number and complexity of hardware and

software components that need to be trusted by the smartphone

owner, when executing a security-critical program, to fend off

adversarial inputs.

Our key principle is provably exclusive access to hardware and

software components. That is, we design a solution to enable a

security-critical program to exclusively use complex hardware and
software components and be able to verify the exclusive use. The
exclusive use of a component makes it unreachable to attackers.

More concretely, we present a hardware design for a smart-

phone. Called a split-trust hardware, it comprises multiple trust

domains, one or multiple for TEEs, one for each I/O device, one for

a resource manager, and one for hosting a commodity OS, e.g., An-

droid, and its programs. The trust domains are statically-partitioned
and physically-isolated: they each have their own processor and

memory (and one I/O device in the case of an I/O domain) and do

not share any underlying hardware components; they can only com-

municate by message passing over a hardware mailbox. Moreover,

we introduce a few simple, formally-verified hardware components

that enable a program to gain provably exclusive access to one or

multiple domains.

233

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3581791.3596864
https://doi.org/10.1145/3581791.3596864
https://doi.org/10.1145/3581791.3596864
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581791.3596864&domain=pdf&date_stamp=2023-06-18

We then present OctopOS, an OS to manage this hardware. Un-

like existing OSes, which have a single, trusted-by-all nucleus, i.e.,

the kernel, OctopOS comprises mutually distrustful subsystems: a

TEE runtime for security-critical programs, I/O services, a resource

manager, and a compatibility layer for a commodity, untrusted OS.

The fundamental aspect of OctopOS is that components do not
trust, but verify messages received from other components.

We rigorously evaluate the TCB of our machine. We show that

it significantly reduces the TCB compared to mainstream TEEs and

achieves one close to the lower bound.

We present a complete prototype of our machine (hardware

and OS) on top of a CPU-FPGA board (Xilinx Zynq UltraScale+

MPSoC ZCU102). We use the powerful ARM Cortex A53 CPU to

host the commodity, untrusted OS (PetaLinux) and its programs

with high performance. We use the FPGA to build the other trust

domains: two TEEs, a resource manager, and four I/O domains (an

input domain, an output domain, a storage domain, and a network

domain). We use (weak) microcontrollers for these other domains.

Using our prototype, we build two important security-critical

programs for our machine:
1
(i) a banking program that can securely

interact with the user, and (ii) an insulin pump program that can

securely execute its algorithm and communicate with an (emulated)

glucose monitor and pump.

Using our prototype, we show that the added hardware cost is

small (i.e., 1-2%) compared to modern SoCs used in smartphones.

Moreover, we show that security-critical program can achieve usable
performance despite the use of weak microcontrollers for all TEE and
I/O domains. We also show that normal programs can achieve the
same compute and I/O performance as on a legacy machine, which is

defined as amachine using the same powerful CPU as our untrusted

domain but with that CPU being in full control of all I/O devices

and main memory.

Secure hardware trend. Our vision of using physical isolation

and exclusive use for security is in line with recent hardware trends

from the smartphone industry. Apple has integrated the Secure

Enclave Processor (SEP) into its products [37] and used it to secure

user’s secret data and to control biometric sensors (i.e., Touch ID

and Face ID) [38]. Similarly, Pixel 6 uses the tensor security core

to host security-critical tasks such as key management and secure

boot [39]. Our work takes this vision further by allowing user-

provided, third-party security-critical programs (including those

that rely on I/O devices) to use dedicated hardware by developing

a model for how that can be safely done.

2 TRUST IN EXISTING SYSTEMS
The TCB in a system comprises the hardware and software com-

ponents that need to be trusted. Historically, the OS has been a

trusted part of the system and hence part of the TCB (Figure 1 (a)).

As commodity OSes have become more complex over the years,

more and more vulnerabilities have been found in them, allowing

malware to exploit them and compromise the OS [4–7, 9–12, 40].

As an example, there have been about 1700 security vulnerabilities

reported in the Linux kernel just since 2016 [5]. Therefore, trust in

commodity OSes is not warranted.

There have been several attempts to build trustworthy OSes.

These include microkernels [41–45], exokernels and library

OSes [46–49], formally verified OSes (and hypervisors) [44, 50–57],

and OSes written in safe languages [58–61]. While effective, these

1
We open source our hardware design and formal verification proofs at https://github.

com/trusslab/octopos_hardware, and OctopOS and security-critical programs at https:

//github.com/trusslab/octopos.

I/O
device
HW

I/O
device
HW

Commodity OS

Security-cr
itical prog.

Normal
program

Normal
program

I/O
device
HW

I/O
device
HW

Commodity OS

Normal
program

Normal
program

DMA

Security-cr
itical prog.

TEE

DMA

DMA

DMA

(a) (b)

Security Monitor

Figure 1: (a) Traditional designwhere theOS isolates security-
critical programs from normal programs. (b) Use of a TEE to
isolate a security-critical program.

solutions require replacing commodity OSes with a new OS. This

is a challenging task due to the abundance of existing programs,

device drivers, and developers for commodity OSes. More impor-

tantly, using these OSes still requires trust in hardware, which is

not warranted either, as we will discuss.

About two decades ago, a new approach started to gain popular-

ity. The idea is to create an isolated environment, called a TEE, to

host a security-critical program. This allows the use of a commod-

ity OS, but relegates it to be only in charge of untrusted, normal

programs such as games, utility apps, and entertainment platforms.

The TEE enables a security-critical program to ensure its own in-

tegrity and confidentiality, but leaves the OS in charge of resource

management (and hence the availability guarantee). Therefore, one

does not need to trust the OS when running a security-critical

program, reducing the TCB. Figure 1 (b) illustrates this design. It

shows a security monitor is used to isolate a TEE from the OS. The

security monitor can be implemented purely in software (i.e., a hy-

pervisor) [62, 63] or using a combination of hardware and software.

ARM TrustZone and Intel SGX are examples of the latter. Others

include AMD Secure Encrypted Virtualization (SEV), Intel Trusted

Domain Extensions (TDX), ARMv9’s Realms [64], and Keystone

for RISC-V [65].

Despite their success, existing TEE solutions still have a large

TCB including the security monitor and several hardware compo-

nents such as the very complex processor, memory, I/O devices in

some cases, and dynamically-programmable protection hardware

such as address space controllers and MMUs. Unfortunately, all of

these components can be compromised by an adversary. For exam-

ples, hypervisors contain many vulnerabilities [8, 66]. TEE OSes

in TrustZone have also contained vulnerabilities and have been

exploited in the past [29–32]. AMD SEV has also been shown to

contain several vulnerabilities due to design flaws [33–35]. AMD’s

response to these vulnerabilities have been enhanced versions of

SEV, called SEV-ES and SEV-SNP. Unfortunately, these versions

have also fallen to attacks exploiting side channels [28] or addi-

tional design flaws [36].

Hardware components have been exploited as well. Hardware-

based side-channel attacks have recently emerged as a serious

threat to computing systems. For example, SGX enclaves and Trust-

Zone have been compromised using several such attacks [16, 20–

27]. The core reason behind this is that existing machines run the

untrusted OS and TEEs on the same hardware, sharing underlying

microarchitectural features such as cache [20, 23–27] and specula-

tive execution engine [14–16, 21], as well as architectural ones such

as virtual memory [22]. The memory subsystem has also proved

vulnerable to Rowhammer attacks [13, 67–71]. The complexity of

these hardware components ensures that more vulnerabilities are

234

https://github.com/trusslab/octopos_hardware
https://github.com/trusslab/octopos_hardware
https://github.com/trusslab/octopos
https://github.com/trusslab/octopos

likely to be discovered and exploited. For example, researchers

have recently demonstrated a suite of new side channels using the

CPU interconnect [17], the x87 floating-point unit, and Advanced

Vector extensions (AVX) instructions (among others) [18].

3 KEY GOAL AND PRINCIPLE
Trust definitions.We define two types of trust in the TCB: strong
trust and weak trust. We say a component is strongly trusted if

it needs to guard against adversarial inputs. An example is an OS

that is trusted to isolate a program from other malicious programs,

which can issue adversarial syscalls to the OS concurrently to the

protected program. This component must be trusted to prevent

these other programs from exploiting any vulnerabilities in it. This

is challenging as demonstrated by the plethora of reported exploits.

We say that a component is weakly trusted if it just needs to

operate correctly in the absence of adversarial inputs. An example is

an OS that only serves a single program (and assuming application-

level networking). This component must only be trusted to not

exert buggy behavior under normal usage. This can be (more) easily

achieved in practice.

Due to their obvious criticality, in this work, we focus on the

strongly-trusted components in the TCB. For brevity, when talking

about TCB, we mainly refer to these components.

Finally, we note that all components of the TCB need to be

trusted not to have any backdoors implanted by an adversary.

Key goal.Our goal in this work is to minimize both the number and
complexity of (strongly-trusted) components in the TCB. Our ratio-

nale for the former is obvious: the fewer trusted components, the

better. Our rationale for the latter is that it is difficult for complex

hardware or software components to adequately protect them-

selves against attacks; by contrast, simpler components can fend

off attacks through comprehensive testing, analysis, and formal

verification.

Key principle. Our key principle to achieve this goal is provably
exclusive access to hardware and software components. That is,

we design our machine to enable a security-critical program to

exclusively use complex hardware and software components and
be able to verify the exclusive use. More specifically, our goal is

to have most components, especially complex ones such as the

processor and system software, (1) be reset to a clean state before

use, (2) then used exclusively by a security-critical program in a

verifiable fashion through remote and/or local attestation, and (3)

then again reset to a clean state right after use. In this case, such

a component does not need to be (strongly) trusted anymore as it

cannot be reached by an attacker while serving the security-critical

program, nor does it need to worry about residual state from the

security-critical programwhile serving other, potentially malicious,

programs.

To realize this principle, we introduce a novel split-trust hardware
design (§4). We then introduce an OS for this hardware, called

OctopOS (§5).

4 SPLIT-TRUST HARDWARE
Modern machines leverage hardware with a hierarchical privilege
model. That is, hardware provides multiple privilege levels, each

with more privilege than previous ones, with one all-powerful level

to “rule them all.”
2
This model results inevitably in several complex

components in the TCB such as the processor, protection hardware,

and system software.

2
A reference to Tolkien’s The Lord’s of the Rings.

TEE 1 domain TEE 2 domainUntrusted domain

Resource
manager
domain

I/O 2 domainI/O 1 domain

mailbox mailbox

I/O
device
HW

I/O
device
HW

Trusted
Platform

Module (TPM)

Power
Management
Unit (PMU)

Security-crit
ical prog.

Security-crit
ical prog.Commodity OS

Normal
program

Normal
program

Delegable writer Delegable reader

Fixed writerFixed reader

Figure 2: Simplified overview of the split-trust hardware. The
figure does not show all mailboxes for clarity.

In this paper, we demonstrate a novel hardware design, the

split-trust hardware, in which the hardware is split into multiple

isolated trust domains. Each domain is intended for one aspect of

the machine: one or multiple for TEEs, one for each I/O device (i.e.,

an I/O domain), one for a commodity OS and its untrusted programs

(i.e., the untrusted domain), and one for a resource manager, which

is in charge of constrained resource scheduling and access control.

The benefit of the split-trust hardware is that a security-critical

program can exclusively take control of and use its own domain

and exclusively communicate with other domains (§4.2), e.g., for

I/O and IPC, hence significantly reducing the TCB. Figure 2 shows

a simplified view of this hardware design. Next, we discuss its key

aspects.

4.1 Physical Isolation & Static Partitioning
We follow two important principles in our hardware design. (1)

Domains must be physically isolated (i.e., share no hardware com-

ponents). (2) The isolation boundary between them cannot be pro-

grammatically and dynamicallymodified as there is no trusted-by-all
hardware or software component to be tasked with that. This implies

that we cannot rely on programmable protection hardware, such as

an MMU, IOMMU, or address space controller, to enforce isolation.

As a result, our design statically partitions the hardware resources
between domains.

More specifically, each trust domain has its own processor. We

use a powerful CPU for the untrusted domain, which accommo-

dates a commodity OS and its (untrusted) programs, to achieve

high performance. This CPU is similar to the powerful CPU used

in modern smartphone SoCs. We use weaker microcontrollers for

other domains in order to keep the hardware cost small. Each do-

main has its own memory as well and domains do not (and cannot)

share memory.

Each I/O domain also has exclusive control of an I/O device,

which is wired to and only programmable by the processor of

that domain and which directly interrupts that processor. (We will

discuss how DMA is handled in §4.5.)

4.2 Exclusive Inter-Domain Communication
To be able to act as one machine, the domains need to be able

to communicate. We introduce a simple, yet powerful, hardware

235

mailbox

message queue

multiplexer

fixed reader
domain

writer
domain

writer
domain

mailbox
commands

mailbox
messages

Default writer
domain

(resource mgr.) status
register

multiplexing
logic

Figure 3: Mailbox design.

primitive for this purpose: verifiably delegable hardware mailbox. At
its core, a mailbox is a hardware queue, allowing two domains (i.e.,

the writer and reader) to communicate through message passing.

The key novelty of our mailbox is how it enables exclusive

communication using its delegation model. A mailbox has a fixed

end (reader or writer) and a delegable one. The fixed end is hard-

wired to a specific domain. The delegable one is wired to multiple

domains, but only one can use it at a time, enforced by a hardware

multiplexer within the mailbox. This end is by default (i.e., after a

mailbox reset) under the control of the resource manager domain.

But the resource manager can delegate it to another domain, which

is then able to exclusively communicate with the domain on the

fixed end of the mailbox.

Figure 3 shows the design of the mailbox with a fixed reader.

For example, consider the serial output domain in our prototype. It

is the fixed reader of a mailbox. Any domain with write access to

the mailbox can (exclusively) send content to the output domain

to be displayed in the terminal.

The delegation model of our mailbox has another important

property: limited yet irrevocable delegation. When the resource

manager delegates the mailbox to a domain, it sets a quota for

the delegation in terms of both the maximum number of allowed

messages and maximum delegation time. As long as the quota has

not expired (i.e., a session), the domain can use the mailbox and

the resource manager cannot revoke its access to the mailbox. The

session expires when either the message limit or the time limit

expires. (The message limit can be set to infinite, but not the time

limit.)

This delegation model enables a limited form of availability,

which we refer to as session availability. That is, a domain with

exclusive communication access to another domain can be sure to

retain its access for a known period of time or number of messages.

This is critical for some security guarantees on smartphones. For

example, a security-critical program can ensure that the User In-

terface (UI) will not be hijacked or covered with overlays when

the program is interacting with the user [72, 73]. Or a security-

critical program that has authenticated to and hence unlocked a

sensitive actuator domain (e.g., insulin pump) can ensure that no

other program can hijack the session and manipulate the actuator.

We leverage session availability in our own apps (§7).

As the resource manager is not trusted by other domains, the

delegation must be verifiable. The mailbox hardware provides a fa-

cility for this verification. As Figure 3 shows, all domains connected

to the mailbox can read a status register from the mailbox hard-

ware. The status register specifies the domain that can read/write to

the mailbox and the remaining quota. The domain with delegated

access can therefore verify its access and quota. (Other domains

will receive a dummy value when reading the status register for

confidentiality.)

Domains transmit both commands and data to each other

through mailboxes. Because commands are typically short but

data messages are typically long, we use two types of mailboxes

to optimize the hardware design, namely control-plane mailboxes
and data-plane mailboxes. These two types of mailboxes share the

same hardware properties, but have different sizes (i.e., message

size and queue size).

4.3 Power Management
Our mailbox primitive cannot, on its own, guarantee session avail-

ability. This is because we need to ensure that during a session, the

domains used by a security-critical program remain powered up

(given adequate energy in the battery).

The Power Management Unit (PMU) normally takes commands

from the resource manager. The resource manager uses this ca-

pability to reset other domains when needed, e.g., reset a TEE

domain before running a new program, or apply Dynamic Voltage

Frequency Scaling (DVFS) to manage the system’s power consump-

tion. (We do not support DVFS for the domains in our prototype.

Hence, in the rest of the paper, we mainly focus on the reset inter-

face, although similar principles can be applied to DVFS.)

However, the resource manager is not a trusted component;

hence it may try to reset a domain during a session. Therefore,

we add a simple hardware component, called the reset guard, for
controlling all the reset signals that are local to a domain, which

ensures that as long as the quota on a mailbox has not expired,

the domains on both sides of the mailbox (including the domain’s

mailboxes) cannot be reset, hence ensuring session availability. The

resource manager simply fails to reset a domain if the domain has

an ongoing delegation. Once the quota expires (or if the access

to the delegable end of the mailbox is yielded), the mailbox is

returned back to the resource manager, and the resource manager is

allowed to reset and reuse the domains (assuming no other ongoing

delegations).

4.4 Hardware Root of Trust
A hardware root of trust is needed during remote attestation to

convince the party in charge of a security-critical program of the

authenticity of the hardware and the correctness of the loaded

program. We use a Trusted Platform Module (TPM) to realize the

root of trust for the split-trust hardware.

Why TPM? TPM, as specified by the Trusted Computing Group

(TCG), is a tamper-resistant security co-processor connected to the

main processor over a bus [74]. Traditionally, it provides security

features for the machine as a whole, such as the measurements

of the loaded software. This makes TPM unsuitable for more fine-

grained security features, such as remote attestation of a specific

program. As a result, in-processor TEE solutions, such as SGX,

integrate the root of trust in the processor itself, tightly coupling

it with various features of the processor (such as virtual memory

and cache), further bloating the trusted processor.

Our key insight is that TPM can provide fine-grained security

features for a split-trust machine since different components of

this OS run on separate processors. This allows the machine to

enjoy the security benefits of TPM without suffering from its main

limitation.

To integrate TPM into a split-trust machine, we need a different

set of parameters (i.e., the number of Platform Configuration Reg-

isters (PCRs) and their access permissions, i.e., localities) from the

ones found in existing TPM chips, in order to provide one PCR per

domain and securely extend it with the measurement of software

loaded in the domain. The bootloader of a domain measures the

236

boot image and extends the corresponding PCR with the measure-

ment, and the PCR values are then used to provide a cryptographic

proof of the software loaded into the domain (§5.1).

4.5 High Performance I/O
By default, the data plane of I/O domains are implemented over

mailboxes. However, this raises a performance concern due to ad-

ditional data copies (to and from mailbox). While the performance

overhead is acceptable for TEE domains, it is not so for the un-

trusted domain. An important hardware primitive that enables

a legacy machine to achieve high I/O performance is DMA. To

safely use DMA in our machine, we introduce domain-bound DMA,
defined with the following two restrictions. (1) The DMA engine

is hard-wired to only read/write to the memory of the untrusted

domain. (2) The DMA engine can stream data in/out of the I/O

device only when the I/O domain is used by the untrusted domain.

We achieve this with a simple hardware component called the

arbiter, which is a switch that decides if the data streams of the I/O

device is connected to a DMA engine or to a simple FIFO queue

accessible to the I/O domain.

4.6 Domain and Mailbox Reset
Domains and their mailboxes need to be reset before and after use

(§3). We reset the mailboxes directly in hardware upon delegation,

yield, and session expiration. We leave the resetting of the domains

to the resource manager, albeit under the limitations enforced

by the reset guard (§4.3). Even though the resource manager is

untrusted, this does not pose a problem since a program can verify,

using local and remote attestation through TPM as well as some

measures provided by the domain runtime that (1) a domain has

been reset, (2) it has not been used since last reset, (3) it will be

reset after use and before use by other domains. We provide more

details on the verification process with an example in §5.1.

5 OCTOPOS
We introduce OctopOS, an OS to manage the split-trust hardware.

Unlike existing OSes, which have an all-powerful trusted-by-all

kernel, OctopOS is composed of mutually-distrustful components.
These components include I/O services for I/O domains, a runtime

for TEE domains, a resource manager, and a compatibility-layer

for the untrusted domain.

5.1 Fundamental Aspect
The fundamental aspect of OctopOS is that components do not trust,
but verify any messages received from other untrusted components.

We illustrate this aspect with one example.

Imagine a security-critical program that needs access to the

input and output domains in order to interact with the user (e.g.,

to ask for username and password). The program, running in a

TEE domain, sends a message to the resource manager and asks for

the two domains to be delegated to it for a certain amount of time,

e.g., one minute. More specifically, the program asks the resource

manager to delegate the mailboxes of the input and output domain

to the TEE domain. The resource manager waits for these domains

to become available (if not at first), resets them, and then performs

the delegation if it deems the request reasonable (e.g., if it is not for

a very long period of time). It then responds to the TEE domain,

confirming the successful delegation.

At this point, the security-critical program performs a series of

verifications before it uses these domains. First, it uses the status

register of the delegated mailboxes to verify that (1) its own domain

is given exclusive access to the mailbox and (2) the delegation quota

is correct (since otherwise the session might end abruptly, allowing

the resource manager to hijack the program’s interaction with the

user). Second, the program needs to ensure that the right software

has been loaded into the input and output domains and that the

domains have been reset (otherwise the resource manager could

install a keylogger/eavesdropper in these domains or simply inject

code into them by exploiting their vulnerabilities). It performs the

verification by checking the PCR value of each of the domains from

the TPM. The PCR value provides a cryptographic proof of all the

software loaded into a domain. Moreover, our I/O services further

extend the PCR of their domain upon handling their first request.

This way, the PCR value proves freshness (or lack thereof), i.e., that

the domain has been reset prior to delegation.

Performing all these verifications on every interaction with

other domains would be a daunting task, if it were to be done by

the developer of a security-critical program. Therefore, OctopOS

provides all of these for the developers in its components in the

form of high-level API. We next discuss each of these components

in more detail.

5.2 Components
5.2.1 I/O Services. Each I/O domain runs a service to manage it.

The I/O service incorporates the software stack needed to program

and use an I/O device, e.g., device driver. In addition, it provides an

API that can be called (through messages) by any domain that has

exclusive access to the mailboxes of the corresponding I/O domain.

There are two types of I/O devices. The first is non-restricted I/O
devices. These are devices that can be used by a security-critical

programwithout any restrictions during a session, such as the serial

output and network devices in our prototype. For these devices, we

ensure that the I/O domain is reset before and after use by another

domain.

The second type is restricted I/O devices. These are devices that
cannot be used freely by a security-critical program during a ses-

sion and require the resource manager to enforce restrictions (i.e.,

fine-grained access control). In our prototype, storage is of this

type since it contains data of other programs. Even if the data

are encrypted, they need to be protected if a general availability

guarantee is needed (§8.4). For these devices, we still ensure ex-

clusive access to the domain during the session. We also ensure

reset after use. However, we cannot ensure the domain is reset to

a clean state before use. This is because after reset, the resource

manager needs to communicate with the I/O service to restrict

its usage, e.g., limit the storage domain to using only one parti-

tion allocated for a security-critical program, before delegating the

domain’s mailboxes to a TEE domain.

We have carefully designed an API for such I/O services. The

core of the API revolves around the notion of an I/O resource. For
example, in the case of the storage service, each partition is a

resource. The API allows the manager to allocate resources and

bind them to specific security-critical programs. It also allows the

program to authenticate itself in order to use the resource and to

verify the status of the service. We omit the details of the API due

to space limitation.

Finally, we note that this design adds the storage service to the

TCBwhen it is used by a security-critical program (§8.4). In contrast,

other I/O services are not directly reachable by the adversary when

used exclusively by a TEE domain and hence are not part of the

TCB.

5.2.2 TEE Runtime. In order to facilitate the development of

security-critical programs, we have developed a runtime for TEEs,

237

which provides a high-level API. A program may choose to utilize

this runtime (which is part of the TCB), or its own.

We provide several categories of functions in this API: (1) Re-

questing and verifying access to other domains; this category also

helps the program manage the remaining quota of mailboxes by

calling a callback function upon quota updates, so that the program

can decide whether to continue using the mailbox or not. It depends

on the program’s security goals to notify the user that the quota is

about to expire. (2) High-level abstractions for using I/O services

such as socket-based networking and terminal prints. (3) Assis-

tance with the TPM, e.g., to request a remote attestation report. (4)

Support for secure IPC between TEE domains. (5) Security-critical

routines such as cryptographic primitives.

5.2.3 Resource Manager. At a high level, the resource manager

is in charge of resource scheduling, access control, and system-

wide, untrusted I/O functionalities. More specifically, it performs

the following three tasks. First, it makes constrained scheduling

decisions. When a new security-critical program needs to execute,

or when an existing one requests exclusive communication with

another domain (for I/O or IPC), themanager checks the availability

of resources, grants the request, or blocks it until the resource is

available. Compared to schedulers in commodity OSes, scheduling

in OctopOS is more restricted. This is because the resource manager

cannot preempt a domain as long as mailbox quotas have not

expired (§4.2). Second, the resource manager restricts the usage

of some I/O domains to enforce fine-grained access control, as

discussed in §5.2.1. Finally, the manager implements system-wide,

untrusted I/O functionalities. For example, as the manager is the

initial client of the input and output domains, it implements the

shell (i.e., the UI). The UI, however, can be delegated to security-

critical programs upon request.

5.2.4 Untrusted Domain’s Compatibility Layer. In OctopOS, a com-

modity OS runs in the untrusted domain, and hence by definition

manages its own processor and memory. (In contrast, OctopOS is

in charge of managing all the domains and their interactions with

each other.) Yet, the commodity OS is not given direct control of

I/O devices as they are managed by separate I/O domains.

We address this issue by developing a compatibility layer for the

untrusted OS. In our prototype, which uses PetaLinux, the com-

patibility layer consists of several kernel modules, each pretending

to be a device driver. Transparent to Linux and its program, they

communicate to the resource manager to get access to the I/O ser-

vices’ mailboxes (or to set up DMA) and then communicate to them.

These Linux drivers can be used to run Android in the untrusted

domain as well.

6 PROTOTYPE
We have built a prototype of the split-trust hardware and OctopOS

on the Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA board. We

use the Cortex A53 ARM processor on the SoC for the untrusted

domain in order to achieve high performance for the commodity

OS (PetaLinux) and its programs. We use the FPGA to synthesize 7

simple Microblaze microcontrollers (i.e., no MMU and no cache):

two TEE domains, the resource manager domain, and four I/O

domains (serial input, serial output, storage, and Gigabit Ethernet).

(Note that we are limited to I/O devices in the development board

and hence could not use more smartphone-specific I/O devices such

as WiFi. However, our principles and approaches apply equally to

these other I/O devices as well.) We leverage the (single-threaded)

Standalone library [75] to program the microcontrollers. We use

the entirety of the main memory for the untrusted domain. For

other domains, we use a total of 3.2 MB of on-chip memory includ-

ing some ROM for bootloaders and some RAM. We run the TPM

(emulator) [76] on a separate Raspberry Pi 4 board connected to

the main board through serial ports. We use another Microblaze

microcontroller to mediate the communications of the domains

with the TPM.

In addition, we use the FPGA to synthesize the mailboxes (12

in total), the arbiter for DMA for the network domain (other do-

mains do not support DMA), the reset guard, as well as 11 hardware

queues for permanent domain connections (such as for all domains

to communicate with TPM or for TEE domains to communicate

with the resource manager). The control-plane mailboxes have the

capacity of 4 messages of 64 B each, and the data-plane mailboxes

have the capacity of 4 messages of 512 B each. As a concrete exam-

ple, our storage domain has 4 mailboxes: two for its control plane

(send/receive) and two for its data plane (send/receive).

As mentioned in §4.1, an I/O device is only programmable by its

domain. This includes access to registers and receiving interrupts

from the I/O device. In our prototype, we use I/O interrupts only

for the network device and use polling for the rest. The interrupts

to the network domain’s microcontroller is from the FIFO queue

that holds the packets and are only used when the domain serves

a TEE domain (§4.5). When serving the untrusted domain, the

domain-bound DMA engine directly interrupts the A53 processor

on DMA completion.

We faced two noteworthy limitations in our prototype. First,

while we have strived for our domains to share no hardware, cur-

rently, all our domains share the same clock source and our FPGA-

based domains share the same power domain. Second, the on-board

SD card reader and flash memory are directly programmable by the

A53 processor and hence could not be used for the storage domain.

Our solution was to connect a MicroSD card reader directly to

FPGA through Pmod [77]. This provides physical isolation for the

storage domain, but significantly degrades its performance due to

Pmod’s limited throughput. Therefore, for performance evaluation,

we instead use DRAM as our storage (we partition out a chunk of

DRAM and use it exclusively for the storage domain). This allows

us to stress the performance of the mailboxes of the storage domain

and get an upper bound for our storage performance, which we

cannot do with the Pmod prototype.

We note that requiring an FPGA board to experiment with our

machine may pose a road block for many researchers. Therefore,

we also develop an emulator for our hardware design. The emulator

runs on a Linux-based host OS such as Ubuntu and is able to fully

boot and run OctopOS.

Overall, we have implemented OctopOS and our hardware emu-

lator in about 39k lines of C code (including 5k of modified drivers

from Xilinx and crypto libraries). We report the LoC for our hard-

ware below.

6.1 Verified Hardware Design
The split-trust hardware has only four simple hardware compo-

nents that are part of the TCB (§8.4): mailbox, DMA arbiter, reset

guard, and ROM (for bootloaders). We have implemented these

components in 1630 lines of Verilog code as well as 800 lines of

Python code.

The simplicity of our trusted hardware components enables us

to formally verify them. We use SymbiYosys to perform formal

verification [78]. SymbiYosys is a front-end for Yosys-based formal

hardware verification flows. We took a pragmatic approach to

infer 20 theorems (some comprising multiple lemmas) from our

238

Property Proved theorems

Mailbox

exclusive

access

Domains w/o exclusive access to mailbox cannot change which domain has exclusive access, nor the remaining quota.

If a domain does not yield its exclusive access, its exclusive access is guaranteed as long as the quota has not expired.

The domain with exclusive access to the mailbox can correctly read or write from/to the queue.

The domains w/o exclusive access to the mailbox cannot read/write to the queue.

Mailbox limited

delegation

When given exclusive access, a domain cannot use the mailbox more than its delegated quota.

When the quota delegated to a domain expires, the domain loses exclusive access.

Mailbox verifiable

excl. access

The domain with exclusive access can correctly verify its exclusive access and remaining quota.

The domain on fixed end of mailbox can correctly verify domain with excl. access on the other end and remaining quota.

Mailbox default

excl. access

After reset, the resource manager domain has exclusive access by default.

The resource manager domain does not lose its exclusive access unless it delegates it.

When a domain loses excl. access (yield/expiration), the excl. access will be given to the resource manager domain.

Mailbox

confidentiality

Domains w/o excl. access cannot use mailbox’s verif. interface to learn which domain has excl. access and remain. quota.

Upon delegation/yield/expiration, the data in the queue is wiped.

Reset Guard

The reset signal does not get forwarded if any other domain is using one of the domain’s mailboxes.

The reset signal does not get forwarded if the domain is using any of the other domain’s mailboxes.

Arbiter

control

The control interface can change its state between trusted and untrusted.

Nothing other than the control interface can change the arbiter’s state.

Arbiter

excl. access

When an arbiter is connected to a trusted domain, a mailbox can correctly read or write data.

When an arbiter is connected to an untrusted domain, a DMA engine can correctly read or write data.

ROM A memory can be transformed into read-only access, a change that is irreversible.

Table 1: Theorems we prove for our hardware components. Proving some of these require proving lemmas not listed here.

guarantees. Formal verification ensures that our hardware design

satisfies these theorems and hence our guarantees. Indeed, we have

discovered and fixed a delegation logic error during verification.

We use the SMTBMC engine, which uses 𝑘-induction to formally

verify our hardware design against these theorems. Table 1 shows

the list of theoremswe prove for our hardware components. Overall,

we developed 3000 lines of SystemVerilog code for our hardware

verification. We describe all the theorems in a separate document,

which can be found in our hardware repository
3
. Below, we present

one example.

Theorem example. We demonstrate the Verilog code (adjusted

for readability) that we develop for verifying the theorem that

“when the quota delegated to a domain expires, the domain loses

exclusive access” (Table 1 Row 6). As specified by the pseudo-code

below, the SMTBMC engine proves that on the rising edge of a

clock cycle, when either the time limit or quota limit becomes zero,

the new owner is determined to be the resource manager.

In lines 5-6, the “q_expired” register compares the remaining

quota limit with zero, and in lines 7-8, the “t_expired” register com-

pares the remaining time limit with zero. In both cases, the expired

registers are not triggered if the current owner is the resource

manager. Line 9 checks if the time limit or quota limit has expired,

and if so, the new owner must be the resource manager.

1 reg i n i t = 1 ;

2 always @(posedge c l k) begin
3 i f (i n i t) assume (! a r e s e t n) ;

4 i f (a r e s e t n) begin
5 q_exp i r ed <=

6 (remain_quota == 0) && (owner != `ID_RM) ;

7 t _ e x p i r e d <=

8 (remain_t ime == 0) && (owner != `ID_RM) ;

9 i f (t _ e x p i r e d | | q _ exp i r ed)

10 a s s e r t (owner == `ID_RM) ;

11 end
12 i n i t <= 0 ;

13 end

3
https://github.com/trusslab/octopos_hardware/raw/main/docs/OctopOS-TRM.pdf

7 SECURITY-CRITICAL PROGRAMS
We discuss two security-critical programs that we have built for

our machine. These programs are simplified yet representative of

real-world applications.

I. Secure banking. Our secure banking program allows a user to

securely log in to their account and view their account balance.

The program leverages several features of our machine. First, it

uses exclusive access to the UI (i.e., shell) as well as our session

availability guarantee to make sure all inputs come from the user

(and not malware) and that outputs are only displayed to the user.

On legacy machines that do not support session availability, it

has been shown that user’s interaction with a banking app can

be hijacked or covered with overlays [72, 73, 79]. Upon getting

exclusive access to the UI, the program needs to convince the user

that they are interacting securely with the program. It does so by

displaying a secret established a priori between the user and the

bank. Moreover, the program utilizes the runtime APIs to monitor

the quota left for the UI session, and prompts the user to stop

interacting with the program if the quota is low.

Second, the program uses exclusive access to the network do-

main to transfer confidential information. One might wonder why

it is not adequate to use a secure networking protocol, such as

TLS, for this purpose. Such protocols leave open some side-channel

attack vectors [80], which our exclusive network access closes

against on-device attackers; external network side-channel attacks

are still possible. Note that a secure networking protocol is still

needed for protecting the data against adversaries outside our ma-

chine (although we have not incorporated such a protocol in our

prototype yet).

Finally, the program uses remote attestation to enable the bank

server to verify the integrity of the program running on the user’s

device before any sensitive account information is released or any

commands are accepted. Specifically, (1) the server provides the

program with a challenge (i.e., a nonce), and the program passes

the challenge to the TPM, which generates an attestation report.

239

https://github.com/trusslab/octopos_hardware/raw/main/docs/OctopOS-TRM.pdf

(2) The program sends the report to the server, which verifies it

and then sends the expected PCR values of the I/O services to

the program, (3) which then uses them for local attestation of I/O

domains (including that of the network service).

II. Secure insulin pump. Diabetic patients need to administer

insulin to control the glucose level in their blood. New glucose

monitor and insulin pumps have recently emerged that can be

programmed through a smartphone, although security concerns

currently requires using a dedicated smartphone [2]. (We note

that some patients use an open source, unofficial Android app [81]

to control the pump, albeit at their own risk.) Our machine can

enable the use of user’s own smartphone to securely execute these

life-critical tasks.

We build two versions of this security-critical program in our

OS. The first version allows the user to directly program the insulin

pump (in which case a glucose monitor is not used). The second

version automatically reads the user’s glucose level and uses that

(and previous historical readings) to decide how much insulin to

pump.

These programs leverage our session availability and exclusive

access to the insulin pump (and the glucose monitor in the second

version of the app), e.g., via Bluetooth or through the headphone

jack. This way, the program can securely authenticate itself to

these devices and not worry that the session may be hijacked.

The program also uses exclusive access to the network domain to

securely communicate with the health provider’s server, which

uses remote attestation to enable the provider’s server to trust the

program, similar to our secure banking program. Finally, the second

version of this program needs to be executed in fixed intervals and

store its sensor readings across sessions. This requires a stronger

availability guarantee, called general availability (as opposed to the

more limited session availability). For this, it trusts the resource

manager and the storage domain, as discussed in §8.4. The first

version does not need the additional trust since it only requires

session availability.

8 TCB & SECURITY ANALYSIS
8.1 TCB Notation
We introduce and use a simple, compact notation for TCB, discussed

here with an abstract example:

Owner

G1,G2CompA(1), CompB(2)⊤CompA(1), CompB(2) ∪
G31,2,CompC(3)⊤1,2,CompC(3)

The key operator is the ⊤ sign, which resembles a T (as in

Trust). It helps denote the set of (strongly-trusted) components in
the TCB. The elements on top of the ⊤ sign, e.g., G1, are the secu-

rity guarantees, e.g., confidentiality and integrity. This allows for

differentiating trust assumptions for different guarantees and com-

bining them using the ∪ sign. The elements in front of the ⊤ sign

are the trusted components. For succinctness, we tag a repeating

component with a number in parenthesis on its first appearance

and use the number in other locations.

8.2 Lower Bound of TCB
Assuming that the program communicates with the outside world,

the lower bound can be achieved if the machine is dedicated to

executing a security-critical program:

Owner

C,I,AProg.,RoT⊤Prog.,RoT

where C, I, A stand for Confidentiality, Integrity, and Availability.

This shows that the owner at the very least needs to trust the

(security-critical) program and the Root of Trust (RoT). The trust in

the program is fundamental: the program needs to protect itself

against adversarial inputs, e.g., malicious network packets. (This

could imply trust in the network interface card. However, we as-

sume that the network interface card is isolated by the program, e.g.,

using an IOMMU). The program in the TCB includes the runtime

used by the program to interact with the hardware.

The trust in the RoT is also fundamental and stems from the fact

that an adversary controlling the machine may try to fool the veri-

fier of remote attestation by attempting to attack and compromise

the RoT. The trust in the RoT includes trust in the bootloader, the

ROM used to store the bootloader, the hardware/firmware used for

remote attestation, e.g., TPM, as well as the hardware vendor that

certifies attestation reports.

Finally, note that we do not consider the processor to be part of

the TCB because the program can sanitize the adversarial inputs

and prevent them from reaching the processor in a meaningful

way.

8.3 TCB of Existing Systems
First, we consider a traditional system that uses an OS to provide

isolation:

Owner

C,I,AProg.,OS,Proc.,Mem.,I/O,interconn.,P.HW,RoT⊤Prog.,OS,Proc.,Mem.,I/O,interconn.,P.HW,RoT

This shows that the owner needs to trust the hardware including

the processor, memory, I/O devices, protection hardware (P.HW)

such as MMU and IOMMU, and interconnects. Moreover, the OS

is also trusted, including device drivers. In this case, the program

includes the libraries used by the program to interact with the OS

and hardware.

Next, we write the TCB for a popular TEE solution for smart-

phones, TrustZone, in Formula 1. SM is the security monitor (i.e., the

secure world OS and monitor code). We note that TrustZone allows

the secure world to take full control of an I/O device, i.e., secure

I/O (Sec-I/O). Yet, this device and its driver are exposed to multiple

programs in the secure world and hence are trusted. Another note-

worthy issue is that, in general, the OS is trusted when availability

is needed as it is in charge of resource scheduling. However, in

TrustZone, the secure world OS (part of the SM in the formula)

can be configured to handle some of the interrupts and hence can

control the availability of the corresponding resources [82].

8.4 Our TCB
Formula 2 shows the TCB of our machine. As, Ag, SD, and RM stand

for session availability, general availability, storage domain, and

resource manager, respectively. Our system requires trust in a few

cases that were not part of the lower bound. First, for confidential-

ity, integrity, and session availability, the owner needs to trust the

mailboxes used by the program, the arbiter (if domain-bound DMA

is used), and the domain reset guard as these components interact

with untrusted components. As discussed in §6.1, the simple design

of these components allowed us to formally verify them, making

this trust acceptable. Second, if a program needs general availabil-

ity guarantees (e.g., it needs to be executed in fixed intervals) and

needs to store data across sessions, it needs to trust the resource

manager domain and the storage domain. The only way to elimi-

nate the trust in the storage domain for general availability is to

have separate storage devices for each security-critical program.

Unfortunately, this is prohibitively expensive. Note that we assume

that the program protects the confidentiality and integrity of its

stored data using proper cryptographic primitives, although we

have not implemented that in our prototype.

240

Owner

C,IProg.(1),SM(2),Processor(3),Mem.(4),Sec-I/O(5),interconn.(6),P.HW(7),RoT(8)⊤Prog.(1),SM(2),Processor(3),Mem.(4),Sec-I/O(5),interconn.(6),P.HW(7),RoT(8)∪
A1,2,3,4,5,6,7,8,OS⊤1,2,3,4,5,6,7,8,OS

(1)

Owner

C,I,AsProg.(1),mailbox(2),reset-guard(3),arbiter(4),RoT(5)⊤Prog.(1),mailbox(2),reset-guard(3),arbiter(4),RoT(5) ∪
Ag1,2,3,4,5,RM,SD⊤1,2,3,4,5,RM,SD

(2)

It is noteworthy that our machine eliminates the need to trust

several complex hardware and software components such as the

processor, memory, I/O devices, the interconnects (since our ma-

chine does not share any buses between trust domains) and system

software (security monitor, OS, and device drivers), compared to

existing TEEs. Overall, the TCB of our machine is significantly

smaller than modern, popular TEEs. Moreover, our TCB is rather

close to the lower bound. Achieving a smaller TCB for a machine

that can host security-critical and untrusted programs concurrently

would be challenging.

8.5 Security Analysis
Threatmodel.We assume an attacker can runmalicious programs

in the machine and tries to exploit any software or hardware vul-

nerabilities. We also assume that adversary can send malicious

packets over the network to the machine. Below, we discuss vari-

ous such attacks and their implications. Physical attacks are out of

scope.

Software vulnerability-based exploits. Vulnerabilities in

trusted software components would lead to attacks. An attacker

that compromises the program can obviously change its behavior.

An attacker that compromises the bootloader (including the code

that cleans up the state in a domain upon reset) can falsify the

remote attestation report or access/impact data from other ses-

sions. An attacker that can compromise the storage service can

delete the program’s data. An attacker that can compromise the

resource manager can starve the program of resources (but cannot

impact the availability of a session once it is granted). An attacker

that manages to compromise other software components, e.g., I/O

services, other security-critical programs, and the untrusted OS,

cannot mount an attack on the program.

Hardware vulnerability-based exploits. In a split-trust ma-

chine, unlike existing TEEs, vulnerabilities in many complex hard-

ware components such as the processor cannot be exploited since

the adversary never shares the underlying hardware with the

security-critical program. Therefore, the attacker cannot leverage

various hardware-based attacks such as cache side-channel attacks,

interconnect side-channel attacks, speculative execution attacks,

and Rowhammer attacks. Only vulnerabilities in the trusted hard-

ware components (i.e., mailbox, arbiter, reset guard, ROM, and

TPM) would lead to attacks. The first four are formally verified

(§6.1) and TPM is a mature and secure technology.

Timing side-channel attacks.All trusted software and hardware
components are vulnerable to timing side-channel attacks. In our

machine, the only components that may expose useful timing chan-

nels are the TPM and the program runtime. Such attacks (and

others) have been demonstrated on TPMs before [83–87]. As TPM

is a mature technology, vulnerabilities get fixed. Indeed, there have

been several works that formally verify various aspects of the TPM

standard [88–90]. We have not analyzed the timing channel of the

runtime we have developed for security-critical programs.

Power management attacks. These types of attacks can induce

faults in the victim program’s execution by manipulating the fre-

quency or voltage of the processor and have been demonstrated

against TEEs [91–93]. As mentioned in §4.3, our machine does

not allow power management of a domain in a session, and hence

mitigates such attacks.

Power management data can also be used as a side channel.

More specifically, an attacker may try to monitor the voltage and

frequency of a domain (which changes according to DVFS) and use

that as a side channel to extract secrets from a domain. We note that

our current prototype is not vulnerable to this side channel since

our TEE domains do not support DVFS. However, our hardware

can support the use of DVFS-capable processors for TEE domains.

In such a case, we will need to close this channel. To do so, we

will need to ensure that the PMU does not leak any information

about a domain to another domain. This can be done rather trivially

within the PMU firmware, which should be formally verified and

hardened.

Hertzbleed [94] turns a power side channel into a timing attack.

We leave it to the program and its runtime to migitate such an

attack.

Remote network attacks. Similar to a legacy machine, a security-

critical program must protect itself against malicious network mes-

sages in our machine. However, our machine provides some pro-

tection against network attacks that target the network stack. This

is because it sandboxes the network device and its device driver in

its own domain. As a result, programs that do not use the network

at the time of a exploit are protected from these attacks. This is in

contrast to a legacy machine in which a single successful exploit

of the kernel-based network stack may result in a full takeover.

Out of scope: physical attacks. We assume that the adversary

does not have physical access to the device. Therefore, we do not

protect against physical attacks. However, if the program does not

use any I/O devices, it can use on-chip computation and memory

encryption to protect its secrets against physical attacks [95–97].

These are orthogonal to our design and hence can simply be added

to ourmachine. However, we note that if a program uses I/O devices,

no general solution can be used to prevent physical attacks. While

storage and network devices can use encryption (i.e., full-disk

encryption), other devices such as output devices, cameras, sensors,

and actuators cannot be universally protected.

9 EVALUATION
Our FPGA-based hardware implementation serves two purposes.

First, we use it to estimate the hardware cost of our solution in terms

of chip area. Second, it provides a bound on the performance impact

of the solution. A deployed solution would likely replace the FPGA

components with higher-performance non-reprogrammable ASIC

elements, such as an integrated SoC or specialized chiplets [98].

However, despite the use of FPGA and weak microcontrollers for

TEE and I/O domains, we show that security-critical programs can

achieve decent performance, while normal programs can achieve

the same compute and I/O performance as on a legacy machine.

241

FPGA resource Count Equivalent transistor count

Look-up table 69,999 2,519,964

Flip flop 63,188 1,516,512

Block RAM 27,061,649 (bits) 162,369,894

Table 2: Extra hardware cost in our machine.
Configuration Throughput (MB/s) Latency (`s)

A53-Microblaze 7.07±0 18.2±0
Microblaze-Microblaze 9.64±0.01 15.26±0.05

Table 3: Mailbox performance.
9.1 Hardware Cost
We calculate an estimate for the number of transistors needed for

our additional hardware components (all the components synthe-

sized on the FPGA in our prototype). We calculate this estimate

by measuring the number of look-up tables, flip flops, and block

RAMs used by our hardware and converting them to transistor

count using the following estimates: 6 NAND gates per look-up

table [99], 6 transistors per NAND gate [100], 24 transistors for

each flip flop [101], and 6 transistor for each bit of on-chip mem-

ory (assuming a conventional 6-transistor SRAM cell [102]). Our

calculation shows that our machine requires about 166.4 M addi-

tional transistors (162 M of which are used for on-chip memory).

Table 2 shows the breakdown. This compares favorably with the

number of transistors used in modern SoCs in smartphones. For

example, Apple A15 Bionic and HiSilicon Kirin 9000 use 15 B tran-

sistors [103, 104]. This means that, if our solution is added to an

SoC or implemented as a chiplet [98], the additional hardware cost

would likely be 1-2%.

9.2 Performance
We measure various performance aspects of our machine. Note

that all domains except the untrusted one use an FPGA with a

100 MHz clock. The Ethernet controller IP uses an external 50

MHz clock. Therefore, our results represent a lower bound on our

machine’s performance; we expect superior performance on ASIC.

We repeat each experiment 5 times and report the average and

standard deviation.

Mailbox performance. We measure the throughput and latency

of communication over our mailbox. For throughput, we measure

the time to send 10,000 messages of 512 B over a data-plane mail-

box. For latency, we measure the round trip time to send a 64

B message and receive an acknowledgment over a control-plane

mailbox. We perform these experiments in two configurations: one

for communication between the hard-wired ARM Cortex A53 (the

untrusted domain) and an FPGA-based Microblaze microcontroller,

and one for communication between two FGPA-based Microblaze

microcontrollers. Table 3 shows the results. One might wonder why

the A53-Microblaze configuration achieves lower performance. We

believe this is because this configuration requires the data to pass

the FPGA boundary, hence passing through voltage level shifters

and isolation blocks [105]. Moreover, the FPGA is in a different

clock domain than A53.

Storage performance. We measure the performance of our stor-

age domain, which uses the mailbox for its data plane (i.e., no

DMA). To do so, we perform 2000 reads/writes of 512 B each. We

evaluate three configurations: a best-case configuration where the

storage domain directly performs reads/writes (hence giving us an

upper bound on the DRAM-based storage performance), and two

configurations where the untrusted domain or a TEE domain uses

the storage service over the domain’s mailboxes. Table 4 shows

the results. They show that our mailbox-based storage domain can

achieve decent performance (as can also be seen from our boot-time

Configuration Read throughput (MB/s) Write throughput (MB/s)

Best-case 8.13±0.00 6.10±0.00
Untrusted dom. 4.17±0.09 4.06±0.00
TEE domain 4.39±0.00 3.93±0.00

Table 4: Storage performance.
Configuration Throughput (Mbit/s) RTT (ms)

Baseline 943±0 0.17±0.01
Untrusted domain 943±0 0.17±0.02
TEE domain 0.567±0.001 23.92±0.02

Table 5: Network performance.

measurements reported below). It also shows that the additional

copies caused by the mailbox add noticeable overhead compared

to the best-case scenario. To further improve this performance for

the untrusted domain, one can use domain-bound DMA for the

storage domain.

Network performance. We measure the performance of our net-

work domain, which uses domain-bound DMA for high perfor-

mance for the untrusted domain (§4.5). We evaluate three configura-

tions, similar to those used for storage experiments. For measuring

the throughput for the baseline and the untrusted configurations,

we use iPerf; for round-trip time (RTT) measurements, we use

Ping. For the TEE configuration, we develop custom programs for

measurements. For all experiments, we connect the board to a PC,

which acts as a server. Table 5 shows the results. They show that

our domain-bound DMA is capable of matching the performance

of a legacy machine. Moreover, the network performance for a TEE

is usable.

We believe, based on some tests that we have conducted, that it is

possible to further improve the TEE network performance by about

10 X. This is because, currently in the network domain, we add an

artificial delay between accessing the mailbox and the network IP,

which limits performance. We do so to prevent data corruption,

which according to our extensive investigation, is caused by a bug

in the Ethernet AXI IP from Xilinx (potentially the bug discussed

in [106]). Since the IP is closed source, we are not able to fix the

bug.

Boot time and breakdown.Wemeasure the boot time of our ma-

chine. All the boot images are transferred from the storage domain

to their corresponding domains over mailboxes. Due to presence of

multiple domains, booting OctopOS from a partition in the storage

service is a carefully choreographed dance, requiring steps taken

by bootloaders in each domain and the resource manager. Due to

space limitations, we do not provide the details of the boot process,

but measure and report it. Our measurements show that it takes

4.03±0.00 s to boot all domains excluding the untrusted domain,

which takes an additional 8.65±0.01 s to boot.

Untrusted program performance. We use the network file sys-

tem to evaluate the performance of an untrusted program. Our

benchmark reads 100 files each containing 10,000 random numbers

from a network file system, sorts them, and writes them back to the

same file system. We choose this benchmark since it stresses CPU,

memory, and network (for which we have domain-bound DMA).

Our evaluation shows the benchmark takes the same amount of

time (3.86±0.03 s) on our machine as on a legacy machine with the

same A53 processor, RAM, and Gigabit Ethernet (3.84±0.04 s).
Security-critical program performance. We measure the exe-

cution time of two security-critical programs. In our experiments,

we assume that no other domain needs and hence competes for the

I/O domains. This allows for simple optimizations, e.g., proactively

resetting the network domain.

242

The first program is secure banking (§7). We measure the time it

takes to launch, including time needed to acquire keyboard, serial,

and network, to perform attestation, and finally, to display prompts

for user credentials. Our measurements show the overall execution

time is 2.38±0.42 s.
We also develop and evaluate a more performance-intensive

security-critical program. It reads a 1 MB file from the storage

domain, computes its hash, and sends the hash over the network to

a server. The overall execution time is 1.75±0.00 s. Looking at the
breakdown, it takes 0.30±0.00 s to launch (including time needed

to acquire exclusive access to storage and network, excluding local

attestation through TPM), 0.22±0.00 s to read the file from storage,

1.21±0.00 s to compute the hash, and 0.01±0.00 s to send the hash

over the network. To better assess this execution time, we write a

normal program to perform similar tasks on a legacy machine with

the A53 processor, RAM-FS, and Gigabit Ethernet. This program

takes 0.23±0.00 s to execute.

If an I/O domain is in use when we run the security-critical

program, there will be two types of additional delay. First, our

security-critical program needs to wait for the I/O domain to be-

come available. Second, in the case of the network, the program

needs to wait for the network domain to perform ICMP route

discovery and other network protocols, which can take around

4.12±0.96 s in our current prototype (without any optimizations).

But note the app can mitigate part of these delays by overlapping

them with other parts of its execution.

Programming effort. We evaluate the programming effort for

both types of developers. We report the programming effort re-

quired to develop a security-critical program on top of OctopOS.

Currently, the runtime provides 49 APIs for the application devel-

opers to use. The secure banking program presented in §7 has 482

lines of code, which includes 58 lines for the main logic, 107 lines

for the user interface, 207 lines for network communication (in-

cluding attestation), and 93 lines for managing delegated resources.

The secure insulin pump program (second version) has 563 lines

of code, which includes 217 lines for the main logic, 200 lines for

network communication (including attestation), and 128 lines for

managing delegated resources.

The network domain has 7217 lines of code (including modified

drivers from Xilinx). The storage, keyboard, and serial domain

have 1091, 154, and 165 lines of code, respectively. These numbers

exclude the domains’ bootloaders and lower-level OctopOS code

for hardware support, such as our mailbox driver, which an I/O

service developer can reuse.

Impact of exclusive I/O use.We evaluate the impact of execut-

ing a security-critical program that uses storage on the storage

performance of the untrusted domain. More specifically, we launch

a security-critical program in a TEE that exclusively reads/writes 1

MB from/to storage, while the untrusted domain is reading a 100

MB file data (which normally takes 24.26±0.31 s to finish). Our

measurements show that the security-critical program causes a

2.58±0.03 s gap where the untrusted domain cannot access storage.

9.3 Energy Consumption
We estimate the energy consumption of running security-critical

programs on our hardware. We measure the actual execution time

of each domain, and multiply the time by the per-domain power

estimation. The estimation is obtained by running the power report

program on our hardware design using the Xilinx Vivado software.

Our measurements show the energy consumption of all the

domains involved in launching the banking program (including

booting, initialization, requesting resources, and performing attes-

tation) is 3.21±0.64 Joules.
We also measure the energy consumption of the other security-

critical program that reads a 1 MB file, hashes it, and sends the hash

over network. The energy consumption of all the domains that

are involved is 2.03±0.42 Joules. In comparison, we measure the

estimated energy consumption of the 1 MB file hashing experiment

on the legacymachine. Xilinx Vivado software estimate the runtime

energy of the A53 processor on the SoC of our FPGA board to be to

be 2.74 watts (with no DVFS). We calculate the energy consumption

of the program running on the legacy machine to be 0.63±0.00
Joules.

To provide a frame of reference, note that the overall amount

of energy in a fully charged battery in a modern smartphone (i.e.,

Google Pixel 7) is 60517 Joules.

10 RELATEDWORK
Physical isolation & static partitioning. Notary [107] safe-

guards approval transactions by running its agent on a separate

SoC from the ones running the kernel and the communication

stack. Our work shares the idea of using physically-isolated trust

domains and also resets the domains before and after use by other

programs. In contrast, we show how to safely mediate access to

shared I/O devices for a workload of concurrent security-critical

and untrusted programs.

Likewise, I/O-Devices-as-a-Service (IDaaS) suggests that I/O

devices should have their own separate microcontrollers (and ob-

serves that they often do) and advocates for hardening their in-

terfaces against potentially malicious kernel behavior [108]. Our

approach also uses separate I/O microcontrollers but does not re-

quire trust in the microcontroller software, by resetting the I/O

domain between uses.

Exclusive use. Flicker [109] uses the late launch feature of Intel

Trusted Execution Technology (TXT) [110], to exclusively run a

program on the processor. The exclusive use of the hardware results

in minimizing the trusted components. However, Flicker’s design

requires stopping all other programs (including untrusted ones)

when running a security-critical program. Our approach can run

untrusted programs and security-critical programs concurrently

(albeit with the limitation that I/O domains cannot be shared).

Consider our secure insulin pump program (§7), which might need

to be run frequently while the user is actively doing other, less

security-critical, tasks on the main processor. Realizing this in

Flicker can result in significant disruptions to other programs and

to the user as a result.

Secure I/O for TEEs. SGXIO uses a hypervisor and a TPM to cre-

ate a trusted path for an SGX enclave to access an I/O device [111].

The solution requires the enclave program not only to trust SGX’s

firmware and hardware, but also the hypervisor. Cure [112] adds

a few hardware primitives in order to allow the security monitor

to assign a peripheral (i.e., access to MMIO registers and DMA

target addresses) to an enclave. These primitives are designed to

be programmed by a trusted-by-all security monitor (unlike our

work).

Time protection. Ge et al. add time protection to seL4, which

closes many of the available side channels in commodity proces-

sors [113]. As the paper mentions, some processors do not provide

mechanisms needed to close channels. Moreover, channels using

busses could not be closed, and they have recently been shown to

be effectively exploitable [17]. Our approach of using completely

separate hardware for security-critical programs addresses these

243

concerns for these programs. We do, however, note that our ap-

proach (as it stands) does not scale to support all (normal) pro-

grams, which may have their own security needs. Therefore, we

believe that time protection remains an important abstraction to

be explored for when the same processor is asked to host multiple

programs.

Physical isolation & dynamic partitioning. IRONHIDE intro-

duces dynamic spatial partitioning of processor cores and their

communication channels to form isolated enclaves [114]. Non-

virtualized composable microprocessor [115] proposes a new server

architecture that dynamically partitions CPU cores, memory, and

accelerators. In contrast, we statically partition the hardware re-

sources, resulting in a simpler design and a smaller TCB (i.e. no

security monitor).

Other TEE solutions. Komodo is a verified security monitor that

can create enclaves for security-critical programs [116]. Li et al.

formally verify the firmware in Realms, part of ARM confidential

computing [117]. Use of formal verification warrants the strong

trust in the security monitor/firmware, but not the ARM processor

that hosts both security-critical and untrusted programs. For ex-

ample, Li et al. mention that “[p]rotection against known software

error injection attacks and side-channel attacks require appropriate

usage of architectural mitigations and are beyond the scope of this

paper.”

Sanctum uses hardware modifications to RISC-V alongside a

software security monitor to create isolated enclaves [118]. Com-

pared to SGX, Sanctum enclaves are protected against both cache

and page fault side-channel attacks. MI6 time-partitions hardware

resources and implements a rigorous “purge” operation that erases

microarchitectural and memory states associated with a security-

sensitive program [119]. None, however, addresses other potential

hardware vulnerabilities such as interconnect side channels.

Sanctuary leverages the Address Space Controller hardware to

enable strong isolation in TrustZone’s normal world [120]. Sanc-

tuary still requires a security monitor to program the controller.

11 DISCUSSIONS
Scalability and Performance. The exclusive use of TEE domains

limits the number of concurrent security-critical programs. More-

over, our choice of using weak microcontrollers, small amounts of

memory, and I/O without DMA for TEEs limit the performance of

security-critical programs. We believe that the former is not a seri-

ous issue since we do not expect a large number of security-critical

programs executing simultaneously in a smartphone.

The latter is mostly a non-issue either since security-critical

programs are more concerned with security guarantees than per-

formance. However, there are exceptions, for example, authentica-

tion of the user by applying machine learning algorithms to photos

taken by the camera or privacy-preserving federated learning [121].

We believe that these programs can leverage accelerators (which

will be available in the machine in the form of additional I/O do-

mains). Indeed, Nider et al. propose a machine with no CPU and

several self-managed devices [122], showing the diminished role

of CPU for performance. We also note that our design allows for

using more powerful processors for the TEE domains, albeit at the

cost of additional hardware budget.

One might wonder whether we can use a single DMA engine to

improve performance of an I/O device for all TEE domains. This is

not feasible since domains’ memories are physically separated. In-

stead, we can potentially use multiple domain-bound DMA engines,

one for each TEE domain.

Usability. We argue that the exclusive use of hardware resources

by security-critical programs in our machine does not cause usabil-

ity problems for normal programs, for three reasons. First, security-

critical programs in smartphones already use some I/O devices

exclusively. For example, the UI (display and touchscreen) is used

exclusively (e.g., when using TrustZone-based Protected Confirma-

tion [123]) due to its small form factor.

Second, the performance impact on other I/O types, such as

networking and storage, can be minimal when security-critical

programs use short sessions, e.g., a few seconds. In §9.2, we ex-

perimentally demonstrate this impact for storage. Moreover, TCP

network connection keepalives persist for tens of seconds. Further,

since smartphone network connections are frequently dropped

during handoffs, most widely used applications transparently re-

establish lost connections without user visible changes. Security-

critical programs can be designed to initiate, use, and close their

connections in a single session (a practice that we use in our own

security-critical programs).

It is also possible to mitigate these issues using multiple I/O

domains of the same type. For example, all smartphones have both

WiFi and cellular network interfaces. One can imagine allowing

normal programs to share and use one of these while security-

critical programs use the other (through two separate I/O domains

in our hardware).

Third, most security-critical programs rely on only a subset of

the I/O domains. For example, our insulin pump program (second

version) mainly requires access to its sensor and pump as well as

a brief access to storage. While this program is running, all other

I/O domains, e.g., network, UI, and even storage, can be used by

normal programs.

We finally note that any attempt to allow simultaneous shar-

ing of hardware resources will undoubtedly increase the TCB. For

example, enabling multiple domains to render to the display simul-

taneously will require trusting the display domain in our machine.

12 CONCLUSIONS
Smartphone owners expect to use their devices for a mixture of

security-critical and ordinary tasks, yet this requires trust that the

hardware and system software is able to isolate those tasks from

each other, trust that is often misplaced. Our goal in this work is

to minimize the TCB when executing security-critical programs.

We present a hardware design with multiple statically-partitioned,

physically-isolated trust domains, coordinated using a few simple,

formally-verified hardware components, along with OctopOS, an

OS to manage this hardware. We describe a complete prototype

implemented on a CPU-FPGA board and show that it incurs a

small hardware cost. For security-critical programs, our machine

significantly reduces the TCB compared to existing solutions, and

achieves usable performance. For normal programs, it achieves

similar performance to a legacy machine.

ACKNOWLEDGMENTS
The work was supported by NSF Awards #1617513, #1718923,

#1846230, and #1953932. The authors thank Felix Xiaozhu Lin,

anonymous reviewers, and the shepherd for their insightful feed-

back. They also thank Xilinx for donating an FPGA board to this

project.

APPENDIX
The research artifact accompanying this paper is available via

https://doi.org/10.5281/zenodo.7898001

244

https://doi.org/10.5281/zenodo.7898001

REFERENCES
[1] A. Phaneuf. State of mobile banking in 2020: top apps, features, statistics

and market trends. https://www.businessinsider.com/mobile-banking-market-

trends, 2019.

[2] DiabetesMine Team. NEWS: OmniPod Tubeless Insulin Pump to Offer Smart-

phone Control Soon. https://www.healthline.com/diabetesmine/omnipod-

smartphone-control-diabetes, 2019.

[3] R. Nandakumar, S. Gollakota, andN.Watson. Contactless Sleep ApneaDetection

on Smartphones. In Proc. ACM MobiSys, 2015.
[4] J. Vander Stoep. Android: Protecting the Kernel. In Linux Security Summit (LSS),

2016.

[5] CVE Details. Linux Kernel: Vulnerability Statistics. https://www.cvedetails.

com/product/47/Linux-Linux-Kernel.html, 2022.

[6] Bugs and Vulnerabilities Founds by Syzkaller in Linux Kernel. https://github.

com/google/syzkaller/blob/master/docs/linux/found_bugs.md, 2018.

[7] CVE Details. Windows 10: Vulnerability Statistics. https://www.cvedetails.com/

product/32238/Microsoft-Windows-10.html, 2021.

[8] CVE Details. XEN: Vulnerability Statistics. https://www.cvedetails.com/

product/23463/XEN-XEN.html, 2021.

[9] H. Zhang, D. She, and Z. Qian. Android Root and its Providers: A double-Edged

Sword. In Proc. ACM CCS, 2015.
[10] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller. Faults in Linux:

Ten Years Later. In Proc. ACM ASPLOS, 2011.
[11] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-

drusek, S. K. Rajamani, and A. Ustuner. Thorough Static Analysis of Device

Drivers. In Proc. ACM EuroSys, 2006.
[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical Study of

Operating Systems Errors. In Proc. ACM SOSP, 2001.
[13] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O. Mutlu. Flipping Bits in Memory Without Accessing Them: An Experimental

Study of DRAM Disturbance Errors. In Proc. ACM ISCA, 2014.
[14] M. Lipp,M. Schwarz, D. Gruss, T. Prescher,W.Haas, A. Fogh, J. Horn, S.Mangard,

P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading Kernel

Memory from User Space. In Proc. USENIX Security Symposium, 2018.

[15] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting

Speculative Execution. In Proc. IEEE Symposium on Security and Privacy (S&P),
2019.

[16] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, Baris Kasikci, F. Piessens, M. Sil-

berstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the

Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In

Proc. USENIX Security Symposium, 2018.

[17] R. Paccagnella, L. Luo, and C. W. Fletcher. Lord of the Ring(s): Side Channel

Attacks on the CPU On-Chip Ring Interconnect Are Practical. In Proc. USENIX
Security Symposium, 2021.

[18] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow. Osiris: Auto-

mated Discovery of Microarchitectural Side Channels. In Proc. USENIX Security
Symposium, 2021.

[19] National Vulnerability Database. CVE-2021-0200: Out-of-bounds write in the

firmware for Intel(R) Ethernet 700 Series Controllers before version 8.2 may

allow a privileged user to potentially enable an escalation of privilege via local

access. https://nvd.nist.gov/vuln/detail/CVE-2021-0200.

[20] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A. Sadeghi.

Software Grand Exposure: SGX Cache Attacks Are Practical. In Proc. USENIX
Workshop on Offensive Technologies (WOOT), 2017.

[21] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre: Stealing

intel secrets from sgx enclaves via speculative execution. In IEEE European
Symposium on Security and Privacy (EuroS&P), 2019.

[22] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar. CopyCat:

Controlled Instruction-Level Attacks on Enclaves. In Proc. USENIX Security
Symposium, 2020.

[23] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX Amplifies

the Power of Cache Attacks. In Proc. Springer International Conference on
Cryptographic Hardware and Embedded Systems (CHES), 2017.

[24] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache Attacks on Intel SGX.

In Proc. ACM European Workshop on Systems Security (EuroSec), 2017.
[25] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware Guard

Extension: Using SGX to Conceal Cache Attacks. In Proc. Springer International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2017.

[26] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMageddon:

Cache Attacks on Mobile Devices. In Proc. USENIX Security Symposium, 2016.

[27] N. Zhang, K. Sun, D. Shands,W. Lou, and Y. T. Hou. TruSpy: Cache Side-Channel

Information Leakage from the Secure World on ARM Devices. IACR Cryptology
ePrint Archive, 2016:980, 2016.

[28] M. Li, Y. Zhang, H.Wang, K. Li, and Y. Cheng. CipherLeaks: Breaking Constant-

time Cryptography on AMD SEV via the Ciphertext Side Channel. In Proc.
USENIX Security Symposium, 2021.

[29] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. SoK: Understanding the Pre-

vailing Security Vulnerabilities in Trustzone-assisted TEE Systems. In Proc.
IEEE Symposium on Security and Privacy (S&P), 2020.

[30] CVE Details. Op-tee: Vulnerability Statistics. https://www.cvedetails.

com/product/56969/Linaro-Op-tee.html, https://www.cvedetails.com/product/

42749/Linaro-Op-tee.html, https://www.cvedetails.com/product/36161/Op-tee-

Op-tee-Os.html, 2021.

[31] Quarklab. BREAKING SAMSUNG’S ARM TRUSTZONE. https://i.blackhat.com/

USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-TrustZone.pdf,

2019.

[32] National Vulnerability Database. Vulnerability summary for cve-2015-6639.

[33] F. Hetzelt and R. Buhren. Security Analysis of Encrypted Virtual Machines. In

Proc. ACM VEE, 2017.
[34] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting Unprotected I/O Operations in

AMD’s Secure Encrypted Virtualization. In Proc. USENIX Security Symposium,

2019.

[35] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth. SEVurity: No Security

Without Integrity: Breaking Integrity-Free Memory Encryption with Minimal

Assumptions. In Proc. IEEE Symposium on Security and Privacy (S&P), 2020.
[36] M. Li, Y. Zhang, and Z. Lin. CrossLine: Breaking “security-by-crash” based

Memory Isolation in AMD SEV. In Proc. ACM CCS, 2021.
[37] Apple Platform Security - Secure Enclave. https://support.apple.com/guide/

security/secure-enclave-sec59b0b31ff/web, 2021.

[38] Apple Platform Security - Touch ID and Face ID security. https://support.apple.

com/guide/security/touch-id-and-face-id-security-sec067eb0c9e/web, 2021.

[39] D. Kleidermacher, J. Seed, B. Barbello, S. Somogyi, and Pixel & Tensor se-

curity teams Android. Pixel 6: Setting a new standard for mobile secu-

rity. https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-

for-mobile.html, 2021.

[40] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek. Linux

kernel vulnerabilities: State-of-the-art defenses and open problems. In Proc.
ACM Asia-Pacific Workshop on Systems (APSys), 2011.

[41] M. Accetta, R. Baron,W. Bolosky, D. Golub, R. Rashid, A. Tevanian, andM. Young.

Mach: A New Kernel Foundation For UNIX Development. In Proc. Summer 1986
USENIX Conference, 1986.

[42] J. Liedtke. Improving IPC by Kernel Design. ACM SIGOPS Operating Systems
Review, 1993.

[43] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig, J. E. Tidswell,

L. Deller, and L. Reuther. The SawMill Multiserver Approach. In Proc. ACM
SIGOPS European workshop: beyond the PC: new challenges for the operating
system, 2000.

[44] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.

seL4: Formal Verification of an OS Kernel. In Proc. ACM SOSP, 2009.
[45] K. Elphinstone and G. Heiser. From L3 to seL4 What Have We Learnt in 20

Years of L4 Microkernels? In Proc. ACM SOSP, 2013.
[46] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: an Operating System

Architecture for Application-Level Resource Management. In Proc. ACM SOSP,
1995.

[47] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt, D. Mazieres,

T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie. Application Performance

and Flexibility on Exokernel Systems. In Proc. ACM SOSP, 1997.
[48] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt. Rethinking

the Library OS from the Top Down. In Proc. ACM ASPLOS, 2011.
[49] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from an Un-

trusted Cloud with Haven. Proc. USENIX OSDI, 2014.
[50] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S. Weng, H. Zhang, and

Y. Guo. Deep Specifications and Certified Abstraction Layers. In Proc. ACM
POPL, 2015.

[51] R. Gu, Z. Shao, H. Chen, X. N.Wu, J. Kim, V. Sjöberg, and D. Costanzo. CertiKOS:

An Extensible Architecture for Building Certified Concurrent OS Kernels. In

Proc. USENIX OSDI, 2016.
[52] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. überSpark: Enforcing

Verifiable Object Abstractions for Automated Compositional Security Analysis

of a Hypervisor. In Proc. USENIX Security Symposium, 2016.

[53] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, and

X. Wang. Hyperkernel: Push-Button Verification of an OS Kernel. In Proc. ACM
SOSP, 2017.

[54] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak, and

X. Wang. Nickel: A framework for Design and Verification of Information Flow

Control Systems. In Proc. USENIX OSDI, 2018.
[55] S. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui. A Secure and Formally Verified Linux

KVM Hypervisor. 2021.

[56] S. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui. Formally Verified Memory Protection for

a Commodity Multiprocessor Hypervisor. In Proc. USENIX Security Symposium,

2021.

[57] R. Tao, J. Yao, X. Li, S. Li, J. Nieh, and R. Gu. Formal Verification of a Multipro-

cessor Hypervisor on Arm Relaxed Memory Hardware. In Proc. ACM SOSP,
2021.

[58] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and

S. Levi. Language Support for Fast and Reliable Message-based Communication

in Singularity OS. In Proc. ACM EuroSys, 2006.
[59] G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack. ACM

SIGOPS Operating Systems Review, 2007.
[60] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and P. Levis.

Multiprogramming a 64 kB Computer Safely and Efficiently. In Proc. ACM SOSP,

245

https://www.businessinsider.com/mobile-banking-market-trends
https://www.businessinsider.com/mobile-banking-market-trends
https://www.healthline.com/diabetesmine/omnipod-smartphone-control-diabetes
https://www.healthline.com/diabetesmine/omnipod-smartphone-control-diabetes
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://www.cvedetails.com/product/32238/Microsoft-Windows-10.html
https://www.cvedetails.com/product/32238/Microsoft-Windows-10.html
https://www.cvedetails.com/product/23463/XEN-XEN.html
https://www.cvedetails.com/product/23463/XEN-XEN.html
https://nvd.nist.gov/vuln/detail/CVE-2021-0200
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html
https://www.cvedetails.com/product/36161/Op-tee-Op-tee-Os.html
https://www.cvedetails.com/product/36161/Op-tee-Op-tee-Os.html
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-TrustZone.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-TrustZone.pdf
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/touch-id-and-face-id-security-sec067eb0c9e/web
https://support.apple.com/guide/security/touch-id-and-face-id-security-sec067eb0c9e/web
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html

2017.

[61] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger, and A. Burt-

sev. RedLeaf: Isolation and Communication in a Safe Operating System. In

Proc. USENIX OSDI, 2020.
[62] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,

D. Boneh, J. Dwoskin, and D. R. K. Ports. Overshadow: a Virtualization-Based

Approach to Retrofitting Protection in Commodity Operating Systems. In Proc.
ACM ASPLOS, 2008.

[63] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. InkTag: Secure

Applications on an Untrusted Operating System. In Proc. ACM ASPLOS, 2013.
[64] R. Grisenthwaite. Arm CCA will put confidential compute in the hands of every

developer. https://www.arm.com/company/news/2021/06/arm-cca-will-put-

confidential-compute-in-the-hands-of-every-developer, 2021.

[65] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song. Keystone: An

Open Framework for Architecting Trusted Execution Environments. In Proc.
ACM EuroSys, 2020.

[66] A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang, and P. Ning. SKEE:

A Lightweight Secure Kernel-level Execution Environment for ARM. In Proc.
ACM MobiSys, 2016.

[67] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. Flip Feng

Shui: Hammering a Needle in the Software Stack. In Proc. USENIX Security
Symposium, 2016.

[68] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,

H. Bos, K. Razavi, and C. Giuffrida. Drammer: Deterministic Rowhammer

Attacks on Mobile Platforms. In Proc. ACM CCS, 2016.
[69] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One Bit Flips, One Cloud Flops:

Cross-VM Row Hammer Attacks and Privilege Escalation. In Proc. USENIX
Security Symposium, 2016.

[70] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,

and Y. Yarom. Another Flip in the Wall of Rowhammer Defenses. In Proc. IEEE
Symposium on Security and Privacy (S&P), 2018.

[71] K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci. Stop! Hammer Time: Re-

thinking Our Approach to Rowhammer Mitigations. In Proc. ACM HotOS,
2021.

[72] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App without Actually

Seeing It: UI State Inference and Novel Android Attacks. In Proc. USENIX
Security, 2014.

[73] Y. Yan, Z. Li, Q. A. Chen, C. Wilson, T. Xu, E. Zhai, Y. Li, and Y. Liu. Under-

standing and Detecting Overlay-based Android Malware at Market Scales. In

Proc. ACM MobiSys, 2019.
[74] Trusted Computing Group (TCG). TPM 2.0 Library. https:

//trustedcomputinggroup.org/resource/tpm-library-specification/, 2019.

[75] Xilinx. Xilinx Standalone Library Documentation. OS and Libraries Document

Collection. UG643 (v2021.1) June 16, 2021.

[76] IBM. Software TPM Introduction. http://ibmswtpm.sourceforge.net/

ibmswtpm2.html, 2021.

[77] K. Franz. Add a microSD Slot with the Pmod MicroSD. https://digilent.com/

blog/add-a-microsd-slot-with-the-pmod-microsd/, 2021.

[78] YosysHQ GmbH. SymbiYosys (sby) Documentation. https://symbiyosys.

readthedocs.io/en/latest/index.html, 2021.

[79] GoatRAT Attacks Automated Payment Systems. https://labs.k7computing.com/

index.php/goatrat-attacks-automated-payment-systems, 2023.

[80] Y. Xiao, M. Li, S. Chen, and Y. Zhang. Stacco: Differentially Analyzing Side-

Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves. In

Proc. ACM CCS, 2017.
[81] AndroidAPS app documentation. http://wiki.aaps.app/en/latest/, 2022.

[82] Arm CoreLink GIC-600 Generic Interrupt Controller Technical Reference Man-

ual. https://developer.arm.com/documentation/100336/0106/operation/security,

2019.

[83] B. Kauer. OSLO: Improving the Security of Trusted Computing. In Proc. USENIX
Security Symposium, 2007.

[84] E. R. Sparks. A Security Assessment of Trusted Platform Modules. Dartmouth
College Undergraduate Theses. 53, 2007.

[85] J. Butterworth, C. Kallenberg, X. Kovah, and A. Herzog. BIOS Chronomancy:

Fixing the Core Root of Trust for Measurement. In Proc. ACM CCS, 2013.
[86] S. Han, W. Shin, J. Park, and H. Kim. A Bad Dream: Subverting Trusted Platform

Module While You Are Sleeping. In Proc. USENIX Security Symposium, 2018.

[87] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. TPM-Fail: TPM meets

Timing and Lattice Attacks. In Proc. USENIX Security Symposium, 2020.

[88] L. Chen and J. Li. Flexible and Scalable Digital Signatures in TPM 2.0. In Proc.
ACM CCS, 2013.

[89] J. Shao, Y. Qin, D. Feng, and W. Wang. Formal Analysis of Enhanced Authoriza-

tion in the TPM 2.0. In Proc. ACM Symposium on Information, Computer and
Communications Security (ASIA CCS), 2015.

[90] S. Wesemeyer, C. J.P. Newton, H. Treharne, L. Chen, R. Sasse, and J. Whitefield.

Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous

Attestation Scheme. In Proc. ACM Asia Conference on Computer and Communi-
cations Security (ASIA CCS), 2020.

[91] A. Tang, S. Sethumadhavan, and S. Stolfo. CLKscrew: Exposing the Perils of

Security-Oblivious Energy Management. In Proc. USENIX Security Symposium,

2017.

[92] P. Qiu, D. Wang, Y. Lyu, and G. Qu. VoltJockey: Breaching TrustZone by

Software-Controlled Voltage Manipulation over Multi-core Frequencies. In

Proc. ACM CCS, 2019.
[93] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens.

Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In Proc.
IEEE Symposium on Security and Privacy (S&P), 2020.

[94] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and D. Kohlbren-

ner. Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing

Attacks on x86. In Proc. USENIX Security Symposium, 2022.

[95] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. De Lara, H. Raj, S. Saroiu, and

A.Wolman. Protecting Data on Smartphones and Tablets fromMemory Attacks.

In Proc. ACM ASPLOS, 2015.
[96] S. Gueron. A Memory Encryption Engine Suitable for General Purpose Proces-

sors. IACR Cryptol. ePrint Arch., 2016.
[97] M. H. Yun and L. Zhong. Ginseng: Keeping Secrets in Registers When You

Distrust the Operating System. In Proc. Internet Society NDSS, 2019.
[98] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. Loh, M. Subramony, and S. White.

Pioneering Chiplet Technology and Design for the AMD EPYC and Ryzen

Processor Families: Industrial Product. In Proc. ACM/IEEE ISCA, 2021.
[99] M. Posner. How many ASIC Gates does it take to fill an FPGA?

https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-

asic-gates-does-it-take-to-fill-an-fpga/, 2015.

[100] V. Strumpen. Introduction to Digital Circuits: Basic Digital Circuits. http:

//bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html, 2015.

[101] Y. Shizuku, T. Hirose, N. Kuroki, M. Numa, and M. Okada. A 24-transistor static

flip-flop consisting of nors and inverters for low-power digital vlsis. In Proc.
IEEE International New Circuits and Systems Conference (NEWCAS), 2014.

[102] P. Athe and S Dasgupta. A Comparative Study of 6T, 8T and 9T Decanano

SRAM cell. In Proc. IEEE Symposium on Industrial Electronics & Applications,
2009.

[103] S. Shankland. https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-

powers-iphone-13-with-15-billion-transistors-new-graphics-and-ai/, 2021.

[104] A. Frumusanu. Huawei Announces Mate 40 Series: Powered by 15.3bn Tran-

sistors 5nm Kirin 9000. https://www.anandtech.com/show/16156/huawei-

announces-mate-40-series, 2020.

[105] Xilinx. Zynq UltraScale + Device. Technical Reference Manual. UG1085 (v2.2)

December 4, 2020.

[106] Common AXI Themes on Xilinx’s Forum (see Section “Out-of-protocol designs”

for the discussion on a bug in Xilinx’s Ethernet-lite controller). https://zipcpu.

com/blog/2021/03/20/xilinx-forums.html, 2021.

[107] A. Athalye, A. Belay, M.F. Kaashoek, R. Morris, and N. Zeldovich. Notary: A

device for secure transaction approval. In Proc. ACM SOSP, 2019.
[108] A. Amiri Sani and T. Anderson. The Case for I/O-Device-as-a-Service. In Proc.

ACM HotOS, 2019.
[109] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An

Execution Infrastructure for TCB Minimization. In Proc. ACM EuroSys, 2008.
[110] W. Futral and J. Greene. Intel Trusted Execution Technology for Server Platforms:

A Guide to More Secure Datacenters. Apress Media LLC, Springer Nature, 2013.

[111] S. Weiser and M. Werner. SGXIO: Generic Trusted I/O Path for Intel SGX. In

Proc. ACM CODASPY, 2017.
[112] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A. Sadeghi, and

E. Stapf. CURE: A Security Architecture with CUstomizable and Resilient

Enclaves. In Proc. USENIX Security Symposium, 2021.

[113] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser. Time Protection: The Missing OS

Abstraction. In Proc. ACM EuroSys, 2019.
[114] H. Omar and O. Khan. IRONHIDE: A Secure Multicore that Efficiently Mitigates

Microarchitecture State Attacks for Interactive Applications. In Proc. IEEE HPCA,
2020.

[115] Calling for the Return of Non-Virtualized Microprocessor Systems.

https://www.sigarch.org/calling-for-the-return-of-non-virtualized-

microprocessor-systems/, 2022.

[116] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Using verifi-

cation to disentangle secure-enclave hardware from software. In Proc. ACM
SOSP, 2017.

[117] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell. Design and

Verification of the Arm Confidential Compute Architecture. In Proc. USENIX
OSDI, 2022.

[118] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal Hardware Extensions

for Strong Software Isolation. In Proc. USENIX Security Symposium, 2016.

[119] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas. Mi6: Secure

enclaves in a speculative out-of-order processor. In Proc. ACM/IEEE International
Symposium on Microarchitecture (MICRO), 2019.

[120] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. Sanctuary: Arming

trustzone with user-space enclaves. In Proc. Internet Society NDSS, 2019.
[121] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis. PPFL:

Privacy-Preserving Federated Learning with Trusted Execution Environments.

In Proc. ACM MobiSys, 2021.
[122] J. Nider and A. Fedorova. The Last CPU. In Proc. ACM HotOS, 2021.
[123] Android Protected Confirmation. https://android-developers.googleblog.com/

2018/10/android-protected-confirmation.html, 2018.

246

https://www.arm.com/company/news/2021/06/arm-cca-will-put-confidential-compute-in-the-hands-of-every-developer
https://www.arm.com/company/news/2021/06/arm-cca-will-put-confidential-compute-in-the-hands-of-every-developer
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
http://ibmswtpm.sourceforge.net/ibmswtpm2.html
http://ibmswtpm.sourceforge.net/ibmswtpm2.html
https://digilent.com/blog/add-a-microsd-slot-with-the-pmod-microsd/
https://digilent.com/blog/add-a-microsd-slot-with-the-pmod-microsd/
https://symbiyosys.readthedocs.io/en/latest/index.html
https://symbiyosys.readthedocs.io/en/latest/index.html
https://labs.k7computing.com/index.php/goatrat-attacks-automated-payment-systems
https://labs.k7computing.com/index.php/goatrat-attacks-automated-payment-systems
http://wiki.aaps.app/en/latest/
https://developer.arm.com/documentation/100336/0106/operation/security
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-an-fpga/
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-an-fpga/
http://bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html
http://bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html
https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-with-15-billion-transistors-new-graphics-and-ai/
https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-with-15-billion-transistors-new-graphics-and-ai/
https://www.anandtech.com/show/16156/huawei-announces-mate-40-series
https://www.anandtech.com/show/16156/huawei-announces-mate-40-series
https://zipcpu.com/blog/2021/03/20/xilinx-forums.html
https://zipcpu.com/blog/2021/03/20/xilinx-forums.html
https://www.sigarch.org/calling-for-the-return-of-non-virtualized-microprocessor-systems/
https://www.sigarch.org/calling-for-the-return-of-non-virtualized-microprocessor-systems/
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html

	Abstract
	1 Introduction
	2 Trust in Existing Systems
	3 Key Goal and Principle
	4 Split-Trust Hardware
	4.1 Physical Isolation & Static Partitioning
	4.2 Exclusive Inter-Domain Communication
	4.3 Power Management
	4.4 Hardware Root of Trust
	4.5 High Performance I/O
	4.6 Domain and Mailbox Reset

	5 OctopOS
	5.1 Fundamental Aspect
	5.2 Components

	6 Prototype
	6.1 Verified Hardware Design

	7 Security-Critical Programs
	8 TCB & Security Analysis
	8.1 TCB Notation
	8.2 Lower Bound of TCB
	8.3 TCB of Existing Systems
	8.4 Our TCB
	8.5 Security Analysis

	9 Evaluation
	9.1 Hardware Cost
	9.2 Performance
	9.3 Energy Consumption

	10 Related Work
	11 Discussions
	12 Conclusions
	References

