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ABSTRACT OF THE DISSERTATION

Tackling Security Challenges in Operating Systems Using Selective Symbolic Execution
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Symbolic execution is a widely used program analysis technique to systematically execute

different program execution paths without requiring concrete inputs. Developed from sym-

bolic execution, Selective Symbolic Execution (SSE) is a technique for creating the illusion

of full system symbolic execution, while symbolically running only the code that is of interest

to the analyst. SSE makes symbolic execution practical for large software like an operating

system by alleviating the problem of path explosion.

In this thesis, we demonstrate the possibility of using SSE to tackle security challenges in

operating systems. Our first work is Mousse, which is a system for selective symbolic execu-

tion of programs with untamed environments. Mousse facilitates testing operating system

services that are highly coupled with their underlying environment by developing three novel

solutions. Our second work is Macaron, which is the first framework that can automatically

and reliably reproduce non-deterministic race condition bugs in the operating system kernel.

We demonstrate the usefulness of Macaron by using it to reproduce bugs found (but not

reproduced) by syzbot, the state-of-the-art continuous kernel fuzzing framework. We build

Macaron using a novel Guided Selective Symbolic Execution (GSSE), static analysis, and a

distance-based thread interleaving points scheduling algorithm.
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Chapter 1

Introduction

The Operating System (OS) provides the fundamental mechanisms to support all kinds

of applications on computing devices like personal laptops and smartphones. It powers

almost every computing device in our daily life. As the bridge between applications and

the hardware, a wide range of functionalities and features are incorporated into the OS to

support the ever increasing needs of different applications. From the user space OS services

to the device drivers in the kernel, OS exposes a large Trusted Computing Base (TCB) and

has became a hot target for attackers ever since its presence. Any vulnerability in the OS

could potentially cause the attackers to compromise the applications or the system itself.

For example, about 120 new CVEs were reported in the Linux kernel just in 2020 according

to our search in the MITRE CVE database [7]. A recent study [110] also shows that the

number of attacks to operating systems are growing rapidly. Attacks and exploits to the OS

not only impact our daily use of the devices but also can cause a lot of companies to lose

millions of dollars due to important information leakage.

The research community has explored multiple ways to improve the security of the OS. Isola-

tion [54, 92, 121, 11] is a commonly used technique to isolate the vulnerable OS components
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from the rest of them. Formal verification can be used to formally verify a sub-component of

the OS [86]. Rust [8] as a Type-safed language has became very popular and was proposed

to replace part of the C code in the kernel. ARM TrustZone [1] and Hardware virtualization

are two hardware protection techniques that can provide the hardware isolation for criti-

cal components of the OS. Traditional program analysis techniques like static analysis [21],

fuzzing [107] and symbolic execution [45] have also been intensely used to test the robust-

ness of the OS. Among all those program analysis techniques, symbolic execution has gained

popularity since 2005. It was pioneered by a lot of practical tools [22, 34, 30, 69, 118, 112].

The idea of symbolic execution is to systematically execute different program execution paths

without requiring concrete inputs. It greatly reduces redundant executions by uniquely iden-

tifying each execution path with a set of constraints on the inputs when exploring different

execution paths in a program. However, OS as one of the most complicated software system

faces a lot of challenges when using symbolic execution. As many works [44, 93, 95] demon-

strate, directly applying symbolic execution on the OS causes severe path explosion problem

and the failure of complex constraints solving.

To make symbolic execution practical and applicable to the OS, developed from symbolic

execution, Selective Symbolic Execution (SSE) was proposed by the S2E [44] team. SSE

allows symbolic execution to scale to real-world programs with in-vivo analysis, which means

analyzing the program with its real living environment present. It is a technique for creating

the illusion of full system symbolic execution, while symbolically running only the code that is

of interest to the analyst. SSE cleverly maintains a concrete state and a symbolic state at the

same time and allows back-and-forth switching between them. Because of this, usually the

analyst can initialize an OS in S2E’s concrete execution and switches to symbolic execution

as needed when the tested code is being executed. S2E [44] demonstrates SSE’s use case

in developing practical tools for comprehensive performance profiling, reverse engineering of

proprietary software, and bug finding for both kernel-mode and user-mode binaries.
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In this thesis, we demonstrate two practical applications of SSE to tackle some security

challenges specifically in the operating systems. In Chapter §2, we show how we use SSE for

programs with untamed environments. To do so, we introduce Mousse, the first framework

that addresses the challenges in testing programs with environments that cannot be modeled

nor virtualized in symbolic execution. It opens the opportunity to do flexible analysis for an

important set of programs in customized operating systems, especially for mobile devices.

In Chapter §3, we introduce Macaron, a first-of-its-kind framework that applies SSE for

reproducing kernel race condition bugs found by syzbot [9].

1.1 SSE for Programs with Untamed Environment

Dealing with complex external environments that the tested programs interact with has

always been a challenge in symbolic execution. The symbolic execution engine represents

the program’s execution path by adding constraints on each path, assuming it has full control

over the program’s behavior. However, a lot of real-world programs interact with external

environments heavily. When the program interacts with external environments, the symbolic

execution engine loses its track of the program’s behaviors and thus cannot do an accurate

analysis of the program. For example, a network agent interacts with an external server to

send or receive network packages. Such external environments are usually out of the control

of the symbolic engine.

A common way to deal with such environments is to model the environments by redirecting

calls that access it to models that understand the semantics of the desired action well enough

to generate the required constraints. One example is KLEE [33], which models the system

calls to deal with programs issuing system calls. Modeling the external environment plays

an important role in symbolic execution, but it has its own problem. The accuracy of

the analysis heavily depends on how accurate the provided models are. In some cases,

3



the models are too complex to model and hence they result in false positives in symbolic

execution. Another way is to use selective symbolic execution with the full virtualization of

the whole system like what S2E does. SSE in S2E conceptually gains full control over the

whole guest OS by using virtualization. In its design, the programs running in the guest

operating systems can be thoroughly analyzed since SSE understands the semantics of the

whole OS that the programs interact with.

However, for programs that interact with environments that cannot be virtualized nor mod-

eled, S2E is not applicable. We give such programs a special name: programs with untamed

environments. Such programs include OS services managing I/O devices, software frame-

works for accelerators, and specialized applications. Since we would like to enable the use of

SSE for more and more real-world programs, it is necessary to solve the challenge of using

SSE for programs with untamed environments.

In §2, we present a framework called Mousse that addresses this critical challenge, that is the

applicability of SSE to a large and important set of programs: programs with untamed envi-

ronments. We tackle this challenge with three solutions. These include a novel process-level

SSE design, environment-aware concurrent execution, and distributed execution of program

paths. We use Mousse to comprehensively analyze five OS services in three smartphones.

We perform bug and vulnerability detection, taint analysis, and performance profiling. Our

evaluation shows that Mousse outperforms alternative solutions in terms of performance and

coverage.

1.2 SSE for Reproducing Kernel Race Condition Bugs

The kernel, as one of the most complex concurrent systems, is implemented with fine-grained

concurrency mechanisms in mind to fully utilize the power of multi-core hardware. Spin-
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locks [6] and mutexes [3] are the two basic mechanisms used to protect critical sections in

the kernel. Even more complex concurrency mechanisms include semaphores [5] and Read-

Copy-Update (RCU) [4]. Because of the kernel’s concurrent and non-deterministic nature,

race conditions bugs in the kernel are pervasive and constantly being discovered by the kernel

fuzzers. Many research works [52, 113, 108, 111, 55, 74, 65, 120, 39, 67] have put great effort

into detecting race condition bugs more effectively, mainly by kernel fuzzing [65, 120, 39, 67].

Fuzzing [81, 28, 107] is very efficient in detecting bugs in the kernel because it can generate

massive test cases and run the testing continuously. But fuzzing itself has a fundamental

problem in providing useful debugging information for the bugs it finds. In many cases,

bugs that cannot be reproduced are found by fuzzers. Because of lacking a way to reproduce

the bug, the analysts cannot understand the root cause of the bug. This is especially true

for kernel race condition bugs without reproducers. Race condition bugs may be triggered

randomly when the system performs a specific interleaving of the threads. However, many

fuzzers cannot recreate the exact interleaving of the threads after a non-deterministic bug

is triggered. To reproduce and further fix a race condition bug, knowing the exact thread

scheduling is critical.

Realizing this problem in the kernel fuzzing world, we resort to SSE for solutions to automat-

ically and reliably reproduce long-existing kernel race condition bugs without reproducers.

Specifically, we focus on the bugs reported by syzbot [9], the state-of-the-art continuous

kernel fuzzing platform. SSE is extremely helpful in analyze a program’s execution path and

guarantees the program can run correctly without false positives at the same time. Our goal

is to reproduce a non-deterministic race condition bug by satisfying four requirements: 1.

Automatic 2. Reliable 3. Efficient 4. Compatible. We think to reproduce a race condition

bug reliably, false positives should be eliminated. Compared to static analysis, SSE is much

more suitable to tackle kernel race condition bugs with its reliable execution and delicate

analysis of each execution path. To reproduce a bug as soon as possible, in other words,

to make the reproducing process efficient, we propose Guided Selective Symbolic Execution

5



(GSSE).

In §3, we introduce our framework called Macaron, which uses GSSE for reproducing kernel

race condition bugs. We use all the information provided in syzbot to identify the critical

features of a bug and optimize SSE’s search space in finding a specific thread interleaving

that manifests the bug. Except for SSE, Macaron uses static analysis and a distance-based

interleaving points prioritizing algorithm to reproduce race condition bugs without any mod-

ifications to the current design of syzbot.
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Chapter 2

Mousse: A System for Selective

Symbolic Execution of Programs with

Untamed Environments

Selective symbolic execution is a powerful program analysis technique that can analyze mul-

tiple execution paths of a program. As in symbolic execution, when the analyst marks a

variable as symbolic (i.e., capable of taking any arbitrary concrete value), the SSE engine

executes and analyzes all program paths possible for different values of the variable. In order

to avoid the path explosion that comes with symbolic execution, the analyst can configure

the SSE engine to execute parts of the program in concrete mode, i.e., normal execution

with concrete variables.

In the past, SSE has been used to implement various types of analysis, such as bug and

vulnerability detection [73, 44, 95], performance profiling [44] and reverse-engineering of

binaries [42, 44]. In addition, it can be used for taint analysis, hybrid fuzzing [105, 125], and

for exploit generation and analysis [19, 20].
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In this work, we address a critical challenge that hinders the applicability of SSE to a large

and important set of programs: programs with untamed environments. In order to analyze

multiple paths within a program, SSE runs multiple forks, or instances, of the program, one

per path, in order to execute conditional statements with symbolic predicates. To eliminate

interference between the execution of these program instances, each uses a separate instance

of the program’s environment. Two common approaches are modeling the program’s envi-

ronment in software [101, 19, 20, 38] and virtualizing it [44]. Unfortunately, neither approach

is feasible for untamed environments, i.e., those that include diverse hardware components

and their device drivers. Examples include OS services managing I/O devices (i.e., I/O

services), libraries (such as GPU-specific OpenGL/ES, OpenCL, and CUDA libraries), and

applications (such as vendor camera and telephony applications in smartphones). Model-

ing is infeasible, due to the complexity of the hardware components and their drivers; and

virtualization is infeasible too, because such hardware components do not support it.

The research community has explored two approaches. The first uses a symbolic environ-

ment [73, 42, 95], i.e., all the return values from the environment are marked as symbolic

(since the correct environment of the program is not available). This approach results in

path explosion and false code coverage, as it executes program paths that would not exe-

cute when actual return values from the real program environment are used. The second

approach, decoupled SSE, is to allow the symbolic execution engine to communicate with a

concrete execution engine running on the actual environment of the program [126, 82, 13].

This approach has noticeable overhead, due to the overhead of memory state transfers be-

tween the two engines.

In Mousse, we tackle this challenge with three solutions. First, we present a novel SSE

design, called process-level SSE (here, a process refers to an OS process), which integrates

the symbolic and concrete execution engines in the same OS process containing the program.

This allows both engines to easily interact with the underlying environment. Moreover,

8



both engines use a unified memory, which eliminates the need to transfer the memory state

between them, resulting in better performance. To support concurrent execution of program

paths, process-level SSE executes each program path in a separate OS process. Whenever

the SSE engine explores a new path, it forks the current process and executes the new path

in the child process. Forking a process is fast and efficient due to copy-on-write support in

the kernel.

Second, we introduce environment-aware concurrency to allow multiple program paths to

execute concurrently on top of the same environment, without observing inconsistent envi-

ronment state. To do this, Mousse keeps track of the interactions of the different execution

paths with the environment, and restricts the execution of environmentally inconsistent

paths.

Third, while Mousse enables concurrent execution of multiple program paths in one device,

the untamed environment fundamentally limits concurrency. This, and the fact that SSE is

compute-heavy, means that analyzing complex programs, such as OS services, takes a long

amount of time. For example, testing a single API of an audio service with symbolic input

in Pixel 3 takes our SSE engine single device time hours when using a single device. To ad-

dress this problem, we introduce a distributed execution approach that supports concurrent

execution of the analysis on multiple identical devices, while avoiding duplicate paths.

To demonstrate the benefits of Mousse, we use it to analyze five OS services: two camera

services, two audio services, and one graphics stack, in three smartphones, Pixel 3, Nexus 5X,

and Nexus 5. We perform bug and vulnerability detection, searching for incorrect memory

access and incorrect use of memory management APIs. We found two new crash bugs, and

two new double-free vulnerabilities in these services. We also perform taint analysis, to study

the propagation of the inputs to the outputs of service APIs. We find that none of the APIs

of this service, except for one, propagates its inputs to its outputs. This finding can be used

to enhance the accuracy of taint analysis for programs that use these APIs. Moreover, we
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perform performance profiling of the Pixel 3 audio service, and find that it experiences more

L1 data cache misses for some playback configurations.

We perform extensive evaluation of Mousse. We show that Mousse’s process-level SSE design

reduces the execution time by at least 63% with respect to the state-of-the-art decoupled

SSE. We also show that using a symbolic environment results in path explosion, which in

turn prevents successful initialization of OS services even after running the analysis for a few

days. Our evaluation shows that Mousse’s environment-aware concurrency and distributed

execution help reduce the SSE execution time by up to 84% compared to running a single

path at a time in one device.

We designed and built Mousse to analyze programs with untamed environments. However,

we note that Mousse is capable of analyzing arbitrary programs, with high performance

and ease. We have open sourced Mousse, so that others can leverage it in their analysis

efforts [14].

2.1 Background & Motivation

2.1.1 Selective Symbolic Execution

SSE is a powerful program analysis technique that can analyze multiple execution paths of a

program [43, 44, 45, 126, 82, 13, 38, 77]. A path here refers to one in the control-flow graph

of the program. Different inputs to the program may result in the execution of different

paths, due to conditional statements. In SSE, similar to symbolic execution, the analyst

can mark a variable, including an input argument, as symbolic (i.e., with unknown concrete

value); then the SSE engine executes the program paths corresponding to all possible values

of the variable. In contrast to plain symbolic execution, the analyst can configure the SSE

10



1 int prog_main(int arg_s, int arg_c) {

2 if (arg_s >= 13)

3 return func1(arg_s, arg_c);

4 else

5 return func2(arg_s, arg_c);

6 }

Figure 2.1: Simple hypothetical program used to describe the inner workings of SSE.

engine to execute some parts of the program in concrete mode, i.e., normal execution with

concrete variables, in order to avoid path explosion.

We next use a simple example (Figure 2.1) to explain how SSE works. Assume that the

analyst wishes to explore all the program paths that depend on the value of arg s, but not

those that depend on arg c. She marks arg s as symbolic, and assigns a concrete value to

arg c.

The SEE engine executes the program until it faces a conditional predicate with a symbolic

variable (line 2). At this point, the execution forks, resulting in two instances of the program,

each executing one of two resulting paths. The mechanism to fork the program depends on

the SSE design, e.g., OS process fork, and is discussed in §2.3. Both paths now continue to

use the symbolic variable, but they add constraints, derived from the conditional predicate.

More specifically, one path executes the then-branch of the conditional (i.e., line 3) with the

constraint arg s >= 13. The other executes the else-branch (i.e., line 5) with the constraint

arg s < 13.

SSE supports selective symbolic execution. That is, parts of the program can be executed

in concrete mode, which can help alleviate path explosion. Execution in concrete mode is

similar to how a program normally executes. That is, the code in concrete mode does not

use symbolic variables; it can only use variables with concrete values. Therefore, no new

paths are forked.

Assume the analyst has decided to execute func1() and func2() in concrete mode in the
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example. Once an execution path reaches either of these functions, the SSE engine switches

from symbolic to concrete mode. Here, it needs to concretize any symbolic variables that

are accessed by the code in concrete mode. In our example, arg s needs to be concretized,

as it is passed to these functions. To concretize a variable, the engine uses a solver to choose

some concrete value that satisfies the path constraints. For instance, the solver might choose

arg s = 14 when executing func1() in concrete mode.

Thus, the SSE engine is composed of two execution engines, the symbolic execution engine

and the concrete execution engine. Both engines typically execute the program by emulat-

ing the instructions in the program binary. These engines need to communicate, e.g., to

share the memory state when switching execution mode. Different SSE designs achieve this

communication differently (see §2.3 for more detail).

An SSE engine can support concolic variables as well. A concolic variable is a symbolic

variable that also has a concrete value attached to it, called concolic value. The concolic

value is used to determine which side of a conditional the path should take, when facing

a symbolic predicate, in case forking is not needed. In the example, let us assume that

the analyst marks arg s as concolic with a concolic value of 20. Moreover, the analyst

configures the SSE engine to not fork at line 2. When it reaches this line, it branches by

applying the concolic value to the predicate. If it evaluates to true, it executes the then-

branch, otherwise the else-branch. In this example, since 20 >= 13 evaluates to true, the

then-branch is executed.

2.1.2 Program Environment

The environment of a program is the set of all hardware and software components that it

interacts with. This includes the OS kernel (including device drivers) and hardware compo-

nents. In SSE, the environment of the program is either modeled or virtualized, so that each
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forked program instance (executing a program path) can interact with a separate instance

of the environment. For instance in the code sample in Figure 2.1, assume that func1()

and func2() are syscalls. This means that both program paths interact with the underlying

kernel. To make sure that these paths do not interfere with each other, their impact on

kernel state must be isolated. One approach is to model the syscall [101, 19, 20, 38], i.e.,

to implement an approximation of its behavior in software, and to use that instead of the

real syscall. Another approach is to virtualize the kernel and use a separate Virtual Machine

(VM) for each path, forking the VM when forking the program path [44].

Unfortunately, there exists an important set of programs, whose environments cannot be

easily modeled or virtualized. These are programs that interact with different hardware

components and their drivers, such as I/O devices and accelerators. Modern mobile devices,

such as smartphones, tablets, voice assistants, and VR/AR headsets, employ a large number

of I/O devices, to stand out in a highly competitive market. For example, a smartphone

might employ a powerful camera array [12] or an in-display fingerprint scanner [29]; a voice

assistant may employ arrays of speakers and microphones for audio beamforming [88]; and a

VR/AR headset may employ high-resolution displays, requiring powerful GPUs [117]. Data

center servers, on the other hand, use various accelerators such as GPUs, TPUs, and FPGAs.

This trend is fueled by the slowing down of Moore’s law and is predicted to grow [37]. The

programs that interact with these devices include OS services (such as various I/O services in

Android), libraries (such as GPU-specific OpenGL/ES, OpenCL, and CUDA libraries), and

applications (such as customized vendor camera and telephony applications in smartphones).

Modeling the hardware and/or its device driver is a non-trivial task. Virtualizing the hard-

ware is also non-trivial. Most hardware components, including I/O devices in mobile devices,

do not support virtualization. The device assignment approach, which is often used to give

a VM direct access to an I/O device [15, 75, 59, 26, 76], is not enough, as it does create

multiple virtual instances of the device.
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Figure 2.2: Mousse design.

2.2 Design

Our goal is to apply SSE to complex programs that interact with untamed environments. In

this section, we introduce three challenges that we have faced in doing so, and our solutions

to them.

Challenge I: direct access to the environment is critical. Since the untamed

environment of a program cannot be modeled nor virtualized, the real environment must be

used. To solve this, we introduce process-level SSE, an SSE design that enables both the

symbolic and concrete execution engines to interact with the environment and to share the

memory state. Thanks to this design, our SSE engine is the first to comprehensively analyze

I/O services in Android.

Challenge II: path concurrency is feasible but requires environment-awareness. SSE

execution is slow due to instruction emulation. To achieve acceptable performance, it is im-

portant to execute the program paths concurrently. However, the program’s interaction
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with the environment creates a concurrency issue. This is because the environment is state-

ful (e.g., the state in a device driver or the underlying hardware component). If one program

path mutates the environment state, other paths might receive unexpected responses from

the environment. Therefore, we introduce environment-aware concurrency, a principled ap-

proach to executing program paths concurrently while preventing inconsistent environment

state from corrupting their execution.

Environment-aware concurrency, in the worst case, can result in sequential execution of all

program paths. However, we show that an opportunity for concurrency exists when analyzing

I/O services in Android: in the common case, multiple paths can execute concurrently. This

is due to the fact that interactions with the environment are not frequent.

Challenge III: path concurrency might be limited but distributed execution

helps.

While Mousse enables concurrent execution of program paths, the degree of concurrency

may be limited by the environment state. We show that distributed execution can address

this performance bottleneck. To do so, when a device cannot execute a path, due either

to the environment state or to resource constraint, it offloads the path to another device.

Offloading a path refers to requesting a centralized server to assign the path to another

device for execution.

Figure 2.2 illustrates the design of Mousse. It shows a centralized server distributing pro-

gram paths to several devices, each of which uses process-level SSE and environment-aware

concurrency to execute the paths. The server does not perform any analysis on the program

itself. It acts as a simple work queue of paths waiting to be analyzed.

We next discuss the components of Mousse.
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2.3 Process-Level SSE

In this section, we describe the process-level SSE design used in Mousse. Our key contribution

is to run both symbolic and concrete execution engines in the OS process that contains the

program itself. We describe existing SSE designs and their shortcomings, before presenting

more details on our design.

Existing SSE designs. To tackle the issue of applying SSE to a program with untamed

environment, the first design that one might consider is VM-level SSE, as implemented in

S2E [44, 45]. Figure 2.3 (a) shows the design of VM-level SSE. To use it, the analyst runs the

program in a VM. The symbolic and concrete execution engines are implemented within the

hypervisor and share a unified memory and execution state. When a program path needs to

be explored, the SSE engine forks the whole VM, giving each program a completely separate

environment.

Unfortunately, using VM-level SSE for analyzing programs with untamed environments is

generally not feasible, since virtualization of the hardware component in the program’s en-

vironment (needed to run the program in a VM) is generally not possible (§2.1.2). For

example, we are not aware of a solution that can virtualize the various I/O devices of a

smartphone.

The second design one might consider is decoupled SSE, as implemented in Avatar [126],

Avatar2 [82], and Symbion [13]. In these systems, the concrete execution engine is configured

to directly run on top of the program’s environment. The symbolic execution engine runs

elsewhere, e.g., in a server or workstation, and communicates with the concrete execution

engine remotely. Unlike VM-level SSE, the decoupled SSE design is capable of analyzing

programs with untamed environments.

Figure 2.3 (b) shows the design of a decoupled SSE. We illustrate two devices, C and S.
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Device C has the program’s environment and a concrete execution engine. Device S does not

have the environment but has a symbolic execution engine. The system starts the symbolic

execution in Device S, and transfers execution to C when the environment is needed. In this

case, as the symbolic and concrete execution engines are in separate devices, they have to

transfer the memory state when switching the execution mode.

Unfortunately, as our experience shows, decoupled SSE has two drawbacks. The first is

the performance overhead of transferring memory state between the symbolic and concrete

execution engines. In §2.8.1, we evaluate this overhead using Avatar2, and show that process-

level SSE reduces execution time by at least 63%. The second is that it is hard to configure

and use. This is because one needs to set up the symbolic and concrete execution engines

separately and configure the memory state transfer channel between them.

A final option that one might consider is to use a symbolic environment, where all return

variables from the environment are marked as symbolic, and hence the real environment

is not needed. This is the approach used in DDT [73], RevNIC [42], and SymDrive [95].

Unfortunately, as we will report, this approach significantly increases the number of symbolic

variables and hence results in path explosion as well as false coverage. We tested this

approach on three Android I/O services. None of the services initialized correctly even after

a few days of execution. We do, however, note that a better path scheduling algorithm,

similar to the ones used by SymDrive [95], could potentially alleviate the effect of path

explosion, but we did not explore that.

Process-level SSE. These challenges prompted us to design and build a new SSE approach,

which we call process-level SSE. In this design, both the symbolic and concrete execution

engines run within the same OS process that hosts the program. To analyze a program, one

loads the SSE engine into a process and have the engine load and execute the program. Thus,

both the symbolic and concrete execution engines can easily interact with the environment.

In the rest of the paper, we refer to the interactions of the program with the environment
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as environment calls (ecalls). Whenever the program issues an ecall (either in concrete or

symbolic modes), the SSE engine passes it to the underlying environment for execution.

Figure 2.3 (c) shows the design of process-level SSE. Both engines are in the same process

as the program, which is located in the device with the environment of interest. The two

engines, similar to VM-level SSE, use a unified memory and execution state and enable the

program to interact with its environment.

Process-level SSE supports concurrent execution of program paths. To achieve this, it exe-

cutes each program path in a separate OS process. Whenever the SSE engine explores a new

path, it forks the current process and executes the new path in the child process. Forking a

process is fast and efficient thanks to copy-on-write support in the kernel.

One key benefit of this design (compared to decoupled SSE) is improved performance. As

both engines share memory, this eliminates the need to transfer memory state. The other

benefit is that process-level SSE is easier to use than counterparts. Analyzing a program

with VM-level SSE requires launching a VM and running the program in the VM. Analyzing

a program with decoupled SSE requires configuring the symbolic and concrete execution

engines in two separate devices and configuring a channel for memory state transfer. In

contrast, in Mousse, the analyst only needs to load the SSE engine and the program in an

OS process, which can be done with a single command in the OS shell.

Process-level SSE has its own limitations. First, since the engines execute in the same

process as the program under analysis, the device must have adequate computing power.

Process-level SSE is best suited to high-end mobile devices (such as smartphones, tablets,

and laptops) as well as desktops and servers. Decoupled SSE is the right design for weak

devices, e.g., embedded devices. Moreover, process-level SSE cannot analyze the OS kernel

code, nor programs with multiple processes. VM-level SSE is the right design in these cases.
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2.3.1 Memory Virtualization

As mentioned, an SSE engine emulates the instructions in a program. In doing so, it virtu-

alizes the process address space for the program. Therefore, the address space seen by the

program (i.e., guest address space) could be different from that of the OS process that it

runs inside (i.e., host address space). This way, the memory used by the program is isolated

from the memory used by the SSE engine itself. This virtualization requires the SSE engine

to maintain the mapping between the guest and host address spaces and to translate when

emulating memory-access instructions.

However, the native execution of syscalls creates a challenge for address space virtualization.

That is, addresses passed to the kernel through the syscall arguments are in the guest address

space, whereas the kernel uses the host address space to dereference the memory pointers

passed to it. Unfortunately, simply translating the addresses in the syscall arguments is not

enough. This is because the data buffers passed to the kernel must be contiguous in the host

address space. This is not necessarily the case, since the program allocates these buffers in

the guest address space.

To address this problem, we configure the guest addresses to be identical to their underlying

host addresses. This way, if a buffer is contiguous in the guest address space, it is contiguous

in the host address space too. The limitation of this approach is that those addresses used

by the SSE engine in the host address space cannot be used in the guest address space.

However, given the large set of addresses available in an address space in modern ISAs, this

limitation is not serious in practice.
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2.3.2 Concretization Strategies

Since the environment cannot be modeled nor virtualized, any symbolic arguments passed to

ecalls must be concretized. In this section, we present two different concretization strategies

supported by Mousse.

Strategy I: constrained concretization. In this strategy, the symbolic arguments

passed to ecalls are concretized and the execution path is constrained. That is, Mousse

chooses a concrete value for the symbolic argument that satisfies all the path constraints,

and adds a new constraint to the path enforcing the value of the variable to be equal to the

concrete value. With this strategy, the ecall returns a concrete value.

This strategy results in no false positives since all executed paths are correct program paths.

However, this strategy can potentially limit the coverage and the number of paths explored

due to the additional constraints and the concrete values of the outputs of ecalls. This limi-

tation happens only when an argument to an ecall is symbolic, forcing Mousse to concretize

it. Fortunately, as our experiments show, ecalls with symbolic arguments are rare in OS ser-

vices that we analyze. In other words, the service inputs marked as symbolic in the analysis

rarely propagate to ecall arguments. The only such case that we have noticed are when OS

services log the program inputs to the terminal by using a writev syscall. To avoid these,

the analyst can disable the logging in the service.

Strategy II: concretization with unconstrained input and symbolic output. In

case a program does have ecalls with symbolic arguments, constrained concretization limits

the coverage. To address this issue, Mousse provides a second strategy, in which it takes

two actions. First, when a concrete value for the symbolic argument is chosen, it does not

add the corresponding constraint to the path. Second, it marks the outputs of these ecalls

as unconstrained symbolic variables, hence allowing the forking and execution of paths that

depend on the values of the outputs of these ecalls.
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Note that while this approach may result in false coverage, it forks fewer paths and produces

less false coverage compared to the symbolic environment approach discussed earlier, as we

will show empirically in §2.8.2. This is because the latter marks the outputs of all ecalls as

symbolic, whereas the former marks only the outputs of ecalls with symbolic arguments as

symbolic.

2.4 Environment-Aware Path Concurrency

SSE is slow as both symbolic and concrete execution engines emulate the instructions. There-

fore, it is important to execute different program paths concurrently to speed up the exe-

cution. For example, in S2E, whenever a path is forked, the whole VM is forked and the

resulting VM can run concurrently.

Key challenge. Unfortunately, for programs with untamed environments, blind concur-

rent execution can result in unexpected program behavior that would not happen in normal

execution of the program. Given that the environment for a program cannot be modeled

nor virtualized, the ecalls must be passed to the actual environment. Therefore, the concur-

rently executing program paths can impact each other’s execution by mutating the state of

the environment in unexpected ways. This state mutation is not problematic (and indeed

desired) when only a single program path is executed, as in native execution of the program.

However, when multiple paths are executed concurrently, some paths may see an inconsistent

environment state since all paths interact with the same environment.

Figure 2.4 illustrates why blind concurrency does not work using the example of a Pixel

3 audio service API. The API, called out write, writes audio frames through the audio

driver to the audio device. We perform SSE on this API by marking its inputs as symbolic.

The execution forks multiple paths in function request out focus at line 5. Several of
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/* Audio service out_write API */

1 static ssize_t out_write(struct audio_stream_out *stream, const void *buffer, size_t

bytes) {

2 struct stream_out *out = (struct stream_out *)stream;

...

3 lock_output_stream(out); //This function calls pthread_mutex_lock(&out->lock);

...

4 long ns = (frames * (int64_t) NANOS_PER_SECOND) / out->config.rate;

5 request_out_focus(out, ns);

...

6 ret = pcm_write(out->pcm, (void *)buffer, bytes_to_write);

...

7 pthread_mutex_unlock(&out->lock);

...

8 }

/* Code in the audio driver where the error happens */

1 void *q6asm_is_cpu_buf_avail(int dir, struct audio_client *ac, uint32_t *size,

uint32_t *index)

2 {

3 void *data;

4 unsigned char idx;

5 struct audio_port_data *port;

...

6 // dir 0: used = 0 means buf in use

7 // dir 1: used = 1 means buf in use

8 if (port->buf[idx].used == dir) {

9 // To make it more robust, we could loop and get the

10 // next avail buf, its risky though

11 pr_err("%s: Next buf idx[0x%x] not available, dir[%d]\n",

12 __func__, idx, dir);

13 mutex_unlock(&port->lock);

14 return NULL;

15 }

...

16 }

Figure 2.4: A real code example demonstrating the importance of environment-aware con-
currency. We have modified and eliminated parts of the code for clarity.
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these paths then continue to call the pcm write function at line 6, which issues an ioctl

syscall to the audio driver to pass the audio frames. We observe that multiple paths receive

an “out of memory” error from the driver, an unexpected behavior for these paths. On

further investigation, the driver does not expect multiple concurrent writes. Indeed, this

error would not normally happen due to the critical section in the out write function in the

audio service, which guarantees that the writes to the driver are sequential. Yet, the forking

due to symbolic execution in the middle of this critical section results in an unexpected

behavior.

In the figure, we also show the audio driver code (in the kernel) that returns the error. It

checks if the DMA audio buffer is available for writing the data. In line 8, if the DMA buffer

(port->buf[idx]) is being used, the function returns NULL (i.e., an error).

To address this challenge, Mousse keeps track of the interactions of different program paths

with the environment. It prevents program paths from seeing inconsistent environment state.

We next define some terms and elaborate on our solution. A state-mutating ecall is one that,

when executed, mutates the state of the environment in a way that could affect the execution

of another path. Note that not all ecalls are state-mutating. For example, the execution of a

memory allocation syscall in one path does not affect other paths since memory is virtualized.
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A state-revealing ecall is one that reveals the mutated state. Such an ecall returns a different

result if a state-mutating syscall has been previously issued by another program path. In the

previous example, the syscall to the audio driver is both state-mutating and state-revealing.

We assume that the analyst specifies which ecalls are state-mutating or state-revealing. In

§2.7, we explain which ecalls we specify as such in our prototype.

Mousse splits the set of paths into environmentally consistent and environmentally inconsis-

tent paths. Environmentally consistent paths are those whose execution is consistent with

the state of the environment. In the beginning of the analysis and before the execution of any

state-mutating ecalls, all paths are environmentally consistent. Environmentally consistent

paths can execute with no restriction. Environmentally inconsistent paths are those whose

execution is not consistent with the state of the environment, as a result of a state-mutating

ecall issued by another path. Environmentally inconsistent paths can also execute but their

execution is restricted.

The restriction enforced on environmentally inconsistent paths are two-fold. First, Mousse

needs to prevent a path from seeing unexpected responses from the environment. Therefore,

Mousse does not allow an environmentally inconsistent path to issue a state-revealing ecall,

which may return unexpected responses due to the state-mutating ecall issued by some other

path. Second, Mousse tries to prevent all paths from turning inconsistent. This is a heuristic

designed to ensure some paths can fully finish their execution in the device. Therefore,

Mousse does not allow an environmentally inconsistent path to issue a state-mutating ecall.

If allowed, the state of the environment would be inconsistent with all executing paths.

Whenever a path issues a state-mutating ecall, it turns all other environmentally consistent

paths into inconsistent ones. However, the paths that are later forked from this current path

(i.e., children paths) remain environmentally consistent since they share the state-mutating

ecall. Figure 2.5 illustrates this issue. Figure 2.5 (Left) shows the set of all paths, which are

all environmentally consistent in the beginning. Figure 2.5 (Middle) shows what happens
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when one of the paths executes a state-mutating ecall. That path and its children remain

consistent because the state-mutating ecall is part of their correct execution. However, the

rest of the paths are turned inconsistent. Figure 2.5 (Right) shows what happens after a

second state-mutating ecall. Similarly, the path executing this ecall and its children remain

environmentally consistent, but the rest of the paths are turned inconsistent.

As mentioned, environmentally inconsistent paths can resume execution as long as they do

not issue a state-mutating or state-revealing ecall. But if they attempt to execute one, Mousse

suspends their execution and offloads them. §2.5 provides more details on the offloading

process.

Mousse continues executing the paths until there are no other paths left that can be executed.

At this point, it reboots the system to refresh the state of the environment. After the reboot,

it contacts the server and ask for new paths to execute (§2.5).

Opportunity? Does concurrency provide any benefits in the presence of state-mutating

and state-revealing ecalls? In other words, doesn’t environment-aware concurrency simply

result in sequential execution of all program paths? In §2.8.1, we show that even in the

presence of such ecalls, concurrent execution can provide performance benefits. Moreover,

when such calls are not present, Mousse’s solution automatically increases the degree of

concurrency.

2.5 Path Offloading & Distributed Execution

Mousse cannot execute all paths concurrently due to the environment state limitation (§2.4).

Moreover, SSE is a time-consuming analysis due to instruction emulation and multi-path ex-

ecution. For example, analyzing a single API call of an audio service with symbolic input in

Pixel 3 takes 9 hours in our prototype when using a single smartphone with environment-
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aware path concurrency. To address this issue, Mousse adopts a distributed execution frame-

work. That is, it distributes the program paths to multiple devices in order to reduce the

execution time. In this section, we discuss our distributed execution strategy and our solution

to an environment-related challenge.

Mousse’s distributed execution strategy is dynamic and on-demand. That is, instead of

assigning different program paths to different devices statically, it assigns one device to start

the analysis. Then, if for some reason, some paths cannot be executed in that device, the

paths are offloaded to a centralized server. The server does not perform any analysis on the

program itself. It acts as a simple work queue for the devices to analyze different program

paths. That is, devices, when idle, contact the server to download the program paths for

execution.

Paths are offloaded from a device for two reasons: (i) inconsistent environment state, where

the execution of one path makes the execution of another path infeasible (§2.4), and (ii)

resource constraint, which limits the number of program paths that can be executed con-

currently in a device. Currently, we set a fixed upper limit (determined empirically) for

the total number of concurrent paths in one device. Alternatively, Mousse can dynamically

monitor the resource consumption in the device to determine how many paths it can execute

concurrently.

2.5.1 Path Offloading

The key component of distributed execution in Mousse is path offloading. Mousse performs

path offloading using concolic program inputs. In SSE, one analyzes a program by marking

its select inputs (e.g., API inputs or configuration options) as symbolic. During execution,

whenever a path needs to be offloaded, Mousse solves the constraints on the path and

generates a set of concrete values for program’s symbolic inputs. It then offloads these values
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to the server. When the path is later downloaded by a device for execution, these concrete

values can be used to mark the API inputs as concolic variables, i.e., concolic inputs. The

role of these concolic inputs is to guide the symbolic execution to re-execute the offloaded

path from scratch.

One might wonder why Mousse does not offload the state of the execution of the path so

that it does not need to be re-executed from scratch. The reason behind this is that the

untamed environment state cannot be captured. This is because a hardware component

and its driver might not provide an interface for taking snapshots of their state. Mousse’s

approach allows the path to re-execute from the beginning, which correctly reconstructs the

environment state.

When a device downloads a path to execute, it performs the execution in two steps. In the

first step, it uses the concolic inputs to execute the path from the beginning all the way to

the point where the offload happened (i.e., the re-executed part of the path). In this part of

the execution, no new paths will be forked. Instead, the concolic inputs are used to guide

the execution through the conditional statements with symbolic predicates. In the second

step, execution continues in the parts of the program that were not executed before (i.e., the

new part of the path). When executing this part, forking is enabled and the concolic inputs

are not needed anymore.

Disabling the forks in the re-executed part of the path is needed to avoid forking duplicate

paths. This re-execution itself is not problematic and it is in fact needed to recreate the

state of the environment. However, if this re-executed part contains a conditional statement

with a symbolic predicate and hence forks a new path, the fork would be a duplicate and

hence the child path will be identical to one forked before.

To identify the separation between the re-executed and the new parts of the path, Mousse

uses a forking skip depth variable, which is offloaded alongside the concolic inputs when
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1 int prog_main(int arg) {

2 if (arg >= 13) {

3 return syscall(SYSCALL_NR_1, ...); /* state-mutating */

4 } else {

5 int ret = syscall(SYSCALL_NR_2, ...); /* state-revealing */

6 if (arg <= 4)

7 return ret;

8 else

9 return func(ret);

10 }

11 }

Figure 2.6: Simple hypothetical program used to demonstrate the offloading strategy in
Mousse.

a path is offloaded. This variable specifies the number of symbolic forks to skip when re-

executing the path from scratch. In other words, this variables splits the path into the

re-executed and new parts using the number of symbolic predicates visited on the path.

Example. Figure 2.6 shows a simple hypothetical program. Assume that the analyst

has marked the arg variable as symbolic. This means that three paths need to be executed

as a result of two conditional statements on arg (lines 2 and 6). For simplicity of discus-

sion, assume that Mousse is configured to execute one path at a time per device (i.e., no

concurrency).

Mousse starts the execution and faces the first symbolic branch predicate at line 2. It forks

the execution resulting in two different paths, and arbitrarily chooses to first execute the

then-branch. This path issues a state-mutating ecall (line 3), which makes the other path

(i.e., the else branch at line 5) inconsistent with the environment state. Mousse finishes

executing the then-branch path and then tries to resume the execution of the else-branch

path. This path however needs to issue a state-revealing ecall (line 5) and hence cannot be

executed in the device anymore. To offload this path, Mousse solves the path constraints

(i.e., arg < 13) and finds a concolic input, e.g., arg = 3. It offloads this concolic input as

well as the forking skip depth, which is 1 since the path has seen one symbolic fork so far.

Now imagine another device (or the same device after reboot) downloads this path to execute.
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To do so, it starts the execution from the beginning, marks arg as concolic, and assigns the

concrete value of 3 to it. When it faces the first conditional with a symbolic predicate, it

avoids forking due to the forking skip depth being 1. Mousse then inserts the concrete value

of arg into the branch predicate and executes the True side of the branch (which is the

else-branch). The importance of the forking skip depth is clear in this example: had the

execution performed a fork here, the same path that was executed previously (i.e., line 3)

would be executed again. The execution now resumes, forks another path at line 6, and

manages to finish executing both paths. As can be seen, all three paths are eventually

executed, one on the first device and the other two on the second device (or the second boot

of the same device).

Global fork limiters. Loops create a problem for SSE and can result in a large number

of program paths. Existing SSE solutions, such as S2E, use fork limiters to limit the number

of forks at a given program counter value. Mousse also uses fork limiters, but it needs to use

a global one since the execution is distributed. To achieve this, Mousse’s server implements

global fork limiters. When performing a symbolic fork, each device contacts the server to

inquire the value of the fork limiter, hence providing a global one. Moreover, Mousse uses

both the program counter and the hash of the stack trace to identify a forking location.

Compared to using the program counter only, this allows for a more accurate identification

of loop forks. That is, this approach can differentiate between a function containing a loop

being called from different call sites.

2.5.2 Environment-Forced Symbolic Variables

Outputs of ecalls marked as symbolic create a difficulty for offloading a path. Such variables

are present when Mousse leverages its concretization with symbolic output (Strategy II in

§2.3.2) or when we use a symbolic environment in our baseline experiments. We refer to these
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variables as environment-forced symbolic variables. In the presence of these variables, the

solution to the path constraints might depend on specific values of these variables. However,

these values cannot be simply fed to the program upon path re-execution.

To solve this problem, Mousse records and offloads some metadata information for each such

symbolic variable. More specifically, it records the location of the ecall in the code (i.e.,

program counter value as well as the hash of the stack trace). When a device downloads this

path to execute, it uses this metadata information to set the concolic value of the symbolic

output accordingly. Along with the forking skip depth variable discussed earlier, this concolic

value helps direct the path execution and avoid duplicate paths.

Note that we do not use the concrete value returned from the ecall itself for the concolic

value of this variable on re-execution. This is because some paths cannot be triggered with

the actual return value from the environment. If such a path is offloaded, a concrete value

that can lead the execution correctly in this path needs to be offloaded as well.

2.6 Analysis

We have used Mousse to analyze Android I/O services. Specifically, we have performed three

analyses: bug and vulnerability detection, taint analysis, and performance profiling.

2.6.1 Android I/O Services

We next provide some background information on Android I/O services. Android employs

a large number of customized services tailored for each mobile device (more specifically,

tailored for the hardware available in a specific mobile device). These services are often used

to provide I/O API for applications. For example, the audio service is used to provide audio
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API while the camera service is used for camera API. Other such services include the WiFi

service, bluetooth service, input service, sensor service, and telephony service.

An I/O service in Android may comprise of two components: a server component, which

provides the application-facing API, and the Hardware Abstraction Layer (HAL), which

provides the hardware-specific implementation needed to support the I/O functionality. The

HAL service is implemented by the vendor of the hardware component and is typically closed

source. In the rest of the paper, we treat the server and HAL components as separate ser-

vices and analyze them independently. This is because these two components are developed

independently and even run in separate processes (especially in newer Android devices [80]).

Smartphones incorporate a large number of closed source vendor services. For example, Pixel

3 incorporates 50 binary executables and 844 binary libraries for services from corresponding

vendors, all adding up to 343 MBs of binary code.

2.6.2 Target Analyses

We next describe some of the analyses we perform using Mousse. Taking examples from

S2E [44, 45], we perform bug and vulnerability analysis and performance profiling. In addi-

tion, we perform taint analysis.

Bug and vulnerability detection. We develop checkers to analyze the execution of the

program, both in symbolic and concrete modes, in order to find bugs and vulnerabilities.

First, we try to find out-of-bounds access, null-pointer dereference, control-flow hijacking, and

stack smashing bugs and vulnerabilities. To do so, our checkers looks for symbolic memory

accesses, i.e., when the memory address used is symbolic. Since in the analysis, we mark the

inputs of the service API as symbolic, a symbolic address identifies a memory access that

can be controlled by an attacker. We then check (using some manual effort) the constraints

to see whether the access is adequately constrained. Second, we try to find double-free
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and use-after-free vulnerabilities. To do so, our checkers investigate the use of memory

management APIs in libc including all heap allocation, reallocation, and deallocation calls,

namely free, malloc, calloc, realloc, memalign, posix memalign, pvalloc, valloc, and

aligned alloc to detect incorrect uses. Note that our checkers do have false positive reports

requiring some manual effort in analyzing the reports. This is, however, a limitation of our

checkers, not of Mousse.

Taint analysis. While Mousse can be used for different taint analysis goals, we deploy

a specific analysis in this work: the flow of program inputs to its outputs. The results of

this analysis can be used to enhance the accuracy of taint analysis for programs that use

these APIs. For example, data flow analysis engines for Android apps (e.g., FlowDroid [17],

Amandroid [116], and DroidSafe [60]) are unable to accurately model the data flow in Android

APIs. Mapping the flow of the input to output of such API can complement these engines.

Performance profiling. Mousse can be used to profile the performance of different execu-

tion paths in a program. For example, given the cache properties (e.g., cache size, eviction

algorithm, etc.), it can determine the number of cache misses in each program path. This

can then be used to determine how some program inputs impact its performance and to find

performance bottlenecks.

Testing methodology. Mousse can support arbitrary testing methods using SSE. How-

ever, in our evaluation, we focus on the following testing methods. The first method, which

we mainly use to measure Mousse’s performance, is single-API testing. By an API, we refer

to one of the procedures in the external interface provided by the program. Each I/O service

in Android provides several procedures that can be called using IPC. For single-API testing,

we initialize a service and then call a specific service API with symbolic inputs. Sometimes,

when an API has a critical dependency on another API (e.g., all AudioProvider APIs require

a call to adev open first), we satisfy it in our test. The second method is multi-API testing.

In one variant of this test, which we use mainly in our performance profiling, we first call
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one API with symbolic input and then call and execute another API concretely. In another

variant, which we use mainly in bug and vulnerability detection, we may call multiple APIs,

all (or some) with symbolic inputs. In the third method, which we also use for bug and

vulnerability detection, we mark the variables read from the service configuration file as

symbolic. We use this method to analyze the initialization code in the service.

2.7 Implementation

To implement the Mousse prototype, we developed 14,000 SLoC. In addition, we leveraged

and integrated with Mousse parts of some existing systems, namely S2E [44, 45], QEMU

(user-mode execution) [24], and KLEE [33]. We use user-mode QEMU as the concrete exe-

cution engine in Mousse and KLEE as its symbolic execution engine. We use S2E to integrate

these two engines and to provide an extension framework to develop plugins (such as the

checkers explained in §2.6.2). Mousse fully supports ARMv7 (which we use in our evalua-

tions). We also plan to support x86 and ARMv8 in the future. The code that we developed

is mainly for implementing process-level SSE (e.g., address space support, integration with

user-mode QEMU, KLEE, etc.), support for ARM (both as the ISA of the program binary

and as the ISA of the device to perform the analysis in), multi-threaded program support,

environment-aware concurrency, distributed execution (including the server code), and the

checkers described earlier. Note that using Mousse does not require any changes to the OS.

However, in order to apply Mousse to Android I/O services, one needs root access on the

smartphone.

Workflow. When Mousse is assigned to execute a program, the dynamic translator in

QEMU first translates the program binary into Tiny Code Generator (TCG) [25] intermedi-

ate instructions. It then translates the TCG intermediate instructions into host instructions

per basic block and starts the execution in concrete mode. In concrete mode, if it detects a
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symbolic variable, it switches to symbolic mode, translates the TCG instructions to LLVM

instructions, and uses KLEE to execute the LLVM instructions. When no symbolic variable

is present in a basic block, it resumes the execution back in concrete mode.

We adopted this workflow from S2E, albeit with some differences. First, S2E switches from

symbolic mode to concrete mode when there are no symbolic values in CPU registers used in

the next block. However, this approach is not feasible in Mousse because it cannot translate

syscall handlers to instructions (since they are in the kernel). Therefore, it does not know if

a syscall would access symbolic registers just based on the translated instructions. To solve

this, Mousse adopts a more conservative approach. That is, it switches from symbolic mode

to concrete mode only if all registers become concrete. Second, when facing a syscall, Mousse

switches to native execution, whereas S2E handles the syscall similar to the program’s code.

State-mutating and state-revealing syscalls. In our experiments, we mark several

syscalls as state-mutating including a driver ioctl syscalls and writes to a file, a socket, and

a pipe. We also mark several syscalls as state-revealing including a driver ioctl syscalls and

reads from a file, a socket, and a pipe. We note that we are conservative and assume all

syscalls to a device driver can affect each other. It would be feasible to encode more fine-

grained policies in Mousse, but that requires understanding the semantics of driver syscalls.

Since ease of use is one of our goals, we opted for the easier, yet more conservative, approach.

Most ecalls are syscalls, e.g., an ioctl syscall to a device driver. However, another form of

ecall requires special attention: shared memory. For example, a program can use the mmap

syscall to map, in its address space, the MMIO registers of a device or a memory buffer

that is also accessed by a device driver. As another example, a program may use the shared

memory support in the OS to share a buffer with another process. Mousse treats writes and

reads to/from such a shared memory segment similarly to explicit ecalls. We add support

for various implementations of shared memory available in Android such as mmap, ashmem,

and ION.
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We do not currently support signals, as none of the programs we have analyzed use signals

from the environment, e.g., from the driver. Instead, these programs use syscalls (such as

poll and select) to receive notifications. We do, however, support per-process signals, such

as SIGTERM.

Syscall inputs and outputs. Mousse needs to correctly identify all inputs and outputs

of syscalls. It needs to know the inputs for concretization. It needs to know the outputs to

mark them as symbolic in concretization strategy II (§2.3.2). Implementing this is challenging

since syscall inputs and outputs may contain untyped pointers. One important syscall that

exhibits this behavior is the ioctl syscall, which receives three arguments (struct file

*file, long cmd, void *arg). The type of the third argument depends on the value of

the second one. This syscall is used heavily by device drivers, and hence is called frequently

in Android I/O services.

To address this issue, Mousse needs to know the type of these pointers. We manually

extract the type information from the header files in a driver source code and include it

inside Mousse’s source code.

2.8 Evaluation

We evaluate three aspects of Mousse: performance, code coverage, and analysis results. In

our evaluation, we use five OS services in three smartphones: two audio services in Pixel

3 (AudioServer and AudioProvider), two camera services in Nexus 5X (CameraServer and

CameraDaemon), and the OpenGLES graphics libraries in Nexus 5. Unless otherwise stated,

for distributed execution, we use five Pixel 3 smartphones, four Nexus 5X smartphones, and

one Nexus 5 smartphone. We set the fork limiter threshold to 10 (similar to S2E).
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Figure 2.7: Impact of environment-aware concurrency on execution time.

2.8.1 Performance

In this section, we provide empirical evidence that Mousse’s solutions for environment-aware

concurrency and distributed execution provide performance benefits. We also provide results

quantifying the execution time of analysis using Mousse. We report the overall execution

time of an experiment, from when it started until when the last path was executed. Finally,

we compare the performance of Mousse’s process-level SSE design with an existing decoupled

SSE solution. Note that we do not enable our checkers (§2.6.2) for these experiments so that

we (i) we can measure the performance of SSE execution itself and (ii) we can compare the

results with an existing SSE design, which does not have similar checkers. However, our

measurements show that the checkers, if enabled, increase the execution time by 19.9%.

Environment-aware concurrency. Figure 2.7 shows the execution time of two APIs

of the AudioProvider in Pixel 3 when varying the maximum number of concurrent paths

allowed on the device. The figure shows significant benefit from concurrency for one API

and modest benefit for the other. This is due to state-mutating syscalls. The first API
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(adev set parameters) does not issue state-mutating syscalls, allowing paths to execute

concurrently with no restriction, resulting in 59% reduction in execution time. The second

API (out write) issues state-mutating syscalls, which limit concurrency (§2.4). However,

even in this case, concurrent execution reduces the execution time by 24%. Moreover, for

the second API, the figure shows an increase in execution time for 9 and 12 concurrent paths

compared to 6. This is because when we increase the number of concurrent paths, there are

more path execution conflicts (due to interactions with the environment) and hence more

offloads. As mentioned earlier, an offloaded path is executed from scratch hence resulting in

wasted execution time, which can negate the benefits of concurrency.

As discussed in §2.5, we empirically determine the maximum number of concurrent program

paths. Accordingly to the results of this experiment, we set this threshold to 9 in the rest

of the experiments.

Distributed execution. Figure 2.8 shows the execution time with distributed execution

enabled. We show the results for using a different number of Pixel 3 smartphones (1 to 5).

The results show that distributed execution significantly improves performance. Figure 2.8a

shows the results for when there are no state-mutating syscalls. In this case, the performance

improvement almost saturates with three devices, as all three devices can execute several

paths concurrently. Figure 2.8b shows an API with state-mutating syscalls. In this case,

adding the 4th and 5th devices further helps improve performance. Overall, distributed

execution reduces the execution time by 63% and 64% for these two cases. Moreover, dis-

tributed execution and environment-aware concurrency together reduce the execution time

by 84% and 73% for these cases.

Testing all APIs. To quantify the execution time of testing the APIs of a system service,

we tested all the APIs of OS services using the max number of devices available to us as

reported earlier. Table 2.1 shows the results for three services. The table also shows the

overall number of paths as well as the offloads due to environment consistency and due to
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Figure 2.8: Impact of distributed execution on execution time.

resource constraint. The number of paths varies significantly depending on the API resulting

in short (a few minutes) to long (a couple of hours) experiments. Also, the results show that

both the environment and resource constraint may result in path offloads.

Comparison with decoupled SSE. We compare the performance of Mousse’s process-

level SSE design with the state-of-the-art decoupled SSE solution, Avatar2 [82]. We note

that Avatar2 does not support concurrent execution of program paths interacting with the

environment. It does not support distributed execution either. Therefore, we only compare

the performance of a single path execution using a single smartphone.

We use Avatar2 to test one API of the AudioProvider service, adev open in Pixel 3. We run

the symbolic execution engine of Avatar2 in an x86 server, run the concrete execution engine

in a Pixel 3 smartphone, and have them communicate using Android Debug Bridge (ADB).

Avatar2 uses GDB for its concrete execution engine. We start with concrete execution on

the smartphone. We use GDB to set a breakpoint right before the call to adev open. Then,

we switch the execution from concrete mode on the smartphone to symbolic mode on the

server. We also set two breakpoints after the switch to measure the execution time from the
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Ser-
vice
name

API name

Exe-
cution
time
(minutes)

# of
path

# of
off-
loads
due
to
Res.

# of
off-
loads
due
to
Env.

GS

eglCreateWindowSurface 115.9 11 1 9

eglQuerySurface 118.8 88 40 21

eglGetDisplay 8.7 1 0 0

glCreateShader 34.2 5 0 3

glShaderSource 1605.8 371 148 95

glViewport 14.6 6 5 0

AP

adev open output stream 390.1 612 264 0

adev open input stream 170.1 566 234 0

adev open 2.2 12 0 0

adev set parameters 107.7 237 122 0

adev set mode 2.8 3 0 0

adev set voice volume 2.7 1 0 0

adev set mic mute 3.4 1 0 0

out write 89.6 50 24 10

out set parameters 25.9 136 34 0

out drain 5.8 2 0 0

CS

getNumberOfCameras 47.6 46 28 3

connectDevice 29.0 19 2 5

getCameraCharacteristics 28.9 45 18 0

supportsCameraApi 4.1 2 0 0

submitRequestList 20.7 18 2 7

cancelRequest 4.1 1 0 0

endConfigure 4.2 1 0 0

createStream 93.6 87 33 7

createDefaultRequest 4.9 1 0 0

Table 2.1: Single-API testing of OS services with Mousse. Abbreviations used in the table:
GS = GPU Stack, AP = AudioProvider, CS = CameraServer, Res. = Resource constraint,
Env. = Environment consistency.

switch to the time the execution reaches the breakpoints. After the switch, Avatar2 reads the

memory of the concrete execution engine over ADB to synchronize the state of the symbolic

execution engine.

Avatar2 took 24.86 seconds to initialize the AudioProvider all in concrete mode. However, it

then took 257.47 seconds to switch the execution mode, read the remote memory, and reach

the first breakpoint in symbolic mode. Unfortunately, Avatar2 could not reach the second

breakpoint. More specifically, Avatar2 was aborted due to a “read-miss” error after running
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for another 1 hour and 44 minutes.

As a comparison, using Mousse with one phone executing one path at a time (i.e., no

concurrency), we were able to finish testing a path of adev open completely in 104 seconds.

Mousse took 40 seconds to initialize the AudioProvider service, which is slower than Avatar2.

This is because Mousse’s concrete execution engine, based on QEMU, fully emulates all

instructions. However, Mousse’s unified memory avoids costly memory transfers, allowing

it to significantly outperform Avatar2. Compared to Avatar2, which took 282.33 seconds to

reach the first breakpoint after the switch, Mousse improves performance by at least 63% as

it finishes the whole path in 104 seconds.

2.8.2 Coverage

We measure the coverage of Mousse and compare it with that of concrete execution. We

measure coverage in two steps: (i) the initialization coverage, i.e., the coverage resulting

from the initialization of the service and calling some other APIs that our API of interest

has dependency on, and (ii) the API coverage, i.e., the added coverage when testing the

API. Both Mousse and concrete execution result in the same coverage for the initialization

phase. Hence, we mainly report the API coverage.

For concrete execution, we try two approaches and report the best one. One is using a

known good input to the API that results in deep code coverage. The other is black-box

fuzzing, where we try a large number of random inputs to the API and measure the combined

coverage.

Figure 2.9 shows the API coverage for concrete execution and Mousse with its two concretiza-

tion strategies (§2.3.2). The figure shows two important points. First, it shows that Mousse

achieves better coverage than concrete execution. Second, it shows that, in the absence of

41



 0

 200

 400

 600

 800

 1000

 1200

Conc. M-I M-II

N
u
m

b
e
r 

o
f 

B
a
s
ic

 B
lo

c
k

s  

874

1027 1027

(a) adev open input stream of
AudioProvider in Pixel 3

 0

 500

 1000

 1500

 2000

 2500

 3000

Conc. M-I M-II

N
u
m

b
e
r 

o
f 

B
a
s
ic

 B
lo

c
k

s  

48

1157

2265

(b) createStream of Cam-
eraServer in Nexus 5X

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Conc. M-I M-II

N
u
m

b
e
r 

o
f 

B
a
s
ic

 B
lo

c
k

s  

2479

3029

3395

(c) on mct process serv msg of
CameraDaemon in Nexus 5X

Figure 2.9: Code coverage for different APIs of Android I/O services. Conc., M-I, and M-
II refer to concrete execution and Mousse with concretization strategies I and II (§2.3.2),
respectively.

syscalls with symbolic arguments, both concretization strategies in Mousse achieve the same

coverage (Figure 2.9a). Syscalls with symbolic arguments are rare in Android I/O services

that we have analyzed. The only such syscalls are those for logging, as discussed in §2.3.2,

which one can disable before analysis. However, in the presence of such syscalls, the second

concretization strategy achieves higher coverage (Figures 2.9b and 2.9c). But we note that

it is not known how much of this is false coverage, i.e., execution that would not occur in

normal execution. Determining how much requires further analysis.

We also run these tests with a symbolic environment, for which we mark the output of a

syscall as symbolic when the syscall is handled by the device driver used by a service, e.g.,

the audio device driver used by the audio service. In this case, as a result of path explosion,

the three services that we test (i.e., CameraServer, CameraDaemon, and AudioProvider)

all fail to correctly initialize (i.e., no paths within them successfully finish the initialization

phase) even after 1 to 2 days of execution using Mousse’s distributed execution with multiple

smartphones.
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2.8.3 Analysis Results

Bugs and vulnerabilities. We analyze all our services to find bugs and vulnerabilities. We

find two new crash bugs (both null-pointer dereferences) and two double-free vulnerabilities.

We then use Mousse to analyze these in the binary (demonstrating another benefit of Mousse,

which can help analyze the execution). One null-pointer bug is due to accessing a gyroscope-

related handle in the CameraDaemon without checking if it is null or not. The other is

due to access to a parameter buffer, which can be null. Moreover, one of the double-free

vulnerabilities calls free on the same pointer three times.

Taint analysis. We analyze the propagation of inputs to the outputs of the AudioProvider

service, which is a binary provided by the vendor. Our results show that no APIs propagate

their inputs to their outputs with the exception of out write, which returns its size input

parameter as its output.

Performance profiling. We analyze the performance impact of audio quality configura-

tions on the execution of audio playback code in the AudioProvider service. To do so, we

configure the audio quality with symbolic inputs, call the playback API with concrete inputs,

and then measure the cache misses. We model a two-level cache system using specifications

from ARM Cortex-A53 (write-through LRU with 64 byte line size; 2-way associative/32 kB

for L1D, 4-way associative/32kB for L1I, and 16-way associative/512 kB for L2).

Marking the audio quality configurations as symbolic results in 112 execution paths. We

observe that different paths can experience 19% difference in the L1 data cache misses (i.e.,

the path with the maximum cache misses vs. the path with the minimum) whereas the cache

misses for the L1 instruction cache and the L2 cache do not change noticeably. This shows

that different paths execute almost the same code, but with different data access patterns.
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Chapter 3

Macaron: Automatically and Reliably

Reproducing Non-deterministic Race

Condition Bugs without Reproducers

in Syzbot

Concurrent systems are pervasive due to the increase of advanced multi-core hardware. The

kernel, as one of the most complex concurrent systems, is implemented with fine-grained

concurrency mechanisms in mind to fully utilize the power of multi-core hardware. While

the concurrency optimizations in the kernel greatly speed up the whole system’s execution,

they make it notoriously prone to race condition bugs. Those bugs are hard to find during

testing due to the requirement of specific thread scheduling. Even worse, they are hard to

reproduce once found due to the non-deterministic nature of the kernel. Kernel race condition

bugs can have a very serious impact on users and the system itself, such as deadlocks, kernel

panics, data corruptions, and even privilege escalation attacks.
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In response to these issues caused by race conditions, many research works have put a great

amount of effort into detecting race condition bugs more effectively. Those works have a

common agreement that to detect a race condition bug, two design requirements need to

be satisfied: 1. Find a test program that may execute potential race locations in different

threads of the system. 2. Systematically control the thread interleaving in the system

to manifest a race condition. To generate valid test programs that can be invoked against

specific kernel modules, the most popular kernel fuzzer, syzkaller [2], provides templates that

encode the detailed information regarding syscalls, including the type of arguments of each

syscall and the dependencies of different syscalls. But it does not do anything to control the

thread interleaving of the kernel. Being aware of this problem that syzkaller has in finding

race condition bugs, other works [98, 89, 65, 70, 58] improved the efficiency of fuzzing by

introducing systematic thread interleaving exploration and generating input programs that

accesses different race locations suggested by static analysis. Among those works, including

syzkaller, some race condition bugs are reproducible, but most of them are not because their

main focus is still finding more race condition bugs.

However, for a race condition bug, whether it is reproducible or not plays a vital role in

understanding the root cause of the bug and further fixing the bug. For concurrency bugs

in user space programs, the software community has tried multiple resorts [79, 104, 127, 79]

to reproduce them a long time ago, mainly by recording critical runtime information [104],

analyzing offline information including core dumps [119, 27] or guessing problematic sched-

ules based on good runs [79]. However, we found that a framework that can be used to

reliably reproduce kernel race condition bugs is missing. The reason is that reproducing race

condition bugs in the kernel is very challenging. The old methods like recording runtime

interleaving information cannot be used for the kernel due to its unbearable overhead. More-

over, a thread controlling algorithm that can exhaust all the possible thread interleavings in

the kernel is not possible even with an optimized design.
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In this work, we propose a framework called Macaron to automatically and reliably reproduce

race condition bugs without reproducers in syzbot [9]. Race condition bugs in syzbot can

be reported as use-after-free, double-free, deadlocks, etc. Macaron does not modify syzbot’s

current implementation to record any additional runtime information. It only uses the

existing offline information collected by syzkaller with static analysis, selective symbolic

execution, and a distance-based thread interleaving points prioritizing algorithm to reproduce

race condition bugs. In this work, we make the following contributions:

1. Macaron does not require any changes to syzbot. Therefore, we can tackle the old and

long existing race condition bugs reported by syzbot. This is very important to improve

the security of the kernel. Even though finding more new race condition bugs is important,

fixing already discovered race condition bugs is equally important. A lot of discovered

race condition bugs remain unresolved or marked as invalid because of lack of reproducers.

Reproducers or Proof of Concept (PoC) programs are usually essential in helping analysts

fix the bugs. Macaron is the first framework targeting finding reproducers for race condition

bugs without reproducers in syzbot.

2. Macaron proposes a novel way called Guided Selective Symbolic Execution (GSSE) to

reproduce race condition bugs by combining three main techniques, namely, program depen-

dency analysis, SSE, and distance-based thread interleaving points prioritizing algorithm.

We first use the offline information from syzbot to find a potential test program in its exe-

cution log. We then run the kernel with that test program using SSE. During the execution,

we trace potential interleaving points in the kernel modules related to the bug. Finally, Mac-

aron’s SSE is guided by a distance-based thread interleaving points prioritizing algorithm to

greatly reduce the exploration space.

3. As an initial try, we experiment Macaron on some use-after-free bugs without reproduc-

ers found by syzbot to evaluate its performance. The evaluation shows Macaron now can

successfully reproduce bugs that have one race condition.
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3.1 Background

3.1.1 Syzbot

Syzbot [9] is the state-of-the-art continuous kernel fuzzing framework. It continuously fuzzes

main Linux kernel branches and automatically reports found bugs to kernel mailing lists.

Syzbot uses Syzkaller, which is an unsupervised coverage-guided kernel fuzzer. It was de-

veloped with kernel fuzzing in mind. One of syzkaller’s highlighted feature is its accurate

syscall templates for a wide range of kernel modules. Using those templates, syzkaller gener-

ates input that understands the built-in patterns of the kernel module under testing. Those

syscall templates are written by different people and are becoming more and more accurate.

Benefiting from syzkaller’s special templates and distributed continuous fuzzing, syzbot re-

ports a lot of bugs in the kernel. Once a bug is found, its reproducer will automatically

rerun all the test cases that have been tested until the point a bug is triggered to find a

reproducer. The kernel developers then can use the reproducer provided along with the bug

report to understand and investigate the bug. For bugs that cannot be reproduced by syzbot

automatically, if no one submit a patch to fix the bug after a period of time (usually over a

month), the bug will be auto closed.

For simple and deterministic bugs, the reproducer can be generated successfully. However,

since kernel is highly non-deterministic, especially for race condition bugs, syzbot will fail to

find a reproducer. Even if a reproducer sometimes is found for such non-deterministic bugs,

users find they cannot reproduce the bug using the provided reproducer. Apparently, for non-

deterministic race condition bugs, simply rerunning the test program or their permutations in

the kernel is not enough. Thread interleaving control is also absolutely needed to reproduce

such bugs. Macaron targets on this problem and does efficient thread interleaving exploration

for the race condition bugs that can not be reproduced in syzbot.
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3.1.2 SIFT

SIFT [122] is a property directed symbolic execution of multi-threaded user-space code.

It can analyze an execution trace of a multi-threaded program to identify the program

locations at which a thread Interleaving Point (IP), i.e., context switch, may lead to a failure

of a correctness property such memory safety or an invariant that must hold at a specific

program location. Such program locations are called interleaving points. SIFT’s inference

rules to infer interleaving points works in three steps for each symbolic execution path: 1.

Collecting data-flow and control-flow facts about the instructions executed on that path, 2.

creating thread access information for each property relevant object discovered in Step 1,

and 3. filtering out accesses that must not happen in parallel.

For example, in a very simple example with two threads in Figure 3.1, SIFT can detect

operations that access the global variable x and mark them as IPs. The first IP is when the

program counter of the main thread refers to the read operation at line 9 and the second

IP is when the program counter of the child thread refers to the write operation at line

3. Let us assume the child thread starts right after it is created. If after executing IP at

line 3, a context switch happens from the child thread to the main thread at line 9, the

assertion at line 10 can be triggered. Scheduling threads based on their IPs performs better

than randomly doing thread schedulings in terms of finding bugs. SIFT provides a set of

inference rules that can be used to infer IPs in a multi-threaded program using symbolic

execution and works in an iterative way. In each round, it explores the state space using

selective scheduling based on a set of thread interleaving points that have been inferred in the

previous round. A round of execution stops when all the IP permutations have been explored

and the next round will start exploring newly inferred IPs. It also optimizes the state space

search by using three different IP partitioning strategies, with each one having different

strengths. In a program with a large set of IPs, the state search space is huge and can take

unlimited rounds. The whole execution of SIFT terminates when it reaches a timeout or
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triggers a bug. In our work, we adopt part of SIFT’s design. We use its inference rules to infer

potential interleaving points that access the global memories or shared memories in the kernel

during symbolic execution. As for the state space search, we do not use any IP partitioning

strategies from SIFT. Instead, we propose GSSE to satisfy our specific requirements. GSSE

will be explained in section §3.4.

1 int x;

2 void *accessorThread(void *arg){

3 x = -1;

4 }

5 int main(int argc, char *argv[]){

6 int res = 0;

7 pthread_t acc;

8 pthread_create(&acc,NULL,accessorThread,NULL);

9 if(x < 0)

10 assert(0);

11 pthread_join(acc,(void**)&res);

12 return 0;

13 }

Figure 3.1: SIFT IP Illustration Example

3.2 Syzbot Bug Study & Motivation

Before we design Macaron, we did a preliminary study on the bugs in syzbot to get an idea

of how many of them do not have reproducers. We collected three data points in syzbot at

different times, shown in table 3.1. Based on the data, the percentage of non-reproducible

bugs does not change too much over three years, which is around 24 percent of all the

bugs listed in syzbot. All those non-reproducible bugs can be further categorized into 12

types: general assertion hit, boot error, general warning hit, out of bounds, suspicious RCU

usage, task hung, general protection fault, double free or invalid free, potential deadlock,

uninitialized value, null-pointer dereference and use-after-free. Among all the 12 types, boot

error and uninitialized value are less likely caused by race condition. The other 10 types can

be possibly caused by race condition.
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We further investigated 28 specific bugs that have all the 10 types included and confirmed 8

out of 28 bugs are caused by race conditions. 20 out of the 28 bugs might be caused by race

condition, but further investigation is needed. This preliminary study gives us confidence

that race condition bugs in syzbot are not rare. Considering the total amount of open bugs

in syzbot, there can be a large amount of race condition bugs that do not have reproducers.

For a race condition bug that does not have a reproducer, it is very hard for an analyst

to debug and find the root cause of it. During the process of manually investigating the 8

race condition bugs that do not have reproducers, we learned that for someone that does

not have a deep understanding of the kernel, just relying on the bug report is very hard to

understand the bug’s behavior and root cause. But once we figured out a thread interleaving

that triggers the bug, it becomes very intuitive to figure out how to fix a race condition.

So our motivation behind Macaron is that we believe that providing reproducer that can

deterministically and reliably reproduce a race condition bug, which can greatly help the

analyst understand and then fix it.

Timestamps Bugs with Reproducers Bugs w/o Reprocuers Total Bugs Bugs w/o Reproducers / Total Bugs

12/15/2020 18:48:56 UTC
2401 735 3136 23%

08/09/2021 20:28:00 UTC
2850 956 3806 25%

08/01/2022 12:50:00 UTC
3593 1218 4811 25%

Table 3.1: Syzbot Bug Study

3.3 Design

Macaron’s goal is to automatically and reliably reproduce kernel race condition bugs without

reproducers in syzbot. To achieve this goal, there are four requirements we need to satisfy in

Macaron’s design: 1. Being automatic 2. Being reliable 3. Being efficient 4. Requiring No

modifications to syzbot. In this section, we explain the challenges and solutions to satisfy
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those four requirements.

Requirement 1. Automatic. This means the whole reproducing process should be taken

care of by Macaron without requiring the analyst’s expertise on the kernel and human

intervention during the reproducing process. One does not need to understand the race

condition bug or know anything about the kernel to use Macaron. Some kernel-specific

semantics should be incorporated into Macaron’s design to optimize the searching process.

We make the reproducing process automatic and easy to use for whoever wants to reproduce

the bug.

Requirement 2. Reliable. This means that once Macaron reports a reproducer, it must be

a true positive. To satisfy this requirement, correctly initializing the kernel and reproducing

the bug in a reliable dynamic environment is the first step. Because we do not want to

introduce false positive, we naturally forsake static analysis as our key technique but instead

using it as a complimentary technique. We will explain the use of static analysis in section

§3.5. To run a kernel in a reliable environment, we can either directly use virtual machine

such as QEMU [24] or use S2E [44], a dynamic platform that implemented selective symbolic

execution. We chose S2E as our underlying environment because it not only can guarantee

the kernel runs in a reliable environment but also has a lot of nice features that can help

to satisfy the Requirement 3. We use the features from SSE to enables delicate program

analysis and improve the overall efficiency in reproducing race condition bugs.

Requirement 3. Efficient. Our work focuses on reproducing already discovered bugs and

hence differs from other kernel fuzzing works [98, 89, 65, 70, 58] that improve on finding more

kernel race condition bugs. Since the bugs Macaron targets have already been confirmed to

exist, we keep an important design requirement in mind that they should be able to be

reproduced in a limited time. In other words, the process should be as efficient as possible.

Offline information about bugs that includes stack dump, core dump and text description

have been shown to be very helpful in generating exploits [124, 27]. Sharing similar idea
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of utilizing offline bug related information, we can narrow Macaron’s exploration space by

leveraging the bug report and log from syzbot. We designed Macaron to do an efficient guided

state space search. We call our reproducing process Guided Selective Symbolic Execution

(GSSE). GSSE is explained in detail in section §3.4.

Requirement 4. Compatible. This means the framework should require no modification

to syzbot. We do not want to modify the current design of syzbot for two reasons. 1.

Modifying syzbot to record additional runtime threads scheduling information during fuzzing

will definitely help in reproducing. But the heavy overhead caused by dynamic recording is

usually unacceptable in kernel production fuzzing. Fuzzing itself can be a popular analysis

technique mainly due to its efficiency. Any changes that add noticeable overhead will greatly

impact a fuzzer’s ability of finding bugs. 2. If reproducing requires modifications to the

current fuzzing platform, all the old race condition bugs reported by syzbot cannot be solved.

While non-reproducible race condition bugs are an important portion of the existing bugs

in syzbot based our study in section §3.2.

3.4 Guided Selective Symbolic Execution

In this section, we explain our GSSE in details. GSSE is dynamic SSE guided by a distance-

based interleaving points prioritizing algorithm. We first use an illustration example to

show how we can guide the SSE of a multi-threaded program to find a thread scheduling

that reaches a bug location quickly. Then we explain the distance-based threads prioritizing

algorithm that supports GSSE.
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3.4.1 Illustration Example

The example is illustrated in Figure 3.2. It has two threads, one main thread and one child

thread. To trigger the assertion in the main thread at line 24, a specific thread execution

sequence like (L3, L14, L20, L4, L7, L21, L24) needs to be satisfied. In such a multi-

threaded scenario, there can be multiple possible thread interleavings. Our goal in this

example is to find a thread scheduling that can trigger the assertion as soon as possible. We

use the inference rules in SIFT [122] to find the interleaving points and use a distance-based

interleaving points prioritizing algorithm to guide the example’s SSE.

Now let us go through this example to see how the assertion can be triggered within just 9

execution states. In this example, the first round of SSE without any forced context switching

discovers 5 IPs: 3 IPs that access global variable k and 2 IPs that access global variable z,

shown in Figure 3.3. To guide the next round’s execution, we want to sort those 5 IPs by

their distances to the target bug location at line 24. The distance of each IP is decided by

querying the example’s Multi-threaded Program Dependency Graph (MPDG). A program’s

MPDG reveals the relevance of two interleaving points. In other words, the closer the two

IPs in the MPDG, the shorter their distance is and the more relevant they are to each other.

By sorting all IPs’ distances to the target location, we know how relevant all the IPs’ are

to the target location. Such MPDG is generated using static analysis and augumented by

dynamic SSE. We will further explain MPDG in section §3.5 and how to generate it. Now

let us assume we already have the program’s MPDG. In the MPDG, we find that IP1, IP2

and IP3 have no available path to the target location at line 24. The distance for IP4 is 20

and for IP5 is 21. So out of all 5 IPs, we choose IP4 with the shortest distance in the main

thread into a chosenIP set shown in Figure 3.4 for the use of next round’s SSE. Every time a

new IP is added into a chosenIP set, it will be assigned a weight = ++GlobalHighestWeight.

GlobalHighestWeight is used to keep track the global highest weight for all the IPs and its

initial value is 0. And all the weights of the existing IPs in the chosenIP set will be plus one.
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The chosenIP set contains all IPs chosen to be considered as potential race locations by the

next round’s execution. In this example, after the first round’s SSE, now the chosenIP set

only has one IP which is IP4 with weight = 1. The second round of SSE executes IP4 first

then switches to the child thread. But this round of SSE discovers no new IPs. Based on

the feedback from the second round, we added IP5 that has the next shortest distance to

chosenIP set. Now the chosenIP set has two IPs shown in Figure 3.5: IP4 with weight =

1 and IP5 with weight = 2. GlobalHighestWeight now equals to 2.

As it continues, the third round that can trigger the assertion with a set of chosen IPs is

shown in Figure 3.6. At the end, we terminate the whole exploration and extract the threads

scheduling that triggers the assertion. The total number of states being executed to trigger

the assertion using our distance-based interleaving points prioritizing algorithm is 9. As a

comparison, SIFT executes over 1000 states to trigger this assertion.

3.4.2 Distance-based Interleaving Points Prioritizing Algorithm

From the illustration example, we can see that GSSE is very efficient in reaching a target

location. The intuition behind the distance-based interleaving points prioritizing algorithm

is that if a thread interleaving brings us closer to the target location, we should prioritize

it. The shortest distance among all the newly discovered IPs is a metric we use to measure

if we are getting closer to the target location. In other words, the smaller of all the newly

discovered IPs’ shortest distance, the closer we are to the target location and it is more likely

to trigger a bug. If there is no newly discovered IPs after one round of execution, we keep

adding new IPs to the chosenIP set and also keep the old IPs already in it. We now explain

distance-based interleaving points prioritizing algorithm in details with the pseudo code in

Figure 3.7 and Figure 3.8 .

We first explain how we update the chosenIP set and keeps the main execution loop of GSSE
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1 int x, y, w, z, k;

2 void *accessorThread(void *arg){

3 z ++;

4 if(k > 0)

5 k = 0;

6 if(w > 0)

7 y = 0;

8 }

9 int main(int argc, char *argv[]){

10 int res = 0;

11 int *l_y;

12 pthread_t acc;

13 pthread_create(&acc,NULL,accessorThread,NULL);

14 if(z > 0)

15 w++;

16 k = 1;

17 l_y = &y;

18 *l_y = 1;

19 x = 1;

20 y = 2;

21 if(y == 0)

22 x--;

23 if(x <= 0)

24 assert(0);

25 pthread_join(acc,(void**)&res);

26 return 0;

27 }

Figure 3.2: Multi-threaded GSSE Illustration Example

going. The algorithm is shown in Figure 3.7. N controls the number of rounds of the whole

execution, defined by the analyst. Since exploring all the interleaving points of the kernel

is impossible in practice, we need a termination strategy for GSSE. GSSE’s termination is

determined either by the number of rounds of GSSE specified by the analyst or when the

bug is successfully triggered. A round of GSSE stops when all the threads interleavings have

been explored based on the IPs in the current chosenIP set. The logic of state exploration

based on the chosenIP set is hidden in the function exploreIPsByWeight, explained next in

Figure 3.8.

Specifically, in each round of GSSE, it generates a set of interleaving points from all the

state executions in the current round. We will do post-processing for those generated IPs

to update our global sortedIP set and chosenIP set. sortedIP has all the IPs sorted based
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IP1 %1 = load i32, i32* k (L4)

IP2 store i32 0, i32* k (L5)

IP3 store i32 1, i32* k (L16)

IP4 %0 = load i32, i32* z (L14)

IP5 store i32 %inc, i32* z (L3)

Figure 3.3: First round discovered IPs of the illustration example

IP4 %0 = load i32, i32* z (L14) with weight = 1

Figure 3.4: Second round chosenIP set of the illustration example

on their distances to the target IP in the MPDG. chosenIP contains all the IPs that will be

considered as the scheduling points in the next round’s execution. We update each round’s

of chosenIP set based the results of the previous round. There are three different cases that

we update the chosenIP set, shown from line 6 to line 14. If a new IP with a shorter distance

to the target location is discovered, we add this new IP to our chosenIP set and update the

weights of all the existing IPs in the chosenIP set. If no new IP with a shorter distance is

discovered, we add another IP that has the next shortest distance to the chosenIP set. If

the shortest distance from the sortedIP is smaller than its old value, we think the current

thread scheduling is bad to keep. So we swap one IP in the chosenIP set with a different IP.

Now we explain how we make threads switching decisions in each round based on all the

IPs in the chosenIP set, which is the logic hidden in function exploreIPsByWeight in Figure

3.8. During the execution, when an IP of a thread in the chosenIP set is hit at line 1, we

will compare this IP’s weight with the weights of all other threads’ next IP. Based on the

comparison result, there are three possibilities in terms of the continuing execution: 1. If the

current thread has the maximum weight of all the IPs, we continue executing the current

thread, shown at line 8. 2. Fork new execution states if there are some other threads have

the same highest weighted IP with the current thread. The forked states will schedule new

threads with the highest weight. The current state will continue its execution without thread

switching, shown from line 10 to line 14. 3. Fork new execution states if there are some

other threads have the highest weighted IP. The forked states will schedule new threads with
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IP4 %0 = load i32, i32* z (L14) with weight = 2

IP5 store i32 %inc, i32* z (L3) with weight = 1

Figure 3.5: Third round chosenIP set of the illustration example

IP5 store i32 %inc, i32* z (L3) with weight = 4

IP4 %0 = load i32, i32* z (L14) with weight = 3

IP6 store i32 0, i32* y (L7) with weight = 1

IP7 store i32 2, i32* y (L20) with weight = 2

Figure 3.6: Final round chosenIP set of the illustration example

the highest weight. The current state will stop its execution, shown from line 16 to line 18.

We believe that to reach a specific location, the interleaving points should be treated differ-

ently. GSSE greatly improved the efficiency of exploring all the discovered IPs. By giving

each IP a different weight, SSE is guided with a specific goal of reaching the target location

as soon as possible.

Figure 3.7: Algorithm 1: The main algorithm to update chosenIP set
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Figure 3.8: Algorithm 2: The threads interleaving points scheduling based on their weights

3.5 Multi-threaded Program Dependency Graph

MPDG supports the distance-based interleaving points prioritizing algorithm. As we men-

tioned in section §3.4.2, we use MPDG to query the distance of each IP. It serves the

purpose of revealing the relevance of an interleaving point to the target location. Program

Dependency Graph (PDG) is well known as a graph that makes both the data and control

dependencies for each operation in a program explicit. Data dependencies are used to repre-

sent the relevant data flow relationships of a program. Control dependencies are introduced
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to represent the control flow relationships of a program. We introduce MPDG to reveal the

dependencies of each operations in a multi-threaded program. MPDG is first built from PDG

using data-flow analysis and control-flow analysis. But static analysis is known to be inac-

curate and can miss important points-to information, especially for the kernel. We augment

the MPDG with dynamic information from GSSE. After each round of GSSE, if we see two

operations access a shared memory object but there is no dependency flow between them in

the current MPDG, we add a dependency edge between them to the graph. In the case that

such two operations come from different threads, only GSSE can accurately detect them.

The iterative augmentation from dynamic information to a statically built PDG makes our

MPDG unique and more accurate.

Now we use the MPDG built for the illustration example in section §3.4.1 to explain the nodes

and edges of the MPDG. In Figure 3.9, the nodes in the MPDG are all LLVM instructions.

Specifically, the instruction in the green rectangle is the definition of a shared variable. The

instruction in the red rectangle is a load instruction from a shared variable. The instruction

in the blue rectangle is a store instruction of a shared variable. The instruction in the

black rectangle is all other instructions that are relevant to a shared variable, for example, a

branch instruction based on a shared variable’s value. As for the edges between the nodes,

there are four types of them. From the static analysis, we derive three types of edges. 1.

Direct def-use edges, represented by the black lines. Those are the edges between variable

definitions and their direct uses. 2. Direct def-use edges, represented by the black dotted

lines. Those are edges between the same variable’s uses. 3. Control-flow dependency edges,

represented by the dotted blue lines. Those are the edges in a conventional inter-procedural

control flow graph. There is a fourth type of edge that is augmented from GSSE. Those are

the inter-thread dependencies of instructions on the same memory object, represented by

the solid red lines. Each edge has a distance of 1. The distance of an IP is calculated by

the number of edges in the path from the IP to the target location. When we want to query

an IP’s distance from the MPDG, we first match this IP to the node in the graph and then
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SVFG

IntraMSSAPHISVFGNode ID: 104 {fun: main}MSSAPHISVFGNode ID: 104 {fun: main}MR_10V_4 = PHI(MR_10V_2, MR_10V_3, )
pts{14 }{ ln: 33 cl: 8 fl: main.c }

LoadVFGNode ID: 40 LoadPE: [109<--13] 
 %23 = load i32, i32* @x, align 4, !dbg !62 { ln: 33 cl: 8 fl: main.c }

CmpVFGNode ID: 97 PAGEdge: [110 = cmp(5, 109, )]
 %24 = icmp sle i32 %23, 0, !dbg !64 { ln: 33 cl: 10 fl: main.c }

CmpVFGNode ID: 101 PAGEdge: [42 = cmp(5, 41, )]
 %11 = icmp sgt i32 %10, 0, !dbg !36 { ln: 13 cl: 10 fl: main.c }

UnaryOPVFGNode ID: 92 PAGEdge: [43 = Unary(42, )] br i1 %11, label %12, label %13, !dbg !37 { ln: 13 cl: 8 fl: main.c }

StoreVFGNode ID: 52 StorePE: [11<--5] 
 store i32 0, i32* @y, align 4, !dbg !38 { ln: 14 cl: 4 fl: main.c }

CmpVFGNode ID: 100 PAGEdge: [85 = cmp(5, 84, )]
 %11 = icmp sgt i32 %10, 0, !dbg !45 { ln: 23 cl: 10 fl: main.c }

UnaryOPVFGNode ID: 93 PAGEdge: [86 = Unary(85, )] br i1 %11, label %12, label %15, !dbg !46 { ln: 23 cl: 8 fl: main.c }

LoadVFGNode ID: 37 LoadPE: [87<--9] 
 %13 = load i32, i32* @w, align 4, !dbg !47 { ln: 24 cl: 3 fl: main.c }

CmpVFGNode ID: 99 PAGEdge: [101 = cmp(5, 100, )]
 %18 = icmp eq i32 %17, 0, !dbg !58 { ln: 31 cl: 10 fl: main.c }

UnaryOPVFGNode ID: 94 PAGEdge: [102 = Unary(101, )] br i1 %18, label %19, label %22, !dbg !59 { ln: 31 cl: 8 fl: main.c }

LoadVFGNode ID: 39 LoadPE: [103<--13] 
 %20 = load i32, i32* @x, align 4, !dbg !60 { ln: 32 cl: 3 fl: main.c }

UnaryOPVFGNode ID: 88 PAGEdge: [111 = Unary(110, )] br i1 %24, label %25, label %29, !dbg !65 { ln: 33 cl: 8 fl: main.c }

CmpVFGNode ID: 98 PAGEdge: [36 = cmp(5, 35, )]
 %7 = icmp sgt i32 %6, 0, !dbg !30 { ln: 11 cl: 10 fl: main.c }

UnaryOPVFGNode ID: 91 PAGEdge: [37 = Unary(36, )] br i1 %7, label %8, label %9, !dbg !31 { ln: 11 cl: 8 fl: main.c }

StoreVFGNode ID: 51 StorePE: [7<--5] 
 store i32 0, i32* @k, align 4, !dbg !32 { ln: 12 cl: 4 fl: main.c }

StoreVFGNode ID: 46 StorePE: [9<--5] 
 i32 0 { constant data }

BinaryOPVFGNode ID: 87 PAGEdge: [88 = Binary(33, 87, )] %14 = add nsw i32 %13, 1, !dbg !47 { ln: 24 cl: 3 fl: main.c }

StoreVFGNode ID: 45 StorePE: [7<--5] 
 i32 0 { constant data }

StoreVFGNode ID: 44 StorePE: [4<--5] 
 i32 0 { constant data }

LoadVFGNode ID: 42 LoadPE: [94<--68] 
 %16 = load i32*, i32** %7, align 8, !dbg !51 { ln: 27 cl: 6 fl: main.c }

StoreVFGNode ID: 60 StorePE: [94<--33] 
 store i32 1, i32* %16, align 4, !dbg !52 { ln: 27 cl: 10 fl: main.c }

StoreVFGNode ID: 62 StorePE: [11<--33] 
 store i32 1, i32* @y, align 4, !dbg !54 { ln: 29 cl: 7 fl: main.c }

BinaryOPVFGNode ID: 85 PAGEdge: [104 = Binary(105, 103, )] %21 = add nsw i32 %20, -1, !dbg !60 { ln: 32 cl: 3 fl: main.c }

StoreVFGNode ID: 64 StorePE: [13<--104] 
 store i32 %21, i32* @x, align 4, !dbg !60 { ln: 32 cl: 3 fl: main.c }

LoadVFGNode ID: 38 LoadPE: [100<--11] 
 %17 = load i32, i32* @y, align 4, !dbg !56 { ln: 31 cl: 8 fl: main.c }

StoreVFGNode ID: 57 StorePE: [9<--88] 
 store i32 %14, i32* @w, align 4, !dbg !47 { ln: 24 cl: 3 fl: main.c }

LoadVFGNode ID: 36 LoadPE: [41<--9] 
 %10 = load i32, i32* @w, align 4, !dbg !34 { ln: 13 cl: 8 fl: main.c }

LoadVFGNode ID: 35 LoadPE: [35<--7] 
 %6 = load i32, i32* @k, align 4, !dbg !28 { ln: 11 cl: 8 fl: main.c }

LoadVFGNode ID: 34 LoadPE: [84<--4] 
 %10 = load i32, i32* @z, align 4, !dbg !43 { ln: 23 cl: 8 fl: main.c }

LoadVFGNode ID: 33 LoadPE: [31<--4] 
 %4 = load i32, i32* @z, align 4, !dbg !27 { ln: 10 cl: 7 fl: main.c }

BinaryOPVFGNode ID: 86 PAGEdge: [32 = Binary(33, 31, )] %5 = add nsw i32 %4, 1, !dbg !27 { ln: 10 cl: 7 fl: main.c }

StoreVFGNode ID: 50 StorePE: [4<--32] 
 store i32 %5, i32* @z, align 4, !dbg !27 { ln: 10 cl: 7 fl: main.c }

AddrVFGNode ID: 23 AddrPE: [68<--69] 
 %7 = alloca i32*, align 8 { ln: 20 fl: main.c }

StoreVFGNode ID: 59 StorePE: [68<--11] 
 store i32* @y, i32** %7, align 8, !dbg !50 { ln: 26 cl: 9 fl: main.c }

AddrVFGNode ID: 10 AddrPE: [7<--8] 
 @k = common dso_local global i32 0, align 4, !dbg !16 { Glob ln: 8 fl: main.c }

StoreVFGNode ID: 58 StorePE: [7<--33] 
 store i32 1, i32* @k, align 4, !dbg !49 { ln: 25 cl: 7 fl: main.c }

AddrVFGNode ID: 9 AddrPE: [4<--6] 
 @z = common dso_local global i32 0, align 4, !dbg !0 { Glob ln: 8 fl: main.c }

AddrVFGNode ID: 11 AddrPE: [9<--10] 
 @w = common dso_local global i32 0, align 4, !dbg !14 { Glob ln: 8 fl: main.c }

AddrVFGNode ID: 12 AddrPE: [11<--12] 
 @y = common dso_local global i32 0, align 4, !dbg !12 { Glob ln: 8 fl: main.c }

StoreVFGNode ID: 47 StorePE: [11<--5] 
 i32 0 { constant data }

StoreVFGNode ID: 63 StorePE: [11<--99] 
 store i32 2, i32* @y, align 4, !dbg !55 { ln: 30 cl: 7 fl: main.c }

AddrVFGNode ID: 13 AddrPE: [13<--14] 
 @x = common dso_local global i32 0, align 4, !dbg !9 { Glob ln: 8 fl: main.c }

StoreVFGNode ID: 48 StorePE: [13<--5] 
 i32 0 { constant data }

StoreVFGNode ID: 61 StorePE: [13<--33] 
 store i32 1, i32* @x, align 4, !dbg !53 { ln: 28 cl: 7 fl: main.c }

Figure 3.9: Illustration example’s MPDG.

return the shortest distance between the matched node and the target node as the result.

3.6 Implementation

We built Macaron on top of S2E. S2E is composed of three components: QEMU, KLEE and

the core S2E libraries. We heavily modified KLEE in S2E to integrate with SIFT’s threads

interleaving points inference rules and a static value-flow analysis tool called SVF [106]. Our
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distance-based threads interleaving points prioritizing algorithm is implemented in the core

S2E libraries. We also added a kernel thread creation monitoring plugin, a global memory

tracing plugin and an interleaving points post-processing plugin to S2E. In this section,

we explain some of the implementation challenges we faced when implementing Macaron

according to its workflow shown in Figure 3.10.

3.6.1 The Test Program

As we can see in the Figure 3.10, The first step to reproduce a race condition bug is to find

a potential test program before doing any thread scheduling in GSSE. The test program

selection process is unique to bugs in syzbot. For bugs without reproducers in syzbot, it will

provide a large log file that has all the test programs that have been run up to the bug is

triggered. A bug report is also provided. To find the potential test program out of a large

pool, we leverage the stack dump of a bug reported in syzbot. We reuse the reproducing

process of syzbot. But as each test program is executing, we also use kprobe in the kernel

to match a function location in the bug’s stack dump. A matched location means all the

call stacks before this location are matched exactly. The test program that matches the

highest function location in the stack dump will be selected as a potential test program. It

is noteworthy that this step is not sound, which means the selected potential test program

may not be the exactly the one we need to trigger a race condition bug. But in most cases,

we are able filter out all of the test programs that are irrelevant to the bug and find one

potential test program.

3.6.2 Kernel Instrumentation

In the next step, before we feed a kernel that contains a race condition bug to GSSE, we

need to do some instrumentation to the kernel. There are three parts of instrumentation
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we need to do: 1. Add a S2E module to the kernel for use with the S2E analysis. This is

easy to do by following the instructions from S2E. 2. Add a kprobe module to the kernel

for stack matching of the test program. Macaron provides a python program that can

automatically patch a given kernel and its bug report with a kprobe module specifically

for each bug. 3. Add customized S2E instructions to enable the tracing of all the global

memories and thread creation events in the kernel. This part only requires a few lines of code

to be added to the kernel’s specific files. We intend to make this automatic in the future.

4. Add GOTO macro after each line of the kernel code that we want to enforce threads

scheduling. We use the method from bowknots [109] to automatically do this part. Even

though Macaron requires some instrumentation to the kernel, the whole process is very easy

and straightforward and can support different versions of the kernel source code. After doing

the kernel instrumentation mentioned above and get a specific test program, we can run a

kernel in Macaron to let it reproduce a race condition bug in GSSE. Before starting GSSE,

there are two configurations we need to specify in Macaron: 1. total maximum number of

testing rounds, 2. the bug location in the kernel.

3.6.3 IP Recording Optimization

Recording dynamic interleaving points in the kernel is very important in GSSE. As we

mentioned before, we borrow the IP recording idea from SIFT to decide how to record the

interleaving points. However, for the kernel, blindly recording all the interleaving points

will be impractical. In our initial try, we observed an IP explosion problem, which means

there are too many IPs that we will record just using SIFT without any optimizations.

IP explosion eventually causes severe problems since the recording process will never end

and the post-processing of the recorded IPs will not be possible. To avoid IP explosion,

we need to constraint the recording scope of IPs. We did three optimizations to solve IP

explosion problem. First, we initialize the kernel in the concrete mode of S2E and do not
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start recording any IP during the kernel’s initialization. Second, we monitor the execution

of all the bug-related threads. We use stack matching and a kernel threads creation plugin

added in GSSE to monitor the progress of all the bug-related threads. When they have

been executed to match a certain number of function calls in the stack, we then switch the

whole execution to symbolic mode. IP recording is only enforced for the kernel code running

in symbolic mode. The number of callers are tunable for different bugs. Finally, we allow

symbolic mode and concrete mode switching even after IP recording starts. All the irrelevant

modules that are not important for the bug will still be executed in concrete mode without

any IP recording. The bug relevant modules will be executed in symbolic execution with IP

recording enabled. Those three optimization greatly reduced the size of recorded IPs and

solved the IP explosion problem.

3.6.4 Threads Controlling

Another important part in GSSE is to do kernel threads controlling. Whenever the GSSE

wants to do a specific threads scheduling, we need to let the kernel’s internal scheduler

know such scheduling decision from GSSE. To achieve this, we instrument the kernel to

add a GOTO macro after each source line we want to control. The GOTO macro is a

while statement that checks on the value of the flag field in the current thread’s task struct.

We added a new field called flag in the kernel’s task struct implementation. If the flag in

the current thread’s task struct is set to 1, the current thread will go to sleep for a few

milliseconds (set to 5 for all experiments). If the flag is unset to 0, the current thread will

continue without sleeping. By setting or unsetting the flag value in each thread’s task struct,

we achieve the goal of kernel thread controlling implicitly. The flag’s value is controlled in

GSSE. We pass the virtual address of the flag field in each thread’s task struct when the

thread is created. GSSE can then write the value of a flag to its virtual address directly.

We use a single processor in the virtual machine to make the thread controlling easier in
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our implementation. We realized that adding GOTO macro in the kernel’s source code can

require heavy instrumentation to the kernel even if it is automatic as mentioned in 3.6.2. So

we plan to use kprobe to eliminate this part of instrumentation in the future. We can add

kprobe handlers at different locations of the kernel and each handler function contains the

GOTO macro.

3.6.5 MPDG for Kernel Modules

The last step in Macaron’s workflow is to generate a MPDG for kernel modules. To generate

a MPDG for a kernel module, we use SVF [106] as our static analysis tool. We added it as

a library to S2E. SVF accepts a LLVM bitcode as input and does value-flow and control-

flow analysis. In Macaron, the input bitcode is compiled and linked with all the bug-related

kernel modules. The exact modules we compile into one bitcode are decided by all the kernel

files appeared in the bug’s stack dump. Since the kernel is such a big software, compiling all

of its source code into a bitcode for static analysis will be too expensive. Besides, compiling

the whole kernel to LLVM is not even necessary for a specific bug. The SVF library runs

analysis on this bitcode file and generates an initial MPDG before the dynamic execution

starts. We store the global distance information of all the instructions in the MPDG into

a hashmap to speed up the query later. The distance is defined as the smallest number of

edges from a specific instruction to the target instruction. The target instruction is specified

by the analyst as the bug location. The MPDG will be augmented later by the dynamic IP

information from GSSE as mentioned in §3.5.

3.6.6 IP Matching

Once a dynamic IP set is recorded after Macaron finishes its current run, we sort all the

recorded IP based on the kernel’s MPDG. To get the distance of each IP in the dynamic IP
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set, we need to match each dynamic IP from S2E to its LLVM Instruction in the MPDG.

However, there is a problem in directly matching these two different versions of instructions.

The LLVM instruction executed in S2E is lifted from the kernel’s binary code while the

LLVM instruction in the MPDG is directly compiled using clang from the kernel’s source

code. They have different LLVM representations for the same binary code. To match the

same instruction from S2E to its representation in the MPDG, we generate the source line

information for LLVM instructions both in S2E and in the MPDG. We then use the source

line information of two representations of the LLVM instructions as a common ground to do

the matching. In other words, If the debug information of a dynamic IP matches the debug

information of an IP in the program dependency graph, we can say the two IPs are matched.

The distance for this dynamic IP is the distance for its matched IP in MPDG.

Figure 3.10: Macaron workflow
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3.7 Evaluation

In this section, we evaluate Macaron’s performance on reproducing different kernel race

condition bugs.

3.7.1 Bug Case Study

Before we try to use Macaron to automatically reproduce some race condition bugs, we spent

a great effort to manually study 8 use-after-free bugs and created reproducers with proper

thread controlling by adding semaphores in the kernel to trigger those bugs 3.2. According

to our study, 4 out of the 8 bugs have one race condition, which requires two context switches

to be triggered. 1 out 8 cannot be manually reproduced. 3 out 8 have two race conditions,

which require four context switches. Macaron now can only deal with race condition bugs

with one race condition and cannot deal with race condition bugs that have more than one

race condition. At the time this thesis was written, we successfully reproduced the first bug

listed in table 3.2. We show the experimental results of reproducing this use-after-free bug

using Macaron. Our goal is to see how well Macaron performs to find a reproducer.

3.7.2 Experiments

The use-after-free that found in the rc dev uevent function happens when a process un-

registers a USB gadget device. The test program first registers a USB device and allocates

different memories for it. When the user space test program exits, it unregisters the USB

gadget device. The user space test program then delegates a kernel thread to send a uevent

notification to an OS daemon called udev which manages the system’s device events. The

udev daemon processes the uevent notification and read the content in the device’s rc map

memory. But at the same time, a kernel thread has freed the registered device’s rc map mem-
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ory. This bug was captured by the Kernel Address Sanitizer (KASAN) [10] as a use-after-free

bug.

We conducted three experiments for this use-after-free bug in Macaron by changing three

variables: 1. The IP trace starting point (which is decided by the execution stage of the bug-

related threads). 2. The size of kernel bitcode compiled from the source files to generate the

MPDG. 3. Whether to use PDG that only uses static analysis or MPDG that is augmented

by dynamic GSSE on PDG. We keep the other two variables fixed while changing one of

the variables. In table 3.3, we change the IP trace starting point. N/A in the table means

we cannot reproduce the bug. The late stage of threads’ execution means we will start

recording IPs when the bug’s use and free threads reach their latest callers in their call stack,

accordingly, early and middle. This experiment shows that starting the IP tracing from late

stage of the threads’ execution helps to reproduce a bug. While starting the IP tracing

from early or middle stage of the threads’ execution cannot reproduce the bug because that

will cause Macaron to record irrelevant threads and Macaron can only handle two threads’

interleaving. We use MPDG and use a small size of kernel bitcode in this experiment.

Experiment shown in table 3.4 shows that the size of the kernel bitcode does not matter

much. We use MPDG and start the IP tracing from the late stage of the threads’ execution.

The large kernel bitcode means we compile all the files shown in the bug’s stack dump.

The small kernel bitcode means we only compile the last few files in the bug’s stack dump.

The takeaway from this experiment is that we should always start with a smaller kernel

bitcode to improve the performance. The last experiment in table 3.5 shows that MPDG

helps to reproduce a bug. While with just using PDG, the bug cannot be reproduced. This

experiment shows that the augumented information from GSSE is very important.
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Bug # of Race conditions Manually reproducible

KASAN: use-after-free Read in rc dev uevent
1 Yes

KASAN: use-after-free Read in ovl real fdget meta
1 Yes

KASAN: use-after-free Read in uprobe munmap
1 Yes

KASAN: use-after-free Write in addr resolve (2)
1 Yes

KASAN: use-after-free Read in vlan dev real dev
N/A No

KASAN: use-after-free Read in skb release head state
2 Yes

KASAN: use-after-free Read in hci dev do open
2 Yes

KASAN: use-after-free Read in recv work
2 Yes

Table 3.2: Bug Case Study

IP trace starting point Total num of states to reproduce Total generated IPs Time (mins) to reproduce

Late stage of threads’ execution
4 374 24

Middle stage of threads’ execution
N/A N/A N/A

Early stage of threads’ execution
N/A N/A N/A

Table 3.3: Different IP trace starting point evaluation

3.8 Discussions

3.8.1 Reproducer

A reproducer of a race condition bug in Macaron includes a test program and a specific

thread scheduling in the kernel. The test program is very intuitive; it is whatever the input

program we feed to the kernel to reproduce a bug. While the thread scheduling can be

represented in two different ways. First, when Macaron reproduces a bug, it will report the

exact interleaving points and their orders in different threads that we do context switching.

Macaron naturally understands such kind of thread scheduling output by itself. If the analyst
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Kernel bitcode size Total num of states to reproduce Total generated IPs Time (mins) to reproduce

Small kernel bitcode
4 374 24

Large kernel bitcode
4 403 27

Table 3.4: Different kernel bitcode size evaluation

Graph type Total num of states to reproduce Total generated IPs Time (mins) to reproduce

PDG
N/A N/A N/A

MPDG
4 374 24

Table 3.5: PDG vs MPDG evaluation

is willing to set up Macaron following the instructions and enforce such thread scheduling,

they can easily reproduce the bug. Second, if the analyst does not want to use Macaron but

instead would like to run the kernel natively with the thread scheduling enforced directly to

the kernel, they can instrument the kernel with corresponding semaphores to reproduce the

bug. We provide an example reproducer 3.11 of the first bug listed in table 3.2 in this way.

Furthermore, Macaron can possibly provide an automatic patch containing the semaphores

that can be applied directly to the kernel.

3.8.2 Limitation

Macaron has its limitation in reproducing complex race condition bugs that have more

than one race condition. Each race condition require two forced context switches. Race

condition bugs that require more than four context switches are generally hard to control and

sometime involve controlling more than two threads. Macaron now only traces two threads

and control their interleaving. But improving Macaron to reproduce complex race condition

bugs is possible. We now lack the implementation on that aspect and more experiments to

understand the complexity to reproduce them. We leave this for our future work.
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Figure 3.11: Example reproducer with semaphores
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Chapter 4

Related works

4.1 Symbolic and Concolic Execution

Symbolic execution [22, 34, 30, 69, 118, 112] can automatically generate test inputs that

execute different paths in a program. The idea of symbolic execution is instead of running

code on manually constructed input, it runs the code on symbolic input. At the beginning,

such symbolic input does not have any constraints and can be anything. The symbolic

input may propagate to other symbolic values along with the execution of some instructions.

When the program execution branches based on a symbolic value, the system forks to two

paths or states. Each path maintains a set of constraints that satisfies the conditions on the

symbolic values of the current path. When a path terminates or hits a bug, a test case can

be generated by solving the current path constraints to generate concrete inputs. The goal

of symbolic execution is to avoid generating repeated inputs that execute the same path.

Instead, it automatically generate unique inputs that each one of them executes a different

path. This idea shows to be very promising in exploring as many execution paths as possible

in a program.
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But symbolic execution also faces a lot of practical challenges for real-world programs, as

mentioned in KLEE [33]. KLEE leverages several years of lessons from their previous tool [35]

and employs a variety of constraint solving optimizations to make symbolic execution possible

for real-world programs. The work of KLEE marks a big step in pushing symbolic execution

as one of the powerful program analysis technique. A lot of works [42, 97, 48, 125, 41, 40] on

symbolic execution emerged to push symbolic execution’s practical applications in different

areas like reverse engineering and hybrid fuzzing after KLEE. RevNIC [42] takes a closed-

source binary driver, automatically reverse engineers the driver’s logic, and synthesizes new

device driver code that implements the exact same hardware protocol as the original driver.

It introduces a technique for tracing the driver/hardware interaction and turning it into a

driver state machine by using binary symbolic execution and achieves high-coverage reverse

engineering of drivers. In hybrid fuzzing, symbolic execution is usually used as a form of its

variant named concolic execution as explained next.

DART [57], CUTE [99] and CREST [32] combine concrete and symbolic execution to gener-

ate directed inputs, known as concolic execution. As explained in paper [36], unlike classical

symbolic execution, since concolic execution maintains the entire concrete state of the pro-

gram along an execution, it needs initial concrete values for its inputs. Concolic testing

executes a program starting with some given or random input, gathers symbolic constraints

on inputs at conditional statements along the execution, and then uses a constraint solver

to infer variants of the previous inputs in order to steer the next execution of the program

toward an alternative feasible execution path. Concolic execution is very useful when di-

recting symbolic execution to a specific path and collect the path’s relevant information.

QSYM [125] is a fast concolic execution engine. It supports hybrid fuzzing by tightly inte-

grating the symbolic emulation with the native execution using dynamic binary translation,

making it possible to implement more fine-grained and instruction-level symbolic emula-

tion. SAVIOR [41] is a new hybrid testing framework pioneering a bug-driven principle. It

prioritizes the concolic execution of the seeds that are likely to uncover more vulnerabili-

72



ties. Mousse also uses concolic inputs to drive the execution in a desired path when doing

distributed execution (§2.5.1) to avoid replicates.

4.2 Handle External Environment Interactions in Dy-

namic Testing

Mousse is the first framework specialized for programs interacting heavily with external

environments in symbolic execution. During dynamic testing, either fuzzing or dynamic

symbolic execution, the testing program’s interactions with external environments that are

outside of the testing components have to be dealt with probably. The responses from

external environments directly impact the continuing execution of the testing program. If

the responses from external environments are not accurate or available, there can be many

false positives or the lost potential code coverage in the testing. Even worse, it can hinder

the whole execution of the program to cause unexpected behaviors. There are different

solutions to deal with external environment interactions in dynamic testing but none of

them is suitable for programs with untamed environments as we explained in Chapter §2.

Modeling the external environments is what most of the works do when doing symbolic

execution for complex programs. KLEE provides a limited system call models to handle the

programs’ interaction with the underlying OS. Works like AEG [19, 20] and Driller [105]

that use symbolic execution to automatically generate exploits or use concolic execution to

enhance the performance of fuzzing all model the environments. PROMPT [123] provides

API models as one form of environment modeling and has been used to detect memory

vulnerabilities in the Linux kernel. Cloud9 [47] provides a new symbolic environment model

that is the first to support all major aspects of the POSIX interface, such as processes,

threads, synchronization, networking, IPC, and file I/O. The insight of Cloud9 is that as few
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as two primitives are sufficient to support complex OS interfaces such as POSIX: threads

with synchronization, and address spaces with shared memory. Even though Cloud9 partially

dealt with some of the external environment in testing the programs interacting with the

OS. There is no work can model all kinds of external environments accurately in practice

because that is a very stunting task. In some cases, the untamed environments developed

by different vendors are all block boxes and cannot even be modeled.

To avoid modeling the external environments, Chipounov et al. proposes S2E [45] to fully

virtualize the whole OS and allow transitions between symbolic execution and concrete

execution. The external environments are usually running in concrete execution to avoid path

explosion. S2E defines different execution consistency models when the switching happens

between symbolic execution and concrete execution. Each consistency model results from

different transition points between symbolic and concrete executions and hence results in a

different set of program paths being analyzed.

Under-constrained symbolic execution, as mainly realized by Under-Constrained KLEE (UC-

KLEE) [93, 94, 53], uses symbolic execution to analyze functions with systems code. Under-

constrained symbolic execution is a lazy yet straightforward way to deal with the external

environments with over estimation. It does not execute full program paths and simply

considers the function arguments and returns to be symbolic. This results in lots of false

positives. UC-KLEE therefore provides both automated heuristics and manual methods to

add preconditions to the function’s input in order to prevent some of the false positives.

Mousse, on the other hand, can execute fully-constrained program paths.

When fuzzing device drivers in the kernel, Charm [100] ports some of the device drivers of

mobile devices to run inside VMs. It does so by forwarding the drivers’ I/O interactions

with the hardware to the mobile device for execution. One may attempt to use Charm along

with S2E to analyze I/O services of mobile devices that Mousse tries to deal with. However,

Charm requires some engineering effort to support each device driver (in the order of days).
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Moreover, it may not port the drivers fully, e.g., it does not support DMA for a GPU

driver. Finally, Charm does not virtualize the device, hence S2E cannot use multiple VMs to

interact with it. Since S2E does not orchestrate interactions with an I/O device hardware (an

untamed environment), concurrent execution of VMs would result in unexpected behavior.

Decoupled SSE is another approach to deal with the testing program’s interactions with

external environments. Analyzing a program with decoupled SSE requires configuring the

symbolic and concrete execution engines in two separate devices and configuring a channel

for memory state transfer. Mayhem [38] and Centaur [77] implement a decoupled SSE

design. However, their designs are not conducive to analyzing programs with untamed

environments. Mayhem runs the concrete execution engine in a VM so that its state can

be checkpointed. Hence, similar to S2E, it requires to virtualize the hardware to analyze

programs with untamed environments. Centaur uses a decoupled SSE design to analyze

Android frameworks. However, it can analyze Java code only, whereas the programs of

interest to us are typically written in native code. Moreover, it executes the initialization

phase of the framework in concrete mode, and then moves to symbolic mode, after which it

is not capable of switching back to the concrete mode.

Qsym [125] is a fast concolic execution engine used for hybrid fuzzing. Qsym avoids taking

any path state snapshots and hence re-executes all the paths from scratch using concolic

execution. As a result, it can allow the paths to interact with the actual underlying envi-

ronment. However, Qsym does not provide support for environment-aware concurrency and

needs the interactions with the environment to be side-effect free.
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4.3 Kernel Fuzzing in General

Fuzz testing history starts in the 1980s [28]. Fuzzing [81, 28, 107] provides auto-generated

random inputs to programs in order to finding bugs of programs. To make the generation of

inputs more efficient and intelligent, fuzzers are usually feedback-driven, especially coverage-

guided. Fuzzing is very efficient in testing complex softwares. Kernel is one of the most

popular targets in the fuzzing world. Kernel fuzzing has gained its popularity over the

recent years. Syzkaller [2] as the state-of-the-art kernel fuzzing framework drives a lot of

interesting directions for kernel fuzzing. kAFL [98] introduces a new technique that utilizes

Intel’s Processor Trace to provide feedback for kernel fuzzing. HFL [70] solves the challenges

applying hybrid fuzzing that combines symbolic execution and fuzzing to kernel testing.

MoonShine [89] is a novel strategy for distilling seeds for OS fuzzers from system call traces

using light-weight static analysis for efficiently detecting dependencies across different system

calls.

Because of kernel’s large TCB, there are more and more fuzzers built to fuzz specific Linux

kernel subsystems like device drivers [100, 103, 49] and file system [71]. DIFUZE [49] is an

interface-aware fuzzing tool to automatically generate valid inputs and trigger the execution

of the kernel drivers. It leverages static analysis to compose correctly-structured input in

the userspace to explore kernel drivers. To fuzz file systems specifically, Hydra [71] provides

building blocks for file system fuzzing, including input mutators, feedback engines, a libOS-

based executor, and a bug reproducer with test case minimization.

One big challenge in fuzzing the kernel is that not only the inputs to the kernel is important

but also the state of the kernel. There are some user-level stateful fuzzers [18, 23, 102] which

try to consider states during fuzzing. Inspired by those works, Moonshine [90] and the work

[61] explores the dependency problem in the kernel. Macaron is aware of such dependency

problem in the kernel at the beginning. To trigger a race condition bug, we not only choose
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a fixed inputs but also make sure the kernel is reset to the same state before the bug is

triggered. Furthermore, during the dynamic execution, we explore all the different states set

by thread schedulings to find a specific thread scheduling.

4.4 Kernel Race Condition Bugs Detection

Finding race condition bugs is known to be difficult with the need of exploring a large

number of thread interleavings. Kernel as one of the most complex concurrent system, is

implemented with fine-grained concurrency mechanisms in mind to fully utilize the power of

multi-core hardware. While that concurrency optimization in the kernel greatly speeds up

the whole system’s execution, it is notoriously prone to race condition bugs.

Some works [52, 91, 113, 108, 111, 55, 74] use static analysis and dynamic monitoring to detect

race condition bugs in the kernel. RacerX [52] is an effective tool to statically detect race con-

ditions and deadlocks using flow-sensitive, interprocedural analysis. Relay [113] uses a static

and scalable race detection analysis in which unsoundness is modularized to a few sources

like ignoring reads and writes that occur inside blocks of assembly code. Veeraraghavan [111]

proposes to protect a program from data race errors at runtime by executing multiple replicas

of the program with complementary thread schedules. TSVD [74] uses lightweight monitor-

ing of the calling behaviors of thread-unsafe methods, not any synchronization operations,

to dynamically identify bug suspects.

There are also a lot of research works [65, 120, 39, 67] focus on fuzzing kernel race condition

bugs specifically. Razzer [65] has shed lights on data race detection by combining fuzzing and

static analysis. Krace [120] improves on fuzzing data races for kernel file systems with a novel

notion of alias coverage and an algorithm for evolving and merging multi-threaded syscall se-

quences. MUZZ [39] is a new grey-box fuzzing technique that hunts for bugs in multithreaded
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programs by using three novel thread-aware instrumentation, namely coverage-oriented in-

strumentation, thread-context instrumentation, and schedule-intervention instrumentation.

CONZZER [67] is a context-sensitive and directional concurrency fuzzing approach for thread

interleavings exploration.

However, fuzzing introduces a lot randomness which can be a double-edged sword for kernel

race condition bugs detection. The randomness introduced by fuzzing sometimes can trigger

very deep and rare race condition bugs but also miss a lot of other opportunities because

of the lack of a systematic exploration of thread interleavings. Some research works [83, 31,

58, 56, 65] focus on systematic exploration of thread interleavings to improve the efficiency

of searching a rare thread interleaving that causes a bug. Probabilistic Concurrency Testing

(PCT) [31] is a randomized algorithm that increases the probability of funding concurrency

bugs. It assumes a given input is provided and provides efficient mathematical probability

of finding a concurrency bug. PPCT [84] proposes a parallel version of the PCT algorithm.

SKI [56] is the first tool that fills the gap of controlling precisely which kernel interleavings are

executed to find kernel concurrency bugs. It tries to expose kernel concurrency bugs through

systematic schedule exploration and uses an extension of the PCT algorithm [31]. To gain

the controllability of each thread’s execution, It uses some heuristic to infer the liveness of

threads and pin each thread to a virtual CPU. Snowboard [58] targets on kernel concurrency

bugs including data races by intelligently exploring thread interleavings and test inputs

jointly. It introduces a new idea called potential memory communication (PMC) to idenfity

potential race locations. All those kernel fuzzing works specifically focus on concurrency

bugs by improving on finding better test inputs or identifying more likely race locations to

reduce search space. Razzer [65] targets on data race in the kernel using guiding fuzz testing.

To reduce exploration space of data races, it identifies over-approximated potential data race

spots using static analysis and prioritizes searches over those potential data race spots.

Macaron differs from all of those aforementioned works in terms of exploring the search
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space of thread interleavings. Macaron uses a distance-based interleaving points prioritizing

algorithm to do GSSE, which is much more efficient and goal oriented. Macaron is orthogonal

to those works and can be used as a complementary reproducing tool for any kernel fuzzers

built on top syzkaller.

4.5 Concurrency Bugs Reproducing and Debugging

Macaron is a work specifically for reproducing kernel race condition bugs and is hence highly

related to concurrency bugs reproducing in user-space multithreaded programs. For user-

space concurrent programs, the software community has done intensive research works to

debug and reproduce race condition bugs.

Record-and-replay is one of the most effective ways for combating concurrency bugs. The

record and replay technique [16, 72, 104, 46, 51, 85, 50] aims to fully record the problematic

execution of concurrent programs. The programmers later can use the recorded informa-

tion to replay the bug. However, recording such information comes with a high cost. As

mentioned in LEAP [62] and CLAP [64], conventional deterministic multi-processor replay

techniques usually incur a significant runtime overhead of 10x to 100x [46, 50], making them

unattractive for production use or even for testing. LEAP [62] is a deterministic record and

replay technique that uses a new type of local order w.r.t. the shared memory locations and

concurrent threads. It records much less information without losing the replay determinism

compare to other works. CLAP [64] loges purely local execution of each thread, which is

substantially cheaper than logging memory interactions. Symbiosis [78] and Cortex [79] ex-

tend CLAP by isolating the root cause of the failure [78] and by reproducing failures that are

control-flow dependent [79]. Despite the efforts made by many works [62, 63, 128, 64, 66] to

reduce the overhead of record and replay, it is still very challenging to use this technique in

the kernel race condition bugs because of both the performance reduction and the difficulty
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to record the needed synchronization information.

Compared to record-and-replay, a less expensive way to reproduce race condition bugs is

using the limited offline information like core dumps, crash stacks or logs to reveal the de-

tails of the bug. RECORE [96] is the first technique to use evolutionary search-based test

generation to reconstruct failures from saved core dumps. D Weeratunge’s work [115] ana-

lyzes multicore dumps to facilitate concurrency bug reproduction. It automatically identifies

the execution point in the re-execution that corresponds to the failure point. It does so by

analyzing the failure core dump and leveraging a technique called execution indexing that

identifies a related point in the re-execution. ConCrash [27] utilizes the crash stacks of a

bug to automatically generate test codes that reproduce concurrency failures that violate

thread-safety. Crash stacks are generally easier to get compare to core dumps. Semfuzz [124]

uses on-code textual bug descriptions, e.g., CVE, Linux git logs for reconstructing exploits

on known vulnerabilities. It is designed and implemented as a semantics-based approach for

automatic generation of proof-of-concept exploits. It works for bugs with rich textual bug

descriptions and only 2.6% of the total bugs addressed in the paper are race conditions.

4.6 Other Related Work

AFix [68] is a tool that automates the whole process of fixing one common type of concur-

rency bug: single-variable atomicity violations. AFix starts from the bug reports of existing

bug-detection tools like CTrigger [91]. It augments these with static analysis to construct

a suitable patch for each bug report. However, it requires a bug report that manifests the

interleaving scheduling of the bug. Macaron is different with AFix in finding such an inter-

leaving scheduling that triggers a concurrency bug. The automation of generating a patch

is also something Macaron interest to do and we leave that for the future work.
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Execution synthesis [127] uses a combination of static analysis and symbolic execution, it

”synthesizes” a thread schedule and various required program inputs that cause the bug

to manifest. The synthesized execution can be played back deterministically in a regular

debugger, like gdb. Macaron differs from [127] that it uses a different guided SSE algorithm

and works for the kernel race condition bugs specifically.

Use-After-Free (UAF) bugs are usually hard-to-detect. There are works focus on detecting

UAF bugs specifically during fuzzing. UAFuzz [87] is the first (binary-level) directed greybox

fuzzer dedicated to UAF bugs. UAFL [114] first performs a static typestate analysis to find

operation sequences potentially violating the UAF typestate property and then use fuzzing

to discover vulnerabilities violating typestate properties. Its fuzzing process is guided by

the operation sequences in order to progressively generate test cases triggering property

violations. Macaron partially deals with UAF bug that caused by race conditions and mainly

focuses on reproducing them.
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[96] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea. Reconstructing core dumps.
In 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation, pages 114–123. IEEE, 2013.

[97] R. Sasnauskas, O. S. Dustmann, B. L. Kaminski, K. Wehrle, C. Weise, and
S. Kowalewski. Scalable symbolic execution of distributed systems. In 2011 31st
International Conference on Distributed Computing Systems, pages 333–342. IEEE,
2011.

[98] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. {kAFL}:{Hardware-
Assisted} feedback fuzzing for {OS} kernels. In 26th USENIX Security Symposium
(USENIX Security 17), pages 167–182, 2017.

[99] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for c. ACM
SIGSOFT Software Engineering Notes, 30(5):263–272, 2005.

[100] S. M. Seyed Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. Amiri Sani, and Z. Qian.
Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile Systems. In Proc.
USENIX Security Symposium, 2018.

[101] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis. In Proc. IEEE Symposium on Security and
Privacy (S&P), 2016.

[102] C. Song, B. Yu, X. Zhou, and Q. Yang. Spfuzz: a hierarchical scheduling framework
for stateful network protocol fuzzing. IEEE Access, 7:18490–18499, 2019.

[103] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna, C. Kruegel, J.-
P. Seifert, and M. Franz. Periscope: An effective probing and fuzzing framework for the
hardware-os boundary. In 2019 Network and Distributed Systems Security Symposium
(NDSS), pages 1–15. Internet Society, 2019.

[104] S. M. Srinivasan, S. Kandula, C. R. Andrews, Y. Zhou, et al. Flashback: A lightweight
extension for rollback and deterministic replay for software debugging. In USENIX
Annual Technical Conference, General Track, pages 29–44. Boston, MA, USA, 2004.

[105] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Driller: Augmenting Fuzzing Through Selective Symbolic
Execution. In Proc. Internet Society NDSS, 2016.

[106] Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in llvm. In Proceedings
of the 25th international conference on compiler construction, pages 265–266, 2016.

[107] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability discovery.
Pearson Education, 2007.

89



[108] B. Swain, B. Liu, P. Liu, Y. Li, A. Crump, R. Khera, and J. Huang. Openrace: An
open source framework for statically detecting data races. In 2021 IEEE/ACM 5th
International Workshop on Software Correctness for HPC Applications (Correctness),
pages 25–32. IEEE, 2021.

[109] S. M. S. Talebi, Z. Yao, A. A. Sani, Z. Qian, and D. Austin. Undo workarounds
for kernel bugs. In 30th USENIX Security Symposium (USENIX Security 21), pages
2381–2398, 2021.

[110] M. A. Vander-Pallen, P. Addai, S. Isteefanos, and T. K. Mohd. Survey on types of
cyber attacks on operating system vulnerabilities since 2018 onwards. In 2022 IEEE
World AI IoT Congress (AIIoT), pages 01–07. IEEE, 2022.

[111] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. Detecting and surviving
data races using complementary schedules. In Proceedings of the twenty-third ACM
symposium on operating systems principles, pages 369–384, 2011.
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