
UNIVERSITY OF CALIFORNIA,
IRVINE

Securing Mobile Devices Through Discovery, Mitigation, and Prevention of Vulnerabilities

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Seyed Mohammadjavad Seyed Talebi

Dissertation Committee:
Professor Ardalan Amiri Sani, Chair

Professor Gene Tsudik
Professor Qi Alfred Chen

2022

Portion of Chapter 2 © 2018 USENIX, reprinted, with permission, from [214]
Portion of Chapter 3 © 2021 USENIX, reprinted, with permission, from [215]

Portion of Chapter 4 © 2021 ACM, reprinted, with permission, from [213]
All other materials © 2022 Seyed Mohammadjavad Seyed Talebi

DEDICATION

This thesis work is dedicated to my lovely wife, Saba, who has always been a constant
source of support and encouragement for me. I am truly thankful for having you in my life.

ii

Contents

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Vulnerability Discovery . 3
1.2 Vulnerability Mitigation . 5

1.2.1 Bowknots . 6
1.2.2 MegaMind . 7

1.3 Vulnerability Prevention . 8

2 Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile Sys-
tems 10
2.1 Motivation . 14

2.1.1 Manual Interactive Debugging . 14
2.1.2 Record-and-Replay . 14
2.1.3 Fuzzing . 15

2.2 Remote Device Driver Execution . 17
2.2.1 Device and Device Driver Interactions 18
2.2.2 Device Driver Initialization . 19
2.2.3 Low-Latency USB Channel . 20
2.2.4 Dependencies . 21
2.2.5 Porting a Device Driver to Charm . 22

2.3 Implementation & Prototype . 24
2.4 Evaluation . 25

2.4.1 Engineering Effort . 26
2.4.2 Performance . 26
2.4.3 Record-and-Replay . 28
2.4.4 Bug Finding . 29

iii

3 Undo Workarounds for Kernel Bugs 31
3.1 Motivation . 34

3.1.1 Unpatched Kernel Bugs . 34
3.1.2 Problems with Unpatched Kernel Bugs 35
3.1.3 Current Approaches . 36

3.2 Overview . 37
3.2.1 Goals . 37
3.2.2 Key Idea & Design . 38
3.2.3 Workflow . 40

3.3 Bowknots . 41
3.3.1 Function Instrumentation . 42
3.3.2 Recursive Undo of Call Stack . 46

3.4 Automatic Generation of Bowknots . 47
3.4.1 Function-Pair Knowledge Database 48
3.4.2 Generating the Undo Block . 50
3.4.3 Incompleteness and Confidence Score 52

3.5 Implementation . 53
3.6 Evaluation . 56

3.6.1 Effectiveness . 56
3.6.2 Manual Effort for the Pair Database 61
3.6.3 Performance Overhead . 62
3.6.4 Use-Case Evaluation . 62

3.7 Other Limitations . 66

4 MegaMind: A Platform for Security & Privacy Extensions for Voice As-
sistants 68
4.1 Motivating Extensions . 72
4.2 Architectural Overview . 74
4.3 Trust & Threat Model . 75
4.4 Permission Enforcement . 78

4.4.1 Access Permissions . 79
4.4.2 Modification Permissions . 82

4.5 Non-interference . 83
4.5.1 Non-interference definition . 84
4.5.2 Non-interference guarantee . 85

4.6 Novel Security Features . 88
4.6.1 Secure Conversation . 88
4.6.2 Anonymous Query . 90

4.7 Implementation . 91
4.7.1 Key Implementation Components . 91
4.7.2 Performance Optimizations . 93

4.8 Evaluation . 94
4.8.1 Performance . 95
4.8.2 Effectiveness . 98

iv

5 Split-Trust Machine Model 103
5.1 Background . 105

5.1.1 Trust Definitions . 105
5.1.2 Trust in Existing Systems . 107

5.2 Key Goal and Principle . 109
5.3 Split-Trust Machine Model . 110

5.3.1 Static Partitioning and Physical Isolation 111
5.3.2 Exclusive Inter-Domain Communication 112
5.3.3 Power Management . 114
5.3.4 Hardware Root of Trust . 114
5.3.5 High Performance I/O . 115
5.3.6 Domain and Mailbox Reset . 116

5.4 Prototype . 117
5.4.1 Verified Hardware Design . 118

5.5 Evaluation . 119
5.5.1 Hardware Cost . 119
5.5.2 Performance . 120

6 Related Work 123
6.1 Vulnerability Discovery . 123

6.1.1 Remote I/O Access . 123
6.1.2 Analysis of System Software . 124
6.1.3 Mobile Testing . 126

6.2 Vulnerability Mitigation . 127
6.2.1 Bug workarounds. 127
6.2.2 Automatic fault recovery. 127
6.2.3 Input filtering. 129
6.2.4 Automated patching. 129
6.2.5 Error handling analysis. 130
6.2.6 Voice assistants security. 131

6.3 Vulnerability Prevention . 133
6.3.1 Security by physical isolation. 133
6.3.2 Secure I/O for TEEs. 134
6.3.3 Time protection. 134
6.3.4 Other TEE solutions. 135

7 Conclusions 136

Bibliography 138

Appendix A Bugs description 157

v

List of Figures

Page

1.1 Repetitive reboots when fuzzing the camera device driver of Nexus 5X. 4

2.1 Charm enables a security analyst to run a mobile I/O device driver in a virtual
machine and apply dynamic analysis to it. 12

2.2 (a) Device driver execution in a mobile system. (b) Remote device driver
execution in Charm. 18

2.3 (a) Execution speed of the fuzzer. (b) Coverage of the fuzzer. 27

3.1 High-level idea behind bowknots and Hecaton. 39
3.2 Example function in the Qualcomm KGSL GPU device driver after instru-

mentation with a bowknot. (Up) Automatically-triggered, (Down) Manually-
triggered bowknot. The blue and bold text highlights the automatically added
code. The green and italic text highlights the manually added lines. The code
presented here is slightly modified from the actual function code and from the
one generated by Hecaton for better readability. 43

3.3 Hecaton Confidence score prediction for Tuning and Testing sets 61
3.4 GPU and TCP performance as the number of executed bowknots increase. (a)

Pixel3 GPU , (b) Pixel3 TCP, (c) x86 upstream Linux (running in QEMU)
TCP. 63

3.5 The setup used in our fuzzing experiments. 63
3.6 (a) Total executed fuzzing programs. (b) Covered basic blocks (code coverage

percentage is also reported on top of each bar). 64
3.7 Time taken for the fuzzer to discover a bug (i.e., trigger a bug for the first

time). Each x-axis tick represents a unique bug.The points with no error bars
represent bugs only found once during experiments 65

4.1 Amazon Alexa voice assistant architecture. 73
4.2 Adding the MegaMind extensibility platform to Amazon Alexa. MegaMind’s

functionality is shown in green. 73
4.3 Trigger rules description language. 81
4.4 Latency breakdown for different extensions for three platforms. For each ex-

tension, first, second and third bars, respectively, show the average latency
for first, middle, and overall commands in a session. The last bar shows the
baseline latency for that extension. 95

vi

4.5 Impact of number of extensions on latency. 97
4.6 Extensions CPU utilization. For each extension, first, second, and third bar

groups, respectively, represent laptop, RPi 4, and RPi 3. 98

5.1 (a) Traditional design where the OS isolates security-critical programs from
normal programs. (b) Use of a TEE to isolate a security-critical program. . . 107

5.2 Simplified overview of the split-trust machine model. The figure does not show
all mailboxes for clarity. 111

5.3 Mailbox design. 113

vii

List of Tables

Page

2.1 Device drivers currently supported in Charm. 24
2.2 Bugs we found in device drivers through fuzzing with Charm. MI and LC

refer to confirming the bug by Manual Inspection and by checking the driver’s
Latest Commits, respectively. 29

3.1 CVEs and real kernel bugs tested with bowknots. (* In these cases, the system
was functional right after mitigation by Talos, but it stopped working after
a while due to a memory leak resulting from code disabling, **Bug1: bug in
msm camera power down) . 58

3.2 Unpatched bugs experiments (x86 Linux kernel bugs reported by Syzbot).
(*Average # of added undo statements for incomplete bowknots by Hecaton) 58

3.3 Bug injection experiments (camera device driver and Binder IPC).(*Average
of added undo statements for incomplete bowknots by Hecaton) 59

3.4 Effective fuzzing time. U. and B. refer to using unmodified kernel vs. a kernel
updated with bowknots. The number of reboots are per hour. Up time which
is the overall time during which the fuzzer is running including wasted reboot
time is 24h for all experiments. Fuzz time (i.e., effective fuzz time) is the time
during which the fuzzer is actually fuzzing the kernel of the device. 59

3.5 Bowknots vs. code disabling (Talos) for fuzzing. 66

4.1 MegaMind protection for attacks. 78
4.2 This table summarizes all possible types of interference extension E1 can cause

on extension E2’s execution. “3” means MegaMind can prevent interference.
In each case, interference is avoided by: Extensions’ definition (E), Order of
execution (O), Limitations on extensions (L), and Trust model (T). 82

4.3 MegaMind’s detection errors. FN stands for false negatives, and FP for false
positives. 100

5.1 Theorems we prove for our mailbox. Proving some of these theorems require
proving multiple lemmas not listed here. 118

5.2 Cost of additional hardware in our machine. 120
5.3 Mailbox performance. 121
5.4 Storage performance. 121
5.5 Network performance. 122

viii

ACKNOWLEDGMENTS

I am incredibly thankful to my advisor, professor Ardalan Amiri Sani. During my PhD, he
gave me the courage to work on challenging research problems, and with his patience, he
taught me not to give up when I face obstacles. Without his knowledge and guidance, I
could not finish my PhD.

I am also thankful to my committee members, professor Gene Tsudik and professor Qi
Alfred Chen who dedicated their valuable time to give me their insightful feedback on this
dissertation.

I would like to express my gratitude to my wonderful collaborators, professor Zhiyn Qian,
Dr. Daniel Austin, Dr. Alec Wolman, and Dr. Stefan Saroiu. They always guided me
towards the best research directions with their insightful ideas.

I would like to especially thank my friend, collaborator, and groupmate at TrussLab, Zhihao
(Zephyr) Yao who co-led the split-trust machine project with me. Without his extraordinary
effort to build OctopOS, a brand-new operating system to manage the split-trust machine,
it was impossible to evaluate and show the effectiveness of my hardware design.

I am deeply thankful for my amazing wife and my family who have always been supportive
of me during my PhD studies.

I would like to acknowledge the funding support made by the National Science Foundation
(NSF) Awards #1617481, #1846230, and #1953932.

ix

VITA

Seyed Mohammadjavad Seyed Talebi

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2019
University of California, Irvine Irvine, CA

Master of Science in Electrical Engineering-Digital Electronics 2016
Sharif University of Technology Tehran, Iran

Bachelor of Science in Electrical Engineering-Digital Systems 2014
Sharif University of Technology Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2016–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016
University of California, Irvine Irvine, California

Teaching Assistant 2015
Sharif University of Technology Tehran, Iran

x

REFEREED JOURNAL PUBLICATIONS

Thorough approach toward cylindrical MMW image re-
construction using sparse antenna array

2018

IET Image Processing

Improved Two-Dimensional Millimeter-Wave Imaging
for Concealed Weapon Detection Through Partial
Fourier Sampling

2015

Journal of Infrared, Millimeter, and Terahertz Waves (JIMTW)

REFEREED CONFERENCE PUBLICATIONS

Undo Workarounds for Kernel Bugs August 2021
USENIX Security

MegaMind: A Platform for Security & Privacy Exten-
sions forVoice Assistants

June-July 2021

MobiSys

Charm: Facilitating Dynamic Analysis of Device
Drivers of Mobile Systems

August 2018

USENIX Security

SOFTWARE

Undo Workaround for kernel bugs https://trusslab.github.io/hecaton/

USENIX’21

MegaMind https://trusslab.github.io/megamind/

MobiSys’21

Charm https://trusslab.github.io/charm/

USENIX’18

xi

https://trusslab.github.io/hecaton/
https://trusslab.github.io/megamind/
https://trusslab.github.io/charm/

ABSTRACT OF THE DISSERTATION

Securing Mobile Devices Through Discovery, Mitigation, and Prevention of Vulnerabilities

By

Seyed Mohammadjavad Seyed Talebi

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Ardalan Amiri Sani, Chair

Mobile devices, such as smartphones and tablets, have a critical role in our everyday life. We

use our mobile devices for various personal and professional tasks. Unfortunately, numerous

bugs and vulnerabilities have been found in them. As a result, there are important concerns

regarding the security and privacy of these devices. Compared to conventional personal

computers, mobile devices have unique features such as a different processor family (e.g.

ARM), different operating systems (e.g. Android), and a diverse set of I/O devices. These

features raise unique challenges in securing them.

We pursued a comprehensive approach in three directions towards addressing the challenges

of building secure mobile devices. In the first direction, we proposed Charm, a system so-

lution to improve software analysis and bug/vulnerability discovery in mobile devices. In

the second direction, we provided mitigations for existing bugs/vulnerabilities via imple-

menting two security extensions, bowknots, which provide undo workaround for kernel bugs,

and MegaMind, which provides an extensibility platform for security and privacy of voice

assistants. Finally, we introduced a split-trust machine model, which uses physical isolation

to prevent bugs from making security-critical applications vulnerable.

xii

Chapter 1

Introduction

Mobile devices, such as smartphones and tablets, have a critical role in our everyday life.

We use them for various personal and professional tasks, from sharing our family pictures

on our social media to managing our bank accounts. Unfortunately, numerous bugs and

vulnerabilities has been found in the mobile devices. As a result, there are important concerns

regarding their security and privacy. Compared to conventional personal computers, mobile

devices have unique features such as a different processor family (e.g. ARM), different

operating systems (e.g. Android), and a diverse set of I/O devices. These features raise

unique challenges in securing them.

Mobile devices are much more diverse than conventional personal computers. We can find

them in the forms of smartphones, tablets, voice assistants, smartwatches, intelligent portable

medical devices, and so on. It is reported that there are more than a thousand Android device

manufacturers and more than 24,000 distinct Android devices seen just in 2015 [1]. These

devices incorporate various sensors, processors, and actuators based on their specific appli-

cation needs. As we need more software to manage diverse mobile hardware, the possibility

of introducing bugs and vulnerabilities increases.

1

In addition, unlike traditional personal computers, where users mainly use a keyboard or a

mouse for interaction, more diverse interaction methods are available with mobile devices.

For instance, voice assistants, such as Amazon Alexa [45], Google Assistant [57], Apple

Siri [67], and Microsoft Cortana [65], let you give commands to your mobile device in natural

human language. Brand-new user-device interactions result in unprecedented challenges,

making traditional security countermeasures ineffective. It is important to carefully study

and analyze mobile devices to address these new security and privacy concerns.

A mobile device comprises different components, from user-facing components, such as user

interface and applications, to system-level components, including system services, operating

system, and the hardware. We focused on improving the security of the system-level com-

ponents of mobile devices for several reasons. First, they are the most privileged part of a

mobile device. A bug/vulnerability in them can compromise the whole system’s security or

completely paralyze the system’s functionality. For example, hardware side-channel vulner-

abilities such as the Meltdown [173] and Spectre [160] enabled untrusted applications to gain

kernel privileges. Second, system-level components are a huge part of a mobile device. Only

the kernel of the operating system consists of millions of lines of code. Indeed, operating

system kernels are hot targets for security attacks, too. For example, according to Google,

an increasing number of attacks on mobile devices are now targeting the kernel (i.e., 44% of

attacks in 2016 vs. 9% and 4% of them in 2015 and 2014, respectively) [16].

We pursued a comprehensive approach in three directions towards addressing the challenges

of building secure mobile devices. In the first direction, we proposed Charm [214], a system

solution to improve software analysis and bug/vulnerability discovery in mobile devices. In

the second direction, we provided mitigations for existing bugs/vulnerabilities via imple-

menting two security extensions, bowknots [215], which provide undo workaround for kernel

bugs, and MegaMind [213], which provides an extensibility platform for security and privacy

of voice assistants. Finally, we introduced a split-trust machine model, which uses physi-

2

cal isolation to prevent bugs from making security-critical applications vulnerable. In the

following sections, we discuss each of these directions in more detail.

1.1 Vulnerability Discovery

Over the years, many static and dynamic analysis solutions have been invented for system

software analysis and bug/vulnerability discovery. Static analysis refers to techniques in

which a tool analyzes the source code or the compiled binary of a program without executing

the program. On the other hand, in dynamic analysis, the tool analyzes the program’s

behaviour at runtime. Symbolic execution [206, 106, 162], and taint and pointer analyses

[178] are a few examples of static analysis used in mobile systems1. On the other side, fuzzing

is an effective dynamic analysis and automatic vulnerability discovery technique, which can

be applied to the operating system kernel and device drivers of mobile systems as well.

Previously, static analysis has been extensively used on mobile devices [108, 87, 198]. How-

ever, static analysis tools suffer from important limitations. They cannot uncover all the

bugs and vulnerabilities. They can only detect those for which the analyzer explicitly checks

for. Therefore, they might miss some unchecked types of bugs. Moreover, static analysis

solutions often suffer from significant false positive rates due to imprecision. Thus, dynamic

analysis needs to be adopted to combat these challenges.

The diversity of mobile devices and the inclusion of physical I/O devices create challenges

for dynamic analysis, especially for mobile operating systems. A large number of highly

diverse and customized device drivers are required to power the corresponding set of distinct

I/O devices. Device drivers run in the kernel of the operating system and are known to

be the source of many serious vulnerabilities, such as root vulnerabilities [263]. Therefore,

analyzing and patching the vulnerabilities in them is crucial. Unfortunately, performing dy-

1In this thesis, we use the terms ”mobile device” and ”mobile system” interchangeably.

3

Rebooting

Fuzzing

 50 100 150 200
Time (minutes)

Figure 1.1: Repetitive reboots when fuzzing the camera device driver of Nexus 5X.

namic analysis on device drivers in mobile systems is difficult, inefficient, or even impossible,

depending on the analysis. For example, a kernel fuzzer, such as kAFL [211] or Google

Syzkaller [6], can be used to find various types of bugs in the operating system kernel, in-

cluding device drivers. Unfortunately, fuzzing the device drivers in mobile systems encounter

various disadvantages. First, using kAFL requires running the driver in an x86-based virtual

machine, which is not possible for mobile drivers. Second, using Syzkaller directly on mobile

systems is challenging due to (i) lack of support for the latest fuzzing features, such as new

Syzkaller’s kernel sanitizers [11, 13, 12, 14] and (ii) difficulty of usage due to lack of access

to the system’s console [7] without using a specialized hardware.

To tackle these challenges, we present Charm, a system designed to facilitate dynamic anal-

ysis of device drivers of mobile systems to find and investigate their vulnerabilities. Our key

contribution in Charm that makes this possible is a systems solution for the execution of de-

vice drivers of a mobile system within a virtual machine on a different physical machine, e.g.,

a workstation. Such a capability overcomes the aforementioned deficiencies. That is, since

the device driver executes within a virtual machine, it enables the analyst to use various

dynamic analyses, including manual interactive debugging, record-and-replay, and an en-

hanced fuzzing. We discuss Charm’s architecture and the challenges we solve implementing

it in more detail in chapter 2.

Working on Charm, we identified another challenge in automatic vulnerability discovery in

mobile systems. Kernel bugs, when triggered by the fuzzer, result in the reboot of the system.

4

Unfortunately, reboots waste a noticeable amount of fuzzing time. The reboot itself takes 10s

of seconds to minutes, according to our own experience with various Android-based mobile

devices and according to others [19]. In addition to wasting fuzzing time, a reboot resets the

state of the system, throwing away the progress made by the fuzzer in mutating the state in

order to find new bugs. Figure 1.1 shows the timeline for one fuzzing session (i.e., fuzzing

the camera device driver of Nexus 5X using Syzkaller). As can be seen, reboots happen very

frequently, resulting in only 44.6% of the overall fuzzer uptime being spent on fuzzing (i.e.,

fuzzing time). The main reason for most reboots is triggering only 6 unique bugs again and

again. In chapter 3, we introduce bowknots, and in section 3.6.4, we show how they increase

fuzzing efficiency in mobile systems by eliminating most of the unnecessary reboots.

1.2 Vulnerability Mitigation

After security analysts or automatic vulnerability discovery tools discover a bug or a design

flaw in a system, they report it to the system’s maintainers. Due to the complexity and

diversity of current software systems, it might take a long time before the system’s main-

tainers can fix the problem and distribute the patched software to all users. For example,

bugs in several drivers of Android smartphones based on Qualcomm chipsets need to be

fixed by Qualcomm. Qualcomm says: “the company hopes to patch disclosed flaws and

vulnerabilities within 90 days” [20]. During this period of time, the users’ systems remain

vulnerable to attacks that endanger their privacy and security.

In addition, fixing some design flaws might require extreme changes to the design of the

whole system. Overhauling the design of a complex system is a costly task and takes a

lot of time. Hence systems’ vendors might not fix those design flaws in a timely manner,

and users remain vulnerable. For example, currently, voice assistants forward some of the

users’ requests to untrusted third-party services. Since these services can run on private

5

third party servers, users and the voice assistant vendor can not control what they do with

users’ request. Although this design flaw has been notified by security analysts, and even

several security attacks proposed exploiting it [118, 185, 234, 94, 161, 28, 119], it is not yet

addressed by the vendors.

Security extensions can be used to address the mentioned challenges. Security extensions

extend the capabilities of a system and help users to keep their devices secure without waiting

for the system’s vendor to fix a bug or a design flaw in the system. Security extensions has

been previously used in mobile systems to help in securing the Android operating system [142,

85]. We introduced two novel security extensions, bowknots, and MegaMind. Bowknots help

the kernel of the Android operating system to work around existing bugs, and MegaMind

extends the privacy and security capabilities of voice assistants. In the following sub-sections,

we introduce bowknots and MegaMind, and we will discuss them in more detail in chapters

3 and 4.

1.2.1 Bowknots

Currently, the common practice to deal with kernel bugs is to find them and then patch

them. There has been a lot of progress recently to automate the first step (i.e., finding

bugs) [6, 211, 199, 197]. However, the second step (i.e., patching bugs) remains a highly

manual and lengthy process. In practice, this requires reporting the bug to the developers of

the code, e.g., the vendor in charge of a device driver, and waiting for a patch. Unfortunately,

this wait can take months for the bug to sit in a queue, be evaluated by developers, and get

a patch developed, tested, and merged into the kernel. While a bug is waiting for a patch,

the kernel remains vulnerable posing security, reliability, and usability issues.

To solve this issue, we introduce workarounds for kernel bugs before they are correctly

patched. We refer to such a workaround as a Bug undO Workaround for KerNel sOlidiTy

6

(bowknot). The key idea behind a bowknot is to undo the effects of the syscall that triggers a

bug. In other words, when a syscall is issued and triggers a bug, the bowknot gets activated

and neutralizes the effects of that syscall.

Undoing the syscall at arbitrary points of execution is challenging since not only a syscall can

affect the kernel memory state, it can even change the state of I/O devices, e.g., a camera.

The latter is especially important for device drivers, which contain most of the kernel bugs

(e.g., 85% of bugs in Android kernels [237]). To address this problem, we leverage existing

undo statements in error handling blocks in the kernel to generate the right undo blocks for

the functions in the execution path of the bug.

A bowknot has five important properties. (1) it is fast to generate. (2) it is designed to

maintain the system’s functionality even if the bug is triggered. (3) it does not require any

special hardware support. (4) it does not add any noticeable performance overhead. (5) it

requires small changes to the kernel. We discuss bowknots design and implementation, and

we demonstrate how bowknots can efficiently achieve the goals mentioned above in chapter

3.

1.2.2 MegaMind

Voice assistants provide a convenient user interface: natural language. However, this con-

venience comes with serious security and privacy risks. A voice assistant uses an always-on

microphone and operates by capturing audio and sending it to the manufacturer’s cloud

service for processing. The cloud service transcribes the audio and interprets it as user re-

quests. Audio recordings can have private and sensitive content, such as medical or sexual

information [140]. Moreover, interpreted requests may result in unintended or unapproved

actions, such as a purchase or a phone call. These unintended actions can be either due to

“mistakes” by the assistant, or attacks [32, 31]. Moreover, the assistants’ responses might

7

contain inappropriate content, such as content not suitable for children [21].

To make matters worse, voice assistants incorporate many third-party applications, which

enhance the assistant functionality [69]. Unlike android or iOS applications, voice assistant’s

applications do not run on the voice assistant hardware. Instead, they are cloud services

invoked by the manufacturer’s cloud service. Researchers have shown a plethora of additional

security and privacy concerns surrounding voice assistant’s third-party applications [118, 185,

234, 94], including malicious skills (applications for Amazon Alexa voice assistant) [161] and

unintended voice data leaks [28, 119].

To tackle this problem, we present MegaMind, a security and privacy extensibility platform

for voice assistants. MegaMind extensions execute locally on the assistant itself. They in-

tercept the recorded audio before sending it to the manufacturer’s cloud service, and the

response audio before delivering it to the user. Extensions can thus inspect, modify, or dis-

card unwanted content to meet a user’s security and privacy goals. For example, a redaction

extension removes any mentions of a user’s personal information from the recorded audio.

We discuss how MegaMind can efficiently improve the security and privacy of voice assistants’

users in chapter 4.

1.3 Vulnerability Prevention

Despite all our efforts to discover and fix system’s vulnerabilities as quickly as possible,

there are still zero-day vulnerabilities that endanger computer systems and specifically the

security of mobile systems. In the previous section, we discuss how to alleviate some of the

damages of existing vulnerabilities through security extensions. However, the better solution

is to design the system in a way that is more resilient against system’s bugs and hence is

more secure by design. Towards this direction, we introduced the split-trust machine model.

8

The split-trust model leverages statically-partitioning and physical-isolation to minimize the

number and the complexity of hardware and software components that need to be trusted

to ensure the security of a program’s execution. This way, using the split-trust model, we

can execute security-critical and non-critical programs side-by-side in a system.

Split-trust machine model comprises multiple trust domains, one or multiple for trusted

execution environments (TEEs), one for each I/O device, one for a resource manager, and one

for hosting a commodity OS and its programs. The trust domains are statically-partitioned

and physically-isolated : they each have their own processor and memory (and one I/O device

in the case of an I/O domain) and do not share any underlying hardware components; they

can only communicate by message passing over a hardware mailbox. Moreover, we introduce

a few simple, formally-verified hardware components that enable a program to gain provably

exclusive access to one or multiple domains.

In chapter 5, we discuss our implementation of the split-trust machine model on top of a

CPU-FPGA board and will demonstrate how this machine model improves the security of

the system with a small added hardware cost.

9

Chapter 2

Charm: Facilitating Dynamic Analysis

of Device Drivers of Mobile Systems

Today, mobile systems, such as smartphones and tablets, incorporate a diverse set of I/O

devices, e.g., camera, display, sensors, accelerators such as GPU, and various network devices.

These I/O devices are the main driving force for product differentiation in a competitive

market. It is reported that there are more than a thousand Android device manufacturers and

more than 24,000 distinct Android devices seen just in 2015 [1]. Therefore, one smartphone

vendor might use a powerful camera so that its smartphone would stand out in this market,

while another might be the first to incorporate a fingerprint scanner.

Such diversity has an important implication for the operating system of mobile systems:

a large number of highly diverse and customized devices drivers are required to power the

corresponding set of distinct I/O devices. Device drivers run in the kernel of the operating

system and are known to be the source of many serious vulnerabilities such as root vul-

nerabilities [263]. Therefore, security analysts invest significant effort to find, analyze, and

patch the vulnerabilities in them. Unfortunately, they face important deficiencies in doing

10

so. More specifically, performing dynamic analysis on device drivers in mobile systems is dif-

ficult, inefficient, or even impossible depending on the analysis. For example, some dynamic

analyses, including introspecting the driver and kernel state with a debugger (such as GDB)

and record-and-replay, requires the driver to run within a controlled environment, e.g., a

virtual machine. Unfortunately, doing so for device drivers running in the kernel of mobile

systems is impossible. As another example, a kernel fuzzer, such as kAFL [211] or Google

Syzkaller [6], can be used to find various types of bugs in the operating system kernel includ-

ing device drivers. Unfortunately, fuzzing the device drivers in mobile systems encounter

various disadvantages. First, using kAFL requires running the driver in an x86-based virtual

machine, which is not possible for mobile drivers. Second, using Syzkaller directly on mobile

systems is challenging due to (i) lack of support for latest fuzzing features, such as new

Syzkaller’s kernel sanitizers [11, 13, 12, 14] and (ii) difficulty of usage due to lack of access

to the system’s console [7] without using a specialized hardware.

In this chapter, we present Charm, a system designed to facilitate dynamic analysis of device

drivers of mobile systems in order to find and investigate the vulnerabilities in them. Our

key contribution in Charm that makes this possible is a systems solution for the execution of

device drivers of a mobile system within a virtual machine on a different physical machine,

e.g., a workstation. Such a capability overcomes the aforementioned deficiencies. That

is, since the device driver executes within a virtual machine, it enables the analyst to use

various dynamic analyses including manual interactive debugging, record-and-replay, and an

enhanced fuzzing.

Executing a mobile system’s device driver within a workstation virtual machine is normally

impossible since the driver requires access to the exact hardware of the I/O device in the mo-

bile system. We solve this problem using a technique called remote device driver execution.

With this technique, the device driver’s attempts to interact with its I/O device are inter-

cepted in the virtual machine by the hypervisor and routed to the actual mobile system over

11

Server icon:
http://www.iconarchive.com/show/hardware-icons-by-visualpharm/server-icon.ht
ml

Smartphone icon:
http://www.iconarchive.com/show/ecommerce-business-icons-by-designcontest/
smartphone-google-nexus-icon.html

USB icon:
http://www.iconarchive.com/show/outline-icons-by-iconsmind/Usb-icon.html

Virtual machine
Device

driver(s)
of mobile
system

Low-level I/O
operations Inspector icon:

https://thenounproject.com/term/i
nspector/176556/

Figure 2.1: Charm enables a security analyst to run a mobile I/O device driver in a virtual
machine and apply dynamic analysis to it.

a customized low-latency USB channel. In this technique, while the actual mobile system is

needed for the execution of the infrequent low-level I/O operations, the device driver runs

fully within a virtual machine and hence can be analyzed. Figure 2.1 shows the high-level

idea behind Charm.

Remote device driver execution raises two important challenges, which we address in this

work. First, interactions of a device driver with its corresponding I/O device is time-sensitive.

Hence the added latency of communications between the workstation and mobile system can

easily result in various time-out problems in the I/O device or driver, as our own experi-

ence with our earlier Charm prototypes demonstrated. We address this challenge with a

customized USB channel. Quite importantly, our solution does not require any customized

hardware for connection to the mobile device. It leverages the commonly available USB

interface and hence will make our solution immediately available to security analysts.

Second, in addition to interacting with the I/O device’s hardware, a device driver interacts

with several other modules in the operating system kernel including a bus driver, power

management module, and clock management module. These modules, which we refer to as

“resident modules”, cannot be moved to the virtual machine since they are needed in the

mobile system for the usage of the USB channel. We address this challenge with a Remote

Procedure Call (RPC) interface for the remote driver to interact with these modules in

the mobile system. We build our RPC solution at the boundary of common Linux APIs.

12

Therefore, different device drivers of different mobile systems can use the same RPC interface,

minimizing the engineering effort to apply Charm to new device drivers.

We implement Charm’s prototype using an Intel Xeon-based workstation and three smart-

phones: LG Nexus 5X, Huawei Nexus 6P, and Samsung Galaxy S7. We implement remote

device driver execution for two device drivers in Nexus 5X, namely the camera and audio

drivers, for the GPU device driver in Nexus 6P, and for IMU sensor driver in Samsung

Galaxy S7. Altogether, these drivers encompass 129,000 LoC. This demonstrate the ability

of Charm to support a large range of device drivers in various mobile systems. We released

the source code of Charm as well as the kernel images configured for the supported drivers.

The former enables security analysts to support new device drivers, while the latter enable

them to immediately apply different dynamic analysis techniques to a large set of device

drivers that Charm already supports.

Using extensive evaluation, we demonstrate the following. First, we show that supporting a

new device driver in Charm does not require significant engineering effort. Second, we show

that despite the overhead of remote device driver execution, Charm’s performance is on par

with actual mobile systems. More specifically, we show that a fuzzer can execute about

the same number of fuzzing programs in Charm and hence achieve similar code coverage

in the driver. Third, we show that Charm enables us to find 15 bugs in drivers including

one previously unknown bug (which we have reported) and one bug detected by a kernel

sanitizer not available on the corresponding mobile system’s kernel. Fourth, we show that

we can record and replay the execution of the device driver, which, among others, can help

easily recreate a bug without needing the mobile system’s hardware. Finally, we show that

it is feasible to use a debugger, i.e., GDB, to analyze various vulnerabilities in these drivers.

Using this ability, we have analyzed three reported vulnerabilities and managed to build a

arbitrary-code-execution kernel exploit using one of them.

13

2.1 Motivation

Our efforts to build Charm is motivated by our previous struggles to analyze the device

drivers of mobile systems in order to find and understand vulnerabilities in them. In this

section, we discuss three important dynamic analysis techniques: manual interactive debug-

ging, record-and-replay, and fuzzing. We discuss the current challenges in applying them to

device drivers of mobile systems and briefly mention how Charm overcomes these challenges.

2.1.1 Manual Interactive Debugging

Often security analysts use a debugger, such as the infamous GDB, to analyze a vulnerabil-

ity or a reported exploit. A debugger enables the analyst to put breakpoints in the code,

investigate the content of memory when and where needed, and put watchpoints on impor-

tant data structures to detect attempts to modify them. Unfortunately, performing these

debugging actions on device drivers are impossible as they run in the kernel of the mobile

system’s operating system.

Charm solves this problem. It enables the security analysts to analyze the device driver

since the driver runs within a virtual machine. To demonstrate this point, we have used

GDB to analyze 3 vulnerabilities in Nexus 5X camera driver (reported on Android Security

Bulletins [2]). Moreover, we have also used GDB to help construct an exploit that can gain

arbitrary code execution in the kernel using one of these vulnerabilities.

2.1.2 Record-and-Replay

Record-and-replay is an invaluable tool for analyzing the behavior of a program including

device drivers. It enables an analyst to record the execution of the device driver and replay

14

it when needed. Imagine that a certain run of a device driver results in a crash (e.g., when

being fuzzed). Recreating the crash might not be trivial since it might depend on a race

condition that is triggered in certain interleaving of driver execution and incoming interrupts

from the I/O device. However, if the execution is recorded, it can be simply replayed and

analyzed (e.g., with GDB). What is extremely useful about this technique is that the replay

of the driver does not even require having access to the actual mobile system. Therefore,

anyone with access to a virtual machine can replay the device driver execution and analyze

it.

While any virtual machine record-and-replay can be used in Charm, we have implemented

our own solution. It records all the interactions of the driver with the remote I/O device in

the hypervisor and then replay them when needed.

2.1.3 Fuzzing

Fuzzing is a dynamic analysis technique that attempts to find bugs in a software module

under test by providing various inputs to the module. In case of device drivers, the input

to the driver is through system calls, such as ioctl and read system calls. While fuzzing is

an effective technique to find bugs in software, it often suffers from low code coverage when

inputs are randomly selected. Therefore, to increase coverage, feedback-guided fuzzing tech-

niques collect execution information and use that to guide the input generation process. One

such fuzzing tool is kAFL [211], which uses the hypervisor to collect execution information

of the virtual machine by leveraging the Intel Processor Tracer (PT) hardware. Using kAFL

to fuzz the device drivers of mobile systems is currently impossible. However, by running

the driver in a virtual machine in an x86 machine, Charm enables the use of kAFL.

Another such fuzzing tool, which is capable of fuzzing kernel-based device drivers, is Syzkaller [6],

recently released by Google. Syzkaller uses a compiler-based coverage information collector,

15

i.e., KCOV [4], and use that to guide its input generation. Since the coverage informa-

tion collector is inserted into the kernel using the compiler, it is possible to use Syzkaller

to directly fuzz the device driver running inside a mobile system. Yet, using Syzkaller with

Charm provides three important advantages. First, Syzkaller can benefit from other dynamic

analysis techniques only available for virtual machines. Specifically, record-and-replay can

facilitate the analysis of the bugs triggered by Syzkaller, as discussed earlier.

Second, it is easier to leverage new kernel sanitizers of Syzkaller in a virtual machine com-

pared to a mobile system. Kernel sanitizers instrument the kernel at compile time to allow

Syzkaller to find non-crash bugs by monitoring the execution of the kernel. Examples are

KASAN [11], which finds use-after-free and out-of-bounds memory bugs, KTSAN [13], which

detects data races, KMSAN [12], which detects the uses of uninitialized memory, and KUB-

SAN [14], which detects undefined behavior. Unfortunately, these sanitizers are not often

supported in the kernel of mobile systems. To the best of our knowledge, only the Google

Pixel smartphone’s kernel supports KASAN [23]. In contrast, in Charm, one can simply

choose a virtual machine kernel with support for these sanitizers. For example, we show

that we can easily use KASAN in Charm by simply porting our drivers to a KASAN-enabled

virtual machine kernel.

Finally, Syzkaller can more effectively capture and analyze crash bugs when fuzzing a virtual

machine compared to a mobile system. Syzkaller reads the kernel logs of the operating

system through its “console”. It needs the kernel logs at the moment of the crash to capture

the dump stack. The console of the virtual machine is reliably available by the hypervisor

at the time of a crash. On the other hand, getting the console messages from a mobile

system at the time of the crash is more challenging and requires extra hardware setup [7],

which is not available to all analysts and is not easy to use. Indeed, kernel developers are

familiar with the difficulty of having to use a serial cable on a desktop or laptop to get

the last-second console messages from a crashing kernel in order to be able to debug the

16

crash. Getting the console logs from a crashing mobile system is as challenging, if not more.

When such debugging hardware is not available, one can try to read the kernel messages

through the Android Debug Bridge (ADB) interface, the main interface used over USB for

communication to mobile systems. Unfortunately, the interface cannot deliver the kernel

crash logs since the ADB daemon on the phone crashes as well. One can attempt to read

the crash logs after the mobile system reboots, but crash logs are not always available after

reboot since a crash might corrupt the kernel, hindering its ability to flush the console to

storage. These challenges are also confirmed by the Syzkaller’s developers: “Android Serial

Cable or Suzy-Q device to capture console output is preferable but optional. syzkaller can

work with normal USB cable as well, but that can be somewhat unreliable and turn lots of

crashes into lost connection to test machine crashes with no additional info” [7]. Running

the device driver in a virtual machine significantly alleviates this problem.

In our prototype, we use Syzkaller as one of the analysis tools used on top of Charm. We

choose Syzkaller in order to be able to compare its performance with that of fuzzing directly

on mobile systems. However, note that Charm can also support a fuzzer such as kAFL,

which is impossible to use directly on a mobile system.

2.2 Remote Device Driver Execution

The key enabling technique in Charm is the remote execution of mobile I/O device drivers.

In this technique, we run the device driver in a virtual machine in the workstation. We then

intercept the low-level interactions of the driver with the hardware interface of the I/O device

and route them to the actual mobile system through a USB channel. Similarly, interrupts

from the I/O device in the mobile system are routed to the device driver in the virtual

machine. Figure 2.2 illustrates this technique. We will next elaborate on the solution’s

details.

17

I/O device

User space

Kernel

Device driver
(including the bus driver,

when applicable)

Mobile system

Resident modules:
Power mgr., clock

mgr., pin control, etc.

OS

Resident
hardware

USB
channel

User space

Kernel

User space

Kernel

Device driver
(including the bus driver,

when applicable)

Server Mobile system

Stub

Hypervisor

Power
manage-

ment

Clock
manage-

ment

Pin
control

Virtual machine OS OS

I/O device

Resident modules:
Power mgr., clock

mgr., pin control, etc.

Resident
hardware

Stub

Figure 2.2: (a) Device driver execution in a mobile system. (b) Remote device driver execu-
tion in Charm.

2.2.1 Device and Device Driver Interactions

The remote device driver technique requires us to execute the device driver in a different

physical machine from the one hosting the I/O device. At first glance, this sounds like an

impossible task. The device driver interacts very closely with the underlying hardware in the

mobile system. Therefore, this raises the question: is remote execution of a device driver even

possible? We answer this question positively in this chapter. To achieve this, a stub module

in the workstation’s hypervisor intercepts and forwards the device driver’s interactions with

its hardware to a stub module in the mobile system, which then executes them. These

interactions are three-fold: accesses to the registers of the I/O device, interrupts, and Direct

Memory Access (DMA). Charm currently supports the first two. We will demonstrate that

these two are enough to port and execute many device drivers remotely.

Register accesses. Using the hypervisor in the workstation, we intercept the accesses of

the device driver to its registers. Upon a register write, we forward the value to be written

to the stub in the mobile system. Upon a register read, we send a read request to the stub

module, receive the response, and return it to the device driver in the virtual machine.

Interrupts. The stub module in the mobile system registers an interrupt handler on behalf

of the remote driver. Whenever the corresponding I/O device in the mobile system triggers

18

an interrupt, the mobile stub forwards the interrupt to the stub in the workstation, which

then injects in into the virtual machine for the device driver.

2.2.2 Device Driver Initialization

For the device driver to get initialized in the kernel of the virtual machine, the kernel must

detect the corresponding I/O device in the system. Therefore, for a remote device driver to

get initialized in the virtual machine, we must enable the kernel of the virtual machine to

“detect” the corresponding I/O device as being connected to the virtual machine. ARM and

x86 machines use different approach for I/O device detection. In an ARM machine, a device

tree is used, which is a software manifest containing the list of hardware components in the

system. In these machine, the kernel parses the device tree at boot time and initializes the

corresponding device drivers. In an x86 machine, hardware detection is mainly used through

the Advanced Configuration and Power Interface (ACPI). In an x86 virtual machine, the

ACPI interface is emulated by the hypervisor.

The first solution that we considered was to add a remote I/O device to the hypervisor’s

ACPI emulation layer so that the virtual machine kernel can detect it. However, this solution

would require significant engineering effort to translate device tree entries into ACPI devices.

Therefore, we take a different approach. We get the x86 kernel to parse and use device trees

as well. That is, we first allow the kernel to finish its ACPI-based device detection. After

that, the kernel parses the device tree to detect remote I/O devices. This significantly reduce

the engineering effort. To support the initialization of a new device driver, we only need to

copy the mobile systems’ device tree entries corresponding to the I/O device of interest into

the device tree of the virtual machine.

19

2.2.3 Low-Latency USB Channel

We use USB for connecting the mobile system to the workstation as USB is the most com-

monly used connection used for mobile systems. USB provides adequate bandwidth for our

use cases. For example, the USB 3.0 standard (used in modern mobile systems) can handle

up to 5 Gbps.

However, in Charm, the latency of the channel between the workstation and the mobile

system is of utmost importance. A high latency can result in time-out problems in both

the I/O device and the device driver. In our initial prototypes of Charm, we experienced

various time-out problems in the device driver and I/O device due to high latency of our

initial channel implementation. In this prototype, we used a TCP-based socket over the

ADB interface. However, our measurements showed that this connection introduces a large

delay (about one to two milliseconds for a round trip). This latency was due to several user

space and kernel crossings both in the virtual machine and mobile system. To address

this problem, we implement a low-level and customized USB channel for Charm. In this

channel, we create a USB gadget interface [17] for Charm and attach five endpoints to this

interface. Two endpoints are used for bidirectional communication for register accesses. Two

endpoints are used for bidirectional communication for the RPC calls (explained in §2.2.4).

And the last endpoint is used for unidirectional communication for interrupts (from the

mobile system to the workstation). In the mobile system, our stub module reads and writes

to these endpoints directly in the kernel hence avoiding costly user/kernel crossings. In our

KVM-based stub in the workstation, we also read and write to these endpoints directly in the

kernel. Therefore, this channel eliminates all user space and kernel crossings, significantly

reducing the latency.

20

2.2.4 Dependencies

A device driver does not merely interact with the I/O device hardware interface. It often

interacts with other kernel modules in the mobile system. We use two solutions for resolving

these dependencies. First, if a kernel module is not needed on the mobile system itself, we

move that module to the workstation virtual machine as well. The more modules that are

moved to the virtual machine, the better we can analyze the device driver behavior. An

example of a dependent module that we move the virtual machine is the bus driver. Many

I/O devices are connected to the main system bus in the System-on-a-Chip (SoC) via a

peripheral bus. In this case, the device driver does not directly interact with its own I/O

device. Instead, it uses the bus driver API.

Second, if a module is needed on the mobile system, we keep the module in the mobile system

and implement a Remote Procedure Call (RPC) interface for the driver in the virtual machine

to communicate with it. We have identified the minimal set of kernel modules that cannot

be moved to the virtual machine. We refer to these modules as “resident modules”. These

modules (which include power and clock management system, pin controller hardware, and

GPIO) are in charge of hardware components that are needed to boot the mobile system and

configure the USB interface. We refer to these hardware components as “resident hardware”.

Figure 2.2b illustrates this.

Note that we implement Charm’s RPC interface at the boundary of generic kernel APIs.

More specifically, it uses the generic kernel power management, clock management, pin

controller, and GPIO API for RPC. This allows for the portability of the RPC interface.

That is, since the kernel of all Android-based mobile systems leverage mostly the same API,

Charm’s RPC implementation can be simply ported, requiring minimal engineering effort.

21

2.2.5 Porting a Device Driver to Charm

Supporting a new driver in Charm requires porting the driver to Charm. At its core, this

is similar to porting a driver from one Linux kernel to another, e.g., porting a driver to a

different Linux kernel version or to the kernel used in a different platform. Device driver

developers are familiar with this task. Therefore, we believe that porting a driver to Charm

will be a routine task for driver developers. Moreover, we show, through our evaluation,

that non-driver developers should also be able to perform the port as long as they have

some knowledge about kernel programming, which we believe is a requirement for security

analysts working on kernel vulnerabilities.

Porting a device driver to run in Charm requires the following steps. The first step is to

add the device driver to the kernel of the virtual machine in Charm. This requires copying

the device driver source files to the kernel source tree and compiling them. Moreover, if the

device driver has movable dependencies, e.g., a bus driver, the dependent modules must be

similarly moved to the virtual machine kernel. One might face two challenges here. The first

challenge is that the virtual machine kernel might have different core Linux API compared

to the kernel of the mobile system. To solve this challenge, it is best to use a virtual machine

kernel as close in version to the kernel of the mobile system as possible. This might not

fully solve the incompatibilities. Hence, for the leftover issues, small changes to the driver

might be needed. We have faced very few such cases in practice. For example, when porting

the Nexus 6P GPU driver, we noticed that the Linux memory shrinker API in the virtual

machine kernel is slightly different than that of the smartphone. We fixed this by mainly

modifying one function implementation. The second challenge is potential incompatibilities

due to the virtual machine kernel being compiled for x86 rather than ARM. This is due to

the potential use of architecture-specific constants and API in the driver. To solve these, it

is best to support the ARM constants and API in the x86-specific part of the Linux kernel

instead of modifying the driver. We have faced a couple of such cases. For example, Linux

22

x86 support does not provide the kmap atomic flush unused() API, which is supported

in ARM and hence used in some drivers. Therefore, this function needs to be added and

implemented.

The second step is to configure the driver to run in the virtual machine given that the actual

I/O device hardware is not present. To do this, the device tree entries corresponding to the

I/O device hardware must be moved from the mobile system’s device tree to that of the

virtual machine (as discussed in §2.2.2). In doing so, dependent device tree entries, such as

the bus entry, must be moved too.

The third step is to configure Charm to remote the I/O operations of the driver to the

corresponding mobile system. This includes determining the physical addresses of register

pages of the corresponding I/O device (easily determined using the device tree of the mobile

system) as well as setting up the required RPC interfaces for interactions with modules in

the mobile system. The latter can be time-consuming. Fortunately, it is a one-time effort

since the RPC interface is built on top of generic Linux API shared across all Linux-based

mobile systems (as mentioned in §2.2.4). Hence, many of the RPC interfaces can simply be

reused.

The last step is to configure the mobile system to handle the remoted operations. This needs

to be done in two sub-steps. First, the Charm’s stub needs to be ported to the kernel of

the mobile system. This step is trivial and requires adding a kernel module and configuring

the USB interface to work with the module. Second, the device drivers that are ported to

the virtual machine must be disabled in the mobile system (since we cannot have two device

drivers managing the same I/O device). This is easily done by disabling the device driver in

the kernel build process. Alternatively, one can remove the corresponding device tree entries

of the I/O device from the mobile system’s device tree.

23

Mobile System I/O Device
Device driver

LoC

LG Nexus 5X Camera 65,000

LG Nexus 5X Audio 30,000

Huawei Nexus

6P
GPU 31,000

Samsung Galaxy

S7

IMU Sensors

(accelerometer,

compass, gyroscope)

3,000

Table 2.1: Device drivers currently supported in Charm.

2.3 Implementation & Prototype

We have ported 4 device drivers to Charm: the camera and audio device drivers of LG Nexus

5X, the GPU device driver of Huawei Nexus 6P, and the IMU sensor driver of Samsung

Galaxy S7. Table 2.1 provides more details about these drivers. It shows that these drivers,

altogether, constitute 129,000 LoC.

As mentioned in §2.2.1, we do not currently support DMA operations. DMA is often used

for data movement between CPU and I/O devices. Therefore, the lack of DMA support

does not mostly affect the behavior of the driver; it only affect the data of I/O device (e.g.,

a captured camera frame). However, this is not always the case, and DMA can be used for

programming the I/O device as well. One device driver that does so is the GPU driver. It

uses DMA to program the GPU’s command streamer with commands to execute. We cannot

currently support this part of the GPU driver, and we hence disable the programming of the

command streamer in the driver. Regardless, we show in §2.4.2 and §2.4.4 that we can still

effectively fuzz the device driver and even find crash bugs.

We use a workstation in our prototype consisting of two 18-core Xeon E5-2697 V4 processors

(on a dual-socket SeaMicro MBD-X10DRG-Q-B motherboard) with 132 GB of memory

and 4 TB of hard disk space. We install and use Ubuntu 16.04.3 in the workstation with

Linux kernel version 4.10.0-28. To support remoting of I/O operations, we have modified

QEMU/KVM hypervisor (QEMU in Android emulator 2.4 used in our prototype). Note

that while we use a Xeon-based machine in our prototype, we believe that a desktop/laptop-

24

grade processor can be used as well, although we have not yet tested such a setup. This is

because, as we will show in §2.4.2, the virtual machine does not need a lot of resources to

achieve good performance for the device driver. A virtual machine with 6 cores and 2 GB

of memory is adequate.

We write device driver templates for Syzkaller. A template provides domain knowledge for

the fuzzer about the structure of the system calls supported by the driver. Our experience

with Syzkaller is that without the templates, the fuzzer is not able to reach deep code

within the driver. We use these templates for all our experiments with Syzkaller in §4.8.

Alternatively, one can use an automated tool for template generation, such as DIFUZE [111].

We faced a challenge for supporting interrupts. That is, the x86-based interrupt controllers

supported in the virtual machine only supports up to 24 interrupt line numbers. The ARM

interrupt controller in ARM, on the other hand, supports interrupts line numbers as large

as 987. Hence, we extended the number of supported interrupt line numbers in our virtual

machine to 128 and implemented an interrupt line number translation in the hypervisor.

2.4 Evaluation

We answer the following questions in this section: (i) How much engineering effort is needed

to support a new device driver and a new mobile system in Charm? (ii) Does remote device

driver execution affect the performance of the device driver? (iii) Is Charm’s record-and-

replay effective? (iv) Can Charm be effectively used for finding bugs in device drivers?, and

Does using an x86 machine (vs. ARM) result in false positives?

25

2.4.1 Engineering Effort

It is important that Charm enables security analysts to easily port various drivers for analysis.

We evaluate how long it takes one to port a new driver to Charm. To do this, we report the

time it took my advisor to port the GPU driver of Nexus 6P and the IMU sensor driver of

Samsung Galaxy S7. He ported these drivers to Charm after the implementation of Charm

was almost complete, hence he could mainly focus on the port itself.

The port of these two drivers was mainly performed by a different person than me who ported

the first two drivers (i.e., camera and audio drivers of Nexus 5X). Therefore, he had to learn

about the port process in addition to performing the port. These two new drivers are each on

a different smartphone compared to Nexus 5X used for camera and audio drivers. Therefore,

the port of these drivers required adding Charm’s component to these smartphone’s kernel

as well.

It took my advisor less than one week to port the GPU driver and, after that, about 2 days

to port the sensor driver. It is worth mentioning that my advisor is familiar with kernel

programming and device drivers. We believe that this is the profile of a security analyst who

works on device drivers.

2.4.2 Performance

Remote I/O operations add noticeable latency to every I/O operation (i.e., register accesses

and interactions with the resident modules as discussed in §2.2.4). Therefore, one might

wonder if Charm will impact the performance of the device driver significantly.

To evaluate the performance of the device driver, we perform two experiments. In the first

experiment, we use the Syzkaller fuzzing framework. That is, we configure Syzkaller to fuzz

the driver by issuing a large number of syscalls to the camera driver of Nexus 5X both

26

 0

 200

 400

 600

 800

 1000

 1200

 1400

LVM MVM HVM Phone

#
 f

u
zz

er
 p

ro
g

ra
m

s
/

fu
zz

 t
im

e
(m

in
)

 0

 20

 40

 60

 80

 100

 120

 140

LVM MVM HVM Phone

C
o
v
er

ag
e

(#
 b

as
ic

 b
lo

ck
s)

 /
 f

u
zz

 t
im

e
(m

in
)

Camera driver

Rest of the kernel

Figure 2.3: (a) Execution speed of the fuzzer. (b) Coverage of the fuzzer.

directly in the mobile system and in Charm. Syzkaller operates by creating “programs”,

which are ensembles of a set of syscalls for the driver, and then executing these programs.

We run the Syzkaller for one hour in each experiment and measure the number of executed

programs as well as the code coverage.

Figure 2.3a shows the results for the number of executed fuzzer programs per minute. We

show the results for 4 setups: LVM, MVM, HVM, and Phone. The first three setups (stand-

ing for Light-weight VM, Medium-weigh VM, and Heavy-weight VM) represent fuzzing the

device driver in Charm while the last one represents fuzzing the device driver directly on

the Nexus 5X smartphone. LVM is a virtual machine with 1 core and 1 GB of memory.

MVM is a virtual machine with 6 cores and about 2 GB of memory (similar to the specs of

the Nexus 5X). HVM is a virtual machine with 16 cores and 16 GB of memory. Moreover,

we configure Syzkaller to launch as many fuzzer processes (one of the configuration options

of the framework that controls the degree of concurrency) as the number of cores. The re-

sults show that MVM achieves the best performance amongst the virtual machine setups. It

outperforms the LVM due to availability of more resources needed for execution of fuzzing

programs. It also slightly outperforms the HVM. We believe that this is due to the high level

concurrency in the HVM experiment, which negatively impacts the performance. Finally,

the results also show that MVM and HVM slightly outperform the phone’s performance.

27

This result is important: it shows that Charm’s remote device driver execution does not

negatively impact the performance of the driver and hence the driver can be used for various

analysis purposes.

Figure 2.3 (b) also shows the code coverage of the fuzzing experiments. It shows the coverage

for the camera device driver and the rest of the kernel. The results show that Charm achieves

similar code coverage in the driver compared to direct fuzzing on the smartphone. Note that

the results show that the coverage in the rest of the kernel is different in Charm and in the

smartphone. This is because the kernel in these two setups are different. While they are

close in version, one is for x86 and one is for ARM and hence the coverage in the rest of the

kernel cannot be directly compared in these setups.

In the second experiment, we choose a benchmarks that significantly stresses Charm: the

initialization of the camera driver in Nexus 5X. This initialization phase, among others,

reads a large amount of data from an EEPROM chip used to store camera filters and causes

many remote I/O operations (about 8800). We measure the driver’s initialization time on

the smartphone and in MVM to be 555 ms and 1760 ms, respectively. This shows that

I/O-heavy benchmarks can slow down the performance of the driver in Charm. Yet, we do

not anticipate this to be the case for many dynamic analysis tools that we target for Charm

including fuzzing (as seen previously).

2.4.3 Record-and-Replay

To demonstrate the effectiveness of Charm’s record-and-replay, we record the execution of

a PoC (related to bug #2 discussed in §2.4.4). We are then able to successfully replay the

execution of the PoC and its interactions with the device driver without requiring a mobile

system. Such a replay capability is a significant help for understanding this bug.

28

Device
driver

Bug type
Confirmed?
(How?)

1 Camera
Out-of-bound memory access in
msm actuator parse i2c params (Detected by KASAN)

Yes (LC)

2 Camera
Unaligned reg access in msm isp send hw cmd()
(Reported to kernel developers)

Yes (PoC)

3 Camera NULL ptr deref. in msm actuator subdev ioctl()
Yes (PoC,
LC)

4 Camera NULL ptr deref. in msm flash init()
Yes (PoC,
LC)

5 Camera NULL ptr deref. in msm actuator parse i2c param() Yes (LC)
6 Camera NULL ptr deref. in msm vfe44 get irq mask() Yes (LC)
7 Camera NULL ptr deref. in msm csid irq() Yes (LC)
8 Camera Invalid ptr deref. in cpp close node() Yes (LC)
9 Camera NULL ptr deref. in msm ispif io dump reg() Yes (LC)
10 Camera NULL ptr deref. in msm vfe44 process halt irq() Yes (LC)
11 Camera NULL ptr deref. in msm csiphy irq() Yes (LC)
12 Camera NULL ptr deref. in msm csid probe() Yes (LC)
13 GPU NULL ptr deref. in kgsl cmdbatch create() Yes (MI)
14 GPU NULL ptr deref. in kgsl cmdbatch destroy() Yes (MI)
15 GPU kernel BUG() triggered in adreno drawctxt detach() No

Table 2.2: Bugs we found in device drivers through fuzzing with Charm. MI and LC refer
to confirming the bug by Manual Inspection and by checking the driver’s Latest Commits,
respectively.

We also evaluate the overhead of recording and the execution speed of the replay. For this

purpose, we record the initialization phase of the camera device driver in Nexus 5X and

successfully replay it without needing a Nexus 5X smartphone. We measure the recorded

initialization and the replayed initialization to take 1843 ms and 344 ms, respectively. As

mentioned in the previous section, the normal initialization of this driver in Charm takes

1760 ms. The results show that (i) recording does not add significant overhead to Charm’s

execution and (ii) the replay is much faster than the normal execution (indeed, the replay

is even faster than the initialization time on the smartphone itself, which is 555 ms). The

latter finding is important: replay accelerates the analysis, e.g., for that of a PoC.

2.4.4 Bug Finding

We investigate whether Charm can be used to effectively find bugs in device drivers. We use

the Syzkaller for this purpose and fuzz the drivers supported in Charm. The key question

that we would like to answer is whether using an x86 virtual machine for a mobile I/O device

driver would result in a large number of false positives, which can make the fuzzing efforts

29

more difficult for the analyst as s/he will have to filter out these false positives manually.

Therefore, for this purpose, we fuzz slightly older versions of the driver (i.e., not the latest

publicly available commit of the driver). This allows us to check the bugs detected by

Syzkallers against the latest patches and confirm their validity.

We also port the camera driver to a KASAN-enabled virtual machine for fuzzing with this

sanitizer. KASAN detected one out-of-bounds bug in the camera driver (bug #1 in Ta-

ble 2.2). This shows an advantage of Charm. Not only it facilitates fuzzing, it enables newer

features of the fuzzer that is not currently supported in the kernel of the mobile system.

Table 2.2 shows the list of 15 bugs that we have found in the camera and GPU drivers (we

did not find any bugs in the other drivers). The table also shows that we confirmed the

correctness of 13 of these bugs through various methods (i.e., developing a PoC, checking

against the latest driver commits, and manual inspection). We are still unclear about one

of the bugs. We plan to use record-and-replay of Charm in Syzkaller to further analyze it.

However, we found three bugs, for which we could not find a fix in the latest driver commits.

Our analysis showed that one of these bugs was a previously unknown bug caused due to

unaligned access to I/O device registers. We have managed to develop a PoC for this bug

as well and reported it to kernel developers already. The developers have acknowledged our

report, assigned a P2-level severity [5] to it. Our analysis also shows that the other two bugs

might also be unknown bugs but we have not confirmed this yet.

We believe that these results demonstrate that Charm can be used to effectively find correct

bugs in device drivers through fuzzing. However, note that false positives are possible either

as a result of x86 compiler bugs or incomplete driver port. For example, as mentioned in

§5.4, we have not supported the DMA functionalities of the GPU driver. This can result in

false positives.

30

Chapter 3

Undo Workarounds for Kernel Bugs

Commodity OS kernels are monolithic, large, and hence full of bugs. Bugs in the kernel

cause important problems. First, they risk the system’s security as some bugs might be

exploitable vulnerabilities. The kernel is a highly privileged layer in the system software

stack and hence is attractive to attackers. Indeed, OS kernels are hot targets for security

attacks these days. For example, according to Google, an increasing number of attacks on

mobile devices are targeting the kernel (i.e., 44% of attacks in 2016 vs. 9% and 4% of them

in 2015 and 2014, respectively) [16]. Second, they impact the reliability and usability of the

system. Even a simple crash bug, e.g., a null pointer dereference, results in a system hang

or reboot, causing usability issues for the users. Even worse, bugs can corrupt the state of

the software and hardware and lead to unexpected behavior. Finally, as we will show, kernel

bugs can even pose practical challenges for kernel fuzzing by inducing repetitive reboots and

wasting the fuzzing time.

The common practice today is to find these bugs and patch them. There has been a lot

of progress recently to automate the first step (i.e., finding bugs). More specifically, several

kernel fuzzers have been recently developed such as Syzkaller [6], kAFL [211], Digtool [199],

31

and MoonShine [197]. Indeed, these fuzzers have been successfully used to find bugs in the

kernel [29, 40, 214]. However, the second step (i.e., patching bugs) remains a highly manual

and lengthy process. In practice, this requires reporting the bug to the developers of the

code, e.g., the vendor in charge of a device driver, and waiting for a patch. Unfortunately,

this wait can take months for the bug to sit in a queue, be evaluated by developers, and

get a patch developed, tested, and merged into the kernel. Our study of bugs found by

Syzkaller [40] shows that bugs have taken on average 66 days to be patched. Moreover, at

the time of the study (November 2019), there were several open bugs that were waiting for a

patch for an average of 233 days. While waiting for a patch, the kernel remains vulnerable.

In this chapter, we introduce workarounds for kernel bugs before they are correctly patched.

We refer to such a workaround as a Bug undO Workaround for KerNel sOlidiTy (bowknot).

A bowknot has five important properties. First, it is fast to generate. Unlike a proper patch

for a bug that takes months to be ready, a bowknot takes at most a few hours. Second,

it is designed to maintain the system’s functionality even if the bug is triggered1. Kernel

bugs almost always are triggered when unanticipated syscalls are issued, either by mistake

by a faulty application or intentionally by malware. A bowknot undoes the side effects

of this faulty or malicious syscall invocation, allowing the kernel to continue to correctly

serve well-structured syscalls. Third, a bowknot does not require any special hardware

support, e.g., power management support in a driver needed for checkpointing , and hence

is applicable to a large number of bugs in various devices. Fourth, a bowknot does not add

any noticeable performance overhead. This is because it does not do much as long as the

bug is not triggered. Only when the bug is triggered, it is invoked to undo its side effects.

Finally, a bowknot requires small changes to the kernel. It requires modifications only to

the functions in the execution path that triggers the bug.

1In this chapter, we use the term “trigger a bug” to mean either executing buggy code or triggering a
kernel sanitizer warning (or even a manual check) right before executing buggy code. See §3.3.1 for more
details.

32

The key idea behind a bowknot is to undo the effects of the syscall that triggers a bug. In

other words, when a syscall is issued and triggers a bug, the bowknot gets activated and

neutralizes the effects of that syscall. Undoing the syscall at arbitrary points of execution is

challenging since not only a syscall can affect the kernel memory state, it can even change

the state of I/O devices, e.g., a camera. The latter is especially important for device drivers,

which contain most of the kernel bugs (e.g., 85% of bugs in Android kernels [237]). To

address this problem, we leverage existing undo statements in error handling blocks in the

kernel to generate the right undo blocks for the functions in the execution path of the bug.

Bowknots, as described, achieve all the aforementioned properties, except for one. More

specifically, generating a bowknot manually, while feasible, is challenging and time-consuming.

Therefore, to satisfy this requirement, we introduce Hecaton, a static analysis tool that helps

generate bowknots automatically2. Hecaton analyzes the whole kernel to find the relationship

between state-mutating statements in the kernel and their corresponding undo statements

in error handling basic blocks. It then uses this knowledge to generate the right undo block

for the function containing the bug and the parent functions in the call stack. It also au-

tomatically inserts the undo blocks into the kernel. Due to the limitations discussed in

§3.4.3, in some cases, Hecaton’s automatically-generated bowknots need manual alterations.

As a result, Hecaton provides a confidence score for each bowknot. This score helps the

analyst determine whether a manual fix is required, before spending any time on testing the

bowknot. Our evaluations with real bugs show the confidence score correctly predicts the

completeness of the automatically generated bowknots in 90% of the cases.

We evaluate bowknots and Hecaton with 113 real bugs, CVEs, and automatically injected

bugs in several kernel components including the IPC subsystem, networking stack, file sys-

tem, and device drivers in different Android devices and x86 upstream Linux kernels. First,

we show that bowknots are effective workarounds for bugs. More specifically, we show that

2Hecaton’s source code is available at https://trusslab.github.io/hecaton/

33

bowknots can effectively mitigate 92.3% of real bugs and CVEs and 94.6% of injected bugs.

Second, we show that bowknots manage to maintain the system functionality in 87.6% of

these cases. Third, we show that Hecaton automatically generates complete bowknots for

64.6% of kernel bugs. For the rest, it only requires adding on average 3 statements and

less than 2 hours of work by the analyst. Fourth, we evaluate the correctness of bowknots’

undo capability with a manual case-by-case study on 10 randomly selected real bugs. We

show that for 6 out of these 10 bugs, automatically generated bowknots completely undo the

side effects of the buggy syscall. Fifth, we show the effectiveness of bowknots in improving

the efficiency of kernel fuzzing by effectively eliminating repetitive reboots. Sixth, we em-

pirically compare bowknots with a recent bug workaround solution, Talos [144]. Bowknots

significantly outperform Talos for bug mitigation, for maintaining the system functionality,

and for improving kernel fuzzing in the face of repetitive reboots. Finally, we also evaluate

the performance overhead of bowknot on normal execution of kernel components. We show

that bowknots’ overhead is less than the baseline variations for TCP throughput and GPU

framerate even if we instrument all their corresponding kernel functions with bowknots.

3.1 Motivation

3.1.1 Unpatched Kernel Bugs

As mentioned, kernel bugs pose security, reliability, and usability problems. Unfortunately,

even when discovered, these bugs do not get patched immediately and there is a noticeable

delay from when a bug is reported until when a patch is available. One reason behind this

delay is that bugs can be complex and fixing them requires time and effort. To demonstrate

this, we studied the bugs found by Syzbot [40], an automated fuzzing system based on

Syzkaller [6]. At the time of the study (November 2019), there were 1691 bugs that were

34

fixed. Our analysis shows that these bugs took an average of 66 days to get fixed. Moreover,

there were 503 bugs that were still open, for an average of 232 days.

Moreover, bugs in device drivers (which constitute 85% of the kernel bugs [237]) might take

even longer as the bug needs to be reported to the developers of the driver. For example,

bugs in several drivers of Android smartphones based on Qualcomm chipsets need to be

fixed by Qualcomm. Qualcomm says, ”the company hopes to patch disclosed flaws and

vulnerabilities within 90 days” [20].

3.1.2 Problems with Unpatched Kernel Bugs

Security. The most important problem with unpatched kernel bugs is that they endanger

the system’s security. Bugs might be exploitable, allowing attackers to mount privilege esca-

lation attacks. Given the high privileges of the kernel, a successful attack can be devastating

for the victim’s device.

Reliability and usability. Even if not exploitable, kernel bugs cause reliability and

usability problems, e.g., due to a hang or reboot. Even worse, a bug might corrupt the

state of the hardware and software, resulting in unexpected behavior.

Inefficient kernel fuzzing. A lesser-known problem of unpatched kernel bugs is that they

cause practical problems for fuzzing the kernel by causing repetitive reboots [218]. Kernel

bugs, when triggered by the fuzzer, result in the reboot of the system. Unfortunately, reboots

waste a noticeable amount of fuzzing time. The reboot itself takes 10s of seconds to minutes

according to our own experience with various Android-based mobile devices and according

to others [19]. In addition to wasting fuzzing time, a reboot resets the state of the system,

throwing away the progress made by the fuzzer in mutating the state in order to find new

bugs.

35

Unfortunately, modern feedback-driven fuzzers such as Syzkaller and AFL may trigger the

same bug many times resulting in repetitive reboots, i.e., costly and useless reboots caused

by the same bug, due to the feedback-driven fuzzing algorithm [26, 18] and some bugs being

easy to trigger.

Figure 1.1 shows the timeline for one of these fuzzing sessions (i.e., fuzzing the camera

device driver of Nexus 5X using Syzkaller). As can be seen, reboots happen very frequently,

resulting in only 44.6% of the overall fuzzer uptime being spent on fuzzing (i.e., fuzzing

time). The main reason for most reboots is triggering only 6 unique bugs again and again.

3.1.3 Current Approaches

Approach I: mitigation through code disabling. One possible approach is to try to

mitigate a bug by disabling the part of the code that contains the bug. This can be done

at different granularities. For example, the buggy subcomponent within the code can be

disabled. If applied to the kernel, one can imagine disabling a device driver if it has a bug.

It can also be applied at the function level. Talos uses this approach [144]. It neutralizes a

vulnerability in a codebase by disabling the function that contains it. The function instead

is instrumented to return an appropriate error message.

Although disabling the code can mitigate the bugs and vulnerabilities in many cases, it very

likely breaks the system functionality. Losing functionality in a system will deter the use

of this approach in practice. This approach does not help with the kernel fuzzing efficiency

either. This is because code disabling limits the code coverage of the fuzzer (see §3.6.1 and

§3.6.4 for empirical results).

Approach II: dirty patching. One might wonder whether the analyst can perform a

“quick and dirty patch” to fix the bug. For example, if the bug is a null pointer dereference,

36

they can add a null pointer check to return directly to avoid crashing. Unfortunately, dirty

patching suffers from similar drawbacks as code disabling. That is, it can break the function-

ality of the system or result in unexpected behavior if not done carefully. In addition, such

patches might still need engineering effort. For example, a dirty patch for a use-after-free

bug resulting from a race condition is not trivial.

3.2 Overview

3.2.1 Goals

Our goal is to design a bug workaround solution that can mitigate the undesirable side effects

of a bug until a proper patch is available. In other words, the applicability of the workaround

is in the window of vulnerability from when the bug is first discovered until when the correct

patch is available.

The main users of kernel bug workarounds are kernel security analysts, OS vendors, and IT

departments. For example, the security team in an OS vendor company might find a bug

and report it to the corresponding developers, e.g., another company in charge of a device

driver or a development team within the same company. While they wait for the patch,

they can use a workaround to mitigate the bug. Or an IT department might apply a

workaround for a known bug in the company’s servers or employees’ workstations. Finally,

security analysts can leverage this tool to mitigate kernel bugs in their own devices, e.g., to

improve the efficiency of their kernel fuzzing sessions. To show our solution’s applicability,

we implement and test it on several targets, such as ARM-based Android smartphones and

x86-based Linux kernels.

We identify five important properties that a bug workaround solution must satisfy. First,

37

it should be fast to generate, otherwise it will not be available soon enough to help in the

aforementioned window of vulnerability. Second, a workaround for a kernel bug should

maintain the system’s functionality even if the bug is triggered. Third, the workaround

approach should be widely applicable to different kernel components and different kernels.

Moreover, it should not require special hardware support, e.g., to checkpoint the state of

an I/O device. Fourth, a workaround should not add any noticeable performance overhead.

Finally, a workaround should require small changes to the kernel, otherwise it will not be

accepted by vendors for release in the window of vulnerability.

3.2.2 Key Idea & Design

Bowknots. In this chapter, we introduce a workaround for kernel bugs called Bug undO

Workaround for KerNel sOlidiTy (bowknot). The key idea behind a bowknot is to undo

the effects of the in-flight syscall that triggers a bug. That is, if a syscall is issued and

triggers a bug, the bowknot generated for that bug undoes the syscall and returns, effectively

neutralizing the syscall. It is important to note that a bowknot does not disallow a syscall,

e.g., disallow all ioctl syscalls. It allows the syscall to be used as long as it does not trigger

the bug. Only when an invocation of the syscall results in the bug getting triggered (e.g.,

due to using unexpected inputs), the bowknot kicks in to undo it so that the system can

continue its execution and serve other well-structured syscalls.

Bowknots protect the kernel from corruption, which is critical for continued use of the system.

They, however, can impact the program issuing the syscall. For example, they might result in

the program breaking or terminating with an error message. We believe this is acceptable for

three reasons. First, we do not anticipate most kernel bugs to be triggered by well-behaved

applications. Many kernel bugs are only triggered when a meticulously-crafted syscall is

issued, typically by malware. Second, applications can be restarted, if corrupted. Finally,

38

kernel

program

Cleanup
table

Bowknot
(undo

syscalls)

Hecaton
(static

analysis
tool)

Offline Runtime

Bug

Operating system

user space

syscalls

Figure 3.1: High-level idea behind bowknots and Hecaton.

kernel bugs that unconditionally break the usability of well-behaved applications are rare.

This is because the kernel is tested for basic functionality by kernel developers.

Hecaton. Bowknots, as described so far, satisfy all but one of the aforementioned prop-

erties. More specifically, generating them manually requires noticeable engineering effort as

one needs to study the execution path that triggers the bug and figure out how to undo the

syscall. Therefore, to satisfy this last property, we introduce Hecaton, a static analysis tool

that generates bowknots and inserts them into the kernel automatically. To do so, Heca-

ton leverages existing undo statements found within error handling blocks in the kernel to

generate the right undo blocks for the functions in the execution path of the bug. Existing

error handling blocks in the kernel undo the effects of a syscall on the software and hardware

state in case of expected errors, such as a null pointer or a busy I/O error in some fixed code

locations. While the kernel does not have error handling code for arbitrary bug sites in the

execution of a syscall, the idea in Hecaton is to leverage existing undo statements in these

blocks to generate the right undo code needed for a bowknot. More specifically, Hecaton

leverages existing error handling blocks to discover undo statements for each state-mutating

statement. Using such knowledge, Hecaton can then automatically generate the required

bowknot for different functions. Figure 3.1 shows the high-level idea behind bowknots and

39

Hecaton.

3.2.3 Workflow

Assume that the OS analyst has identified a bug in the kernel and would like to apply a

bowknot to it. They take the following steps to achieve this.

In the first step, they need to identify the functions in the execution path from the beginning

of the syscall until where the bug is triggered, i.e., the call stack. The call stack must include

the inline functions since it will be used by Hecaton, which operates at the source code

level. Bugs found by Syzkaller, such as the reported bugs in the Syzbot system [40], come

with enhanced call traces, including all the inline functions and their location in the source

code. For other bugs, the analyst can use any tool to find the stack. However, finding the

inline functions in the stack might not be trivial. To make this step easy for the analyst,

we provide support in Hecaton. That is, Hecaton instruments all the functions in the kernel

component under study with some logging messages. The analyst then executes the Proof-of-

Concept (PoC) program of the bug, checks the kernel logs, and extracts the list of functions

executed in the syscall. They then feed this list back into Hecaton, which uses it to generate

a copy of the kernel where only these functions are instrumented with bowknots. Hecaton

provides a confidence score for each bowknot. If all the confidence scores for the instrumented

functions are higher than a predefined threshold, the analyst goes to the next step to test

the instrumented kernel. Otherwise, they can decide to investigate the bowknots with low

confidence score and manually correct them, or altogether drop working on these bowknots

if they are unwilling to spend time and manual effort to fix the bowknots.

The analyst then tests the instrumented kernel using the PoC and test programs. The

purpose of test programs is to demonstrate proper functionality of the system after undo by

bowknots. More specifically, the analyst first runs the PoC to verify that it does not succeed,

40

e.g., it does not crash the kernel. They then run the tests to verify that the kernel component

under test is still functional. If either fails, the analyst checks the generated bowknots. The

analyst spends a few hours (e.g., up to 2 hours in our evaluation) to identify the problem,

e.g., a missing undo statement. In fact, some of the bowknots might have explicit warnings

from Hecaton (§3.4.2), which makes the manual step more straightforward. After a fix, they

run the tests again. If the analyst does not find a fix in this period (e.g., the two hours),

they declare the use of bowknots ineffective.

It is noteworthy that the analyst does not even need a fully functional PoC to test the

bowknots. A program that results in the execution of the same functions but does not

even trigger the bug suffices. We have indeed used this in our own evaluations. We tested a

reported PoC that reached the bug but did not trigger it. Yet, by adding an explicit crash

just before the bug site, we emulated the behavior and tested the undo behavior by the

bowknot.

Finally, we note some bugs might be triggered through more than one call stacks. While

such bugs are not common, to mitigate them, the analyst needs to generate bowknots for

each call stack separately.

3.3 Bowknots

Bowknots are workarounds for kernel bugs. The key idea behind bowknots is to undo the

side effects of the syscall that triggers the bug. More specifically, bowknots undo the side

effects of state-mutating statements from the syscall’s kernel entry point until where the bug

is triggered. We define a state-mutating statement as one that alters the state of the kernel

or an underlying I/O device.

For example, imagine a camera device driver ioctl syscall, which when called, allocates

41

a memory buffer using kmalloc(), acquires a spin lock (spin lock()), and turns on the

flash for the camera (using the hypothetical function turn on flash()). Now imagine there

exists a bug after this where a pointer might be null depending on the syscall input. To

mitigate this bug, the analyst can apply a bowknot. It first turns off the camera flash

(by calling turn off flash()), unlocks the spin lock (by calling spin unlock()), and frees

the allocated memory buffer (by calling kfree()). As can be seen, the state of the system

(including the kernel memory state as well as the I/O hardware state, e.g., the camera

hardware state) after undo is the same as the state before issuing the syscall. Therefore, the

system can now resume its execution as if the syscall did not happen.

Our strategy for undoing a syscall is to leverage existing undo statements in error handling

code in the kernel to generate the proper undo code that undoes the effects of all state-

mutating statements in the syscall. Existing error handling code in the kernel undoes the

effect of these statements when facing an expected error. The insight behind this approach

is that OS kernels have to be robust and handle various corner cases or errors. Therefore,

we attempt to reuse the existing undo statements to generate the right undo code for a bug

location. In this section, we show how a bowknot can be used for a bug. In the next section,

we discuss how Hecaton helps to automatically generate the undo code for bowknots.

3.3.1 Function Instrumentation

The goal of function instrumentation for a bowknot is to undo the executed statements

in a function when a bug is triggered. We support two types of bowknots for a function:

automatically-triggered and manually-triggered. Automatically-triggered bowknots are the

common ones and are used for crash bugs and bugs automatically detected by a kernel

sanitizer. The manually-triggered ones are for more complex bugs, such as race conditions

and memory leaks.

42

1 #define CGOTO if(unlikely(current->bowknot_flag))
2 goto bowknot_label
3
4 long kgsl_ioctl_device_waittimestamp_ctxtid(
5 struct kgsl_device_private *dev_priv, unsigned int cmd,
6 void *data)
7 {
8 uint64_t bowknot_pairmask = 0;
9
10 struct kgsl_device_waittimestamp_ctxtid *param = data; CGOTO;
11 struct kgsl_device *device = dev_priv->device; CGOTO;
12 long result = -EINVAL; CGOTO;
13 struct kgsl_context *context; CGOTO;
14
15 mutex_lock(&device->mutex); CGOTO;
16 bowknot_set_bit(bowknot_pairmask, 2);
17
18 context =
19 kgsl_context_get_owner(dev_priv, param->context_id); CGOTO;
20 bowknot_set_bit(bowknot_pairmask, 1);
21
22 if (context == NULL) {
23 goto out;
24 }
25 ...
26 out:
27 kgsl_context_put(context); CGOTO;
28 bowknot_unset_bit(bowknot_pairmask, 1);
29 mutex_unlock(&device->mutex); CGOTO;
30 bowknot_unset_bit(bowknot_pairmask, 2);
31 return result;
32
33 if (bowknot_global_always_false < 0) {
34 bowknot_label:
35 current->bowknot_flag = 0;
36 if(bowknot_check_bit(bowknot_pairmask, 2))
37 mutex_unlock(&device->mutex);
38 if(bowknot_check_bit(bowknot_pairmask, 1))
39 kgsl_context_put(context);
40 current->bowknot_flag = 1;
41 return -1;
42 }
43 }
44
45 long kgsl_ioctl(struct file *filep,
46 unsigned int cmd, unsigned long arg)
47 {
48 ...
49 ret = kgsl_ioctl_device_waittimestamp_ctxid(...); CGOTO;
50 ...
51 if (bowknot_global_always_false < 0) {
52 bowknot_label:
53 ...
54 return -1;
55 }
56 }

...
15 mutex_lock(&device->mutex); CGOTO;
16 bowknot_set_bit(bowknot_pairmask, 2);
17

if(unlikely(param == unexpected_ctx))
goto bowknot_label;

18 context =
19 kgsl_context_get_owner(dev_priv, param->context_id); CGOTO;

...

Figure 3.2: Example function in the Qualcomm KGSL GPU device driver after instrumen-
tation with a bowknot. (Up) Automatically-triggered, (Down) Manually-triggered bowknot.
The blue and bold text highlights the automatically added code. The green and italic text
highlights the manually added lines. The code presented here is slightly modified from the
actual function code and from the one generated by Hecaton for better readability.

43

Automatically-triggered bowknots. Figure 3.2 (Up) shows an instance of an automatically-

triggered bowknot for a function in Qualcomm’s KGSL GPU driver. This function is the

handler for one of the supported ioctl syscall commands for this driver and is called by the

main ioctl handler, kgsl ioctl. The function instrumentation has several parts. The first

part is an undo block at the end of a function, which contains all the undo statements cor-

responding to the state-mutating statements in the function. There are two state-mutating

statements in this function: kgsl context get owner(), which returns a context object

while incrementing its reference counter, and mutex lock(), which acquires a lock. The

corresponding statements to undo the effects of these statements in the function are, respec-

tively, kgsl context put() and mutex unlock(). This undo basic block is also protected

by an always-false global variable (bowknot global always false) preventing it from being

used in the normal execution of the function. It is only accessible through explicit jumps to

bowknot label.

The second part of the instrumentation is for detecting, at runtime, the state-mutating

statements that are executed before the crash. This is because not all execution paths within

a function execute the same set of state-mutating statements. If not taken into account, in

the case of a specific bug, an unnecessary undo statement might get executed. Therefore, we

instrument the function to keep track of the execution of the state-mutating statements. To

do this, we use a per-function mask variable. We add the mask update statements after each

state-mutating and undo statement. We also make the undo statements in the undo block

conditional based on the bits in this mask. In our example, after a call to mutex lock(), we

set a bit in the mask variable. After a call to the corresponding mutex unlock(), we reset

the same bit in the mask variable. Then in the undo block of the bowknot, we check the bit.

If set, we execute the mutex unlock() statement.

The third part of the instrumentation, which is used for automatically-triggered bowknots,

is the automatic redirection of the execution to the undo block when a bug is triggered. To

44

do this, we add conditional goto statements (CGOTO) after all statements. The goal of these

statements is to redirect the execution to the undo block in case of a bug. When a crash

happens or a bug is detected by the kernel sanitizer, the execution is redirected to the kernel

exception handler, which we instrument. Our exception handler code sets the redirection

flag (bowknot flag), which is a thread-specific flag, and then returns the execution back to

the function resulting in a jump to the undo block. In the previous example, assume that

param is null and results in a crash at line 19. The exception handler is then invoked, sets

the flag, and resumes the execution in the function (by skipping the crashing instruction),

which then executes the conditional goto statement in the same line and jumps to the undo

block. This condition is typically false during normal execution in the kernel. Hence, we

use the compiler’s unlikely directive, which helps with performance in normal execution

by instructing the compiler to insert some instructions in the binary to assist CPU’s branch

prediction.

We also support automatic redirection for bugs detected by a kernel sanitizer (if activated,

e.g., during a fuzzing session). In this case, we force-execute the kernel exception handler

for bugs detected by the sanitizers, e.g., memory safety bugs detected by KASAN [11].

Note that automatically-triggered bowknots only get triggered on system crashes and warn-

ings generated by kernel sanitizers. As a result, for non-crashing bugs that can potentially

result in kernel corruption, the security of automatically-triggered bowknots depends on the

appropriate use of kernel sanitizers (e.g., KASAN and KMSAN) to catch the bug before the

corruption happens. Although currently sanitizers are enabled only during testing due to

their memory and performance overhead, there are recent efforts to enable efficient sanitizers

to be used in deployed products as well[224][165].

Manually-triggered bowknots. There are two important scenarios when manually-

triggered bowknots are desired or needed. First, some bugs do not result in a crash nor

are detected by a kernel sanitizer. However, the security analyst knows the condition under

45

which the bug is triggered. In this case, the analyst can add an explicit condition to the

function containing the bug to redirect the execution to the undo block before the bug is

triggered. Figure 3.2 (Down) shows an example. In this (hypothetical) case, if the param

parameter is equal to a known global object, the behavior is buggy resulting in the corruption

of the object. Therefore, the analyst can add the conditional block between lines 17 and 18

to jump to bowknot’s undo block. The analyst does not need to generate the bowknot nor

figure out which undo statements need to be called. She only needs to determine where and

under what conditions the bowknot needs to be executed.

Second, in some production systems, instrumenting the kernel exception handler or deploying

a kernel sanitizer (as needed for automatically-triggered bowknots) might not be acceptable.

In such cases, manually-triggered bowknots can be used, even for simple bugs such as crash

bugs.

3.3.2 Recursive Undo of Call Stack

When a bug is triggered, bowknot executes the undo code for the function the bug is in. It

then needs to undo the effects of the statements in the parent functions.

To do this, we undo the parent functions similar to the buggy function. Figure 3.2 shows the

parent function as well. We perform the recursive undo through the use of the thread-specific

flag mentioned earlier (current->bowknot flag). When returning from the buggy function,

this flag is set. Moreover, the parent function is also instrumented with the conditional goto

statements. Therefore, after returning from the buggy function, the parent function jumps

to its own bowknot and executes its own undo code. This recursive undo continues until the

syscall returns, at which point the flag is cleared.

It is important to note that the bowknots in the parent functions are always automatically-

46

triggered. Only the last function in the stack might need manual triggering of the bowknot.

Also, note that it is feasible to rely on the existing error handling blocks in some functions

rather than using bowknots. We use this approach for the first few functions in the execution

paths of a syscall, which receive a syscall and route them to an underlying component to

handle. As a practical guideline, when dealing with a bug in a specific kernel component,

e.g., a device driver, we only apply bowknots to the functions in the path within the driver.

When recursively undoing the functions, the entry function in the kernel component simply

returns an error, which is elegantly handled by existing kernel code by routing the error to the

user space. We take this approach for two reasons. First, the functions parsing and routing

a syscall are triggered for every syscall and hence have impact on the system’s performance.

Second, these functions are mature and have adequate error handling code, eliminating the

need to inject custom undo code for them.

3.4 Automatic Generation of Bowknots

In this section, we describe how Hecaton generates the undo block of the bowknot automat-

ically. Hecaton also automatically instruments the designated kernel functions, which we do

not discuss further here.

We build Hecaton as a static analysis tool. It generates the undo block by analyzing the entire

kernel to infer the relationship between state-mutating statements and their corresponding

error handling undo statements. Hecaton achieves so in two main steps: (i) generating a

kernel-wide knowledge database of function pairs and (ii) generating the undo block using

the database as well as function-level analysis. We next describe these two steps.

47

3.4.1 Function-Pair Knowledge Database

The goal of the function-pair knowledge database is to store pairs of functions that mutate

and undo the kernel state. In other words, a state-mutating function and an undo function

are paired, if the latter undoes the effect of the former. (kmalloc, kfree), (mutex lock,

mutex unlock), and (msm camera power down, msm camera power up) are a few examples

of such function pairs. The function-pair knowledge database can be reused across various

kernels, e.g., the kernels of different Android devices, with minimal changes. Therefore,

our general approach is to automatically extract function pair candidates, manually inspect

them, and add them to the database if verified. This approach provides high confidence

in the database. Moreover, since generating the database is mostly a one-time effort, the

manual effort is not significant. (We provide some quantification of the manual effort later

in this section and in §3.6.2).

Identifying function pair candidates. Hecaton statically analyzes the entire ker-

nel to identify function pair candidates. It uses two methods to identify the candidates.

First, it uses the function names. In this method, Hecaton considers a function pair as

a candidate, if the names of two functions only differ in one word and the difference is

one of the following: (put, get), (put, create), (release, get), (release, create),

(remove, create), (deinit, init), (unregister, register), (unlock, lock), (down,

up), (disable, enable), (sub, add), (dec, inc), (unset, set), (clear, set), (free,

alloc), (stop, start), (suspend, resume), (disconnect, connect), (unmap, map), (dequeue,

enqueue), (unprepare, prepare), and (detach, attach). Using this method, for example,

Hecaton found 540 pairs of function in the Linux kernel used in the Pixel3 smartphone.

Unfortunately, not all function pairs differ in one word only. As a result, Hecaton employs

a second method, in which it uses existing error handling blocks in the kernel to identify

undo functions and then match them to candidate state-mutating functions in the same

48

function using string matching. More specifically, Hecaton marks all the functions in error

handling blocks as undo functions. Then, for each undo function, it matches it with a

candidate state-mutating function in the same function using similarity in their names and

input/output variables. For the similarity score, Hecaton calculates the sum of the lengths

of all mutually-exclusive substrings. To do so, Hecaton finds the longest common substring

(LCS) and adds its length to the similarity score. Then it deletes the LCS from both strings

and repeats the previous steps recursively until there is no common substring with more

than two characters.

Towards this goal, Hecaton needs to be able to identify error handling blocks in the kernel.

Hecaton does so by looking for common conditional statements used to identify and handle

an error in the kernel. By investigating a large amount of kernel code, we have identified

four such conditional blocks including (i) if (rc < 0) {...} where rc is an integer, (ii) if

(IS ERR(p)) {...} or if (p == NULL) {...}, where p is a pointer, (iii) if (...) {...;

return ERROR;} where ERROR is a constant negative integer, often one of the commonly used

error numbers in the kernel such as -ENOMEM and -EFAULT, and (iv) if (...) {...; goto

LABEL;}. It also considers simple variations of these four categories such as checking within

the else block rather than the then block for categories (iii) and (iv).

Once it identifies the error handling blocks, Hecaton needs to match the undo functions

in them with state-mutating functions. That is, it assumes that every undo function call

statement undoes the effects of a single state-mutating function call in the same parent

function. For example, kfree() is an undo function statement that corresponds to the state-

mutating function statement kmalloc(). Hecaton uses the same heuristic string matching

discussed above to identify the candidates. For example, kgsl context put(context) is

paired with context = kgsl context get owner(...). To do this, Hecaton calculates the

string-based similarity score between the undo statement and all statements prior to the

corresponding error handling block. It then chooses the function with the highest similarity

49

score. Using this method, for example, we identified 1158 candidate pairs in the Pixel3 kernel

(excluding the pairs found using the previous method).

Manual inspection of function pair candidates. Not all function pair candidates are

true pairs of state-mutating and undo ones. This is because the method discussed above, i.e.,

string matching, is not precise. Therefore, we perform manual inspection on the candidates

to identify the true pairs. In this step, we use our knowledge of kernel code. In addition,

we use the frequency of appearances of a function pair candidate as a hint to facilitate the

manual inspection. Pairs that appear many times together in many functions are less likely

to be false pairs. Using manual inspection, in the case of the Pixel3 kernel, we verified all

540 pairs identified using the first method and 658 of the function pairs identified using the

second one, bringing the total number of function pairs in the database to 1198. This manual

inspection took me 7 days to complete. However, as mentioned, this is largely a one-time

effort. Supporting a new version of the kernel or a new device driver adds a small number of

new candidate pairs, which can be verified fast. As an example, once we had the database

for the Pixel3 kernel, we ran our static analysis tool on a Nexus 5X driver that we needed

to test. Doing so resulted only in 9 new candidate pairs, which we quickly inspected. We

evaluate the amount of manual effort for x86 kernels in §3.6.2.

3.4.2 Generating the Undo Block

To generate the bowknot’s undo block, we need to identify all the state-mutating statements

in the function, and generate the corresponding block. Hecaton is not currently able to

generate an undo statement, as it might require fixing the parameters passed to a function.

Therefore, Hecaton tries to reuse existing undo statements in a function and match them

with the state-mutating ones. If Hecaton does not find a match for an undo statement in

a function, or if it does not find a match for a state-mutating one, it inserts a warning in

50

the undo blocks that it generates so that the analyst can manually fix the problem. Simply

reusing existing statements is adequate in a large number of functions (§3.6.1).

As mentioned, Hecaton attempts to find all undo statements in the function for which it

generates the undo block. An undo statement might be a function call or not. Hecaton uses

the knowledge database to identify all the undo function call statements. For other undo

statements, e.g., a counter decrement, it relies on the error handling blocks in the function.

To identify the error handling block candidates, we use the patterns often used for these

blocks as discussed earlier. In addition, we also inspect all blocks that have one of the

following jump statements in their bodies: break, continue, return, and goto. If such a

block contains an undo function call (determined by consulting our knowledge database), we

mark that block as an error handling one as well. In addition to the error handling blocks,

some functions incorporate undo statements prior to the return statement. For example, it

is common in kernel functions to allocate, acquire, enable, or turn on a resource, perform a

task on it and then free, release, disable, or turn off that resource before returning a success

value. Hecaton reuses these undo statements as well.

Having all the undo statements, the next step is to find their corresponding state-mutating

statements. For error handling statements that are function calls, Hecaton uses its knowl-

edge database. If there are multiple instances of the same state-mutating function, Hecaton

chooses the one that shares more variables with the error handling statement. For all other

types of statements, Hecaton uses string matching to pair them with state-mutating state-

ments.

51

3.4.3 Incompleteness and Confidence Score

As mentioned, a small portion of bowknots generated automatically by Hecaton are not

complete and require manual amendments. We analyze the underlying reasons for this

incompleteness through experiments and a case-by-case study. We enable Hecaton to au-

tomatically detect features in functions that may result in the generation of an incomplete

bowknot. For each generated bowknot, Hecaton provides a confidence score, indicating the

probability of its effectiveness. Also, in cases that manual effort is necessary, Hecaton high-

lights the function(s) in the call stack that have the most negative effect on the confidence

score and need manual corrections. Our experience and analysis show that six features play

critical roles in generating complete bowknots. We quantify these features and linearly com-

bine them into a single confidence score using adjustable coefficients. Finally, we tune these

adjustable coefficients using real bugs (§3.6.1).

The first feature we use is the location of the bug. Our experience shows that if the last

function of the call stack of the bug is inside a kernel component (e.g., a device driver), it

is more likely that Hecaton could generate a complete working bowknot. In cases that the

bug is in core kernel, for example, inside an inline function that manipulates kernel objects,

it is less likely that Hecaton could generate complete bowknots.

The second feature is the presence of missing undo statements. As we discuss in §3.4.2,

Hecaton currently cannot generate undo statements from scratch. We decrease the confidence

score when Hecaton does not find an undo match for a state-mutating function found in its

knowledge database.

The third feature is the method of error handling block detection used in a function.

As we discuss in §3.4.2 and §3.4.1, Hecaton uses different patterns to identify error handling

blocks. Some of these patterns are used both in error handling and non-error handling blocks

and hence might produce false undo statements. Therefore, we decrease the confidence score

52

if such patterns are used.

The fourth feature is the presence of function pointers. As Hecaton currently cannot

pair the state-mutating function pointers with its correct undo statement using its knowledge

database, it solely relies on the string matching heuristic to pair them. As a result, we

decrease the confidence score in the presence of such statements.

The fifth feature is the presence of multi-statement undo code, where multiple state-

ments are used to undo one or more state-mutating statements. One important example is

when a loop is used to undo the effects of another loop. Another important example is when

a critical section is used in the error handling block. Hecaton assumes a one-to-one mapping

between state-mutating and undo statements, and hence does not currently automatically

handle such cases.

Finally, to take the miscellaneous unknown sources of inaccuracy in Hecaton’s static analysis

into account, we decrease the confidence score as the number of state-mutating state-

ments in a function increases since having more state-mutating statements to pair increases

the error probability.

3.5 Implementation

Static analysis tool. We implement Hecaton in C++ and Python with about 4,550

LoC. We use Clang for static analysis in Hecaton as it allows us to perform the analysis at

the source code level. While we mainly test our solutions with the Linux kernel of Android

devices and upstream x86 Linux kernels, we note that they are applicable to other OSes as

well. Our static analysis tool is implemented as a plug-in for the Clang compiler. We use

our plug-in alongside Android Clang version 5.0.1 for our Android devices, and we use the

same plug-in (with a small modification to make it compatible with the newer version of

53

Clang) alongside Clang version 11.0.0 for our upstream x86 Linux kernels.

We perform our analysis on the Abstract Syntax Tree (AST). When using the AST, we

do not need to worry about parsing and lexing the source code. Moreover, we have high-

level information of the source code needed for our analysis, such as functions and variables

names. In addition, the organized structure of the AST facilitates finding the error handling

blocks. In AST, all the statements and expressions are organized in a hierarchical structure

as nodes of a tree, and Clang provides many helper functions to traverse the AST in an

efficient way. There are also many helper functions to obtain attributes of each node of the

AST. To obtain the AST of the source code, we use ASTFrontendAction with a custom

ASTConsumer. We override the VisitFunctionDecl function of our custom ASTConsumer

to obtain all the function declaration nodes in the AST. All the statements in the body of

each function appear as children nodes of the function declaration node. To perform our

analysis, we recursively visit all the children nodes in several passes. In these passes, using

AST, first, we identify and pair undo nodes and state-mutating nodes to generate a bowknot

for each function. As discussed in §3.3.1, a bowknot includes a generic undo block, several

conditional goto statements, and several mask update statements. Then, using the AST

helper function, getSourceRange, we identify the locations of these nodes in the source files.

Finally, using Clang’s Rewriter tool, we directly inject the generated bowknot into the source

code.

Exception handler. We have implemented Hecaton with automatically-triggered bowknots

for two Android devices naming Pixel3 and Nexus 5X and various versions of three x86

kernel branches naming upstream Linux kernel, Google’s KMSAN kernel, and Linux-Next

kernel. Nexus 5X runs CyanogenMod-13 Android OS with Linux kernel 3.10.73, Pixel3 runs

Android-9.0.0 r0.43 with Linux kernel 4.9.96, and the x86 Linux versions vary between 5.5.0

and 5.8.0.

As discussed in §3.3.1, to support automatically-triggered bowknots, we need to instrument

54

the kernel’s exception handler. First, we need to distinguish between bowknot-supported

faults and normal faults. To achieve this goal, we statically disassemble and parse the kernel

image and extract the address ranges of bowknot-supported functions and save them into a

header file. When any exception occurs, we use this header file to execute our modified ex-

ception handler for bowknot-supported faults and execute the unmodified exception handler

otherwise. In our modified exception handler, after setting bowknot flag, before returning

to the buggy function, we advance the Program Counter (PC) register to skip the crashing

instruction. In ARM architecture, all instructions have the same length, and we simply

advanced the PC register by four. However, x86 instructions have variable lengths. As a

result, we need to decode the current instruction’s length to advance the PC to the next

instruction. We use Zydis for this purpose, which is a lightweight open-source disassembler

library for x86 and x86-64 instructions implemented in C [15]. Since Zydis is implemented

with no third-party dependency (not even libC), we can build Zydis as a part of the Linux

kernel. To minimize code added to the kernel, we only port parts of the Zydis necessary to

decode the instructions’ length.

For ARM, we add 72 lines of C code and 42 lines of assembly code to the kernel exception

handler. For x86, we add 136 lines of C code to the kernel exception handler and port 4677

lines of C code from the Zydis library.

55

3.6 Evaluation

3.6.1 Effectiveness

Effectiveness in Bug Mitigation

Methodology. To test the effectiveness of Hecaton and bowknots, we test our bug workaround

against 113 bugs in Android and x86 Linux kernel consisting of real CVEs, unpatched real

bugs, and injected bugs. Using a combination of real and synthesized bugs to evaluate the

effectiveness of fault-tolerant systems is a common practice[144][151]. However, previous

similar work, Talos[144], only used 11 real-world vulnerabilities and FGFT[151] tested no

real-world bugs. In contrast, we use 39 real-world bugs. Similar to Talos and FGFT, to eval-

uate the effectiveness of bowknots, we measure two factors for each bug. First, whether the

bug is successfully mitigated, and second, whether the system including the buggy module

remains functional after the undo.

In our experiments, we use PoCs to trigger the bugs. In a successful mitigation, we make

sure that the PoC still triggers the bug after bowknots insertion but that the execution of

bowknots neutralizes the syscall that triggers the bug in a way that prevents the system

from crashing, freezing, or generating further warnings by kernel sanitizers.

In addition, we test the functionality of the buggy module after the execution of bowknots

as a result of triggering each bug. For our functionality test, we use standard benchmarking

and self-test programs when they are available for a kernel module (e.g., GPU benchmarking

application or Linux self-tests for a file system). Self-tests are small test programs that kernel

developers have designed to exercise individual code paths in the kernel and report whether

or not they achieve the expected outcomes. If no standard benchmark or self-test is available

for a module, we manually test the underlying device of the buggy device driver in different

56

configurations (e.g., taking pictures and videos in different settings to make sure the camera

is functional.)

For comparison, we also test and report mitigation and functionality preserving for each bug

using Talos [144], which uses code disabling (§3.1.3). Since Talos disables parts of the code,

it might seem unnecessary to test Talos workarounds for functionality. However, in some

cases, the disabled function does not play a crucial role in the functionality of the device, for

example, when the bug is located in a function that logs the device driver’s events. In these

cases, code disabling (Talos) might preserve the functionality of the device.

As we discuss in §3.7, bowknots cannot be used for the bugs located in the kernel’s clean-up

paths. Hence, we only measure and report (in §3.7) how common this limitation is, and we

do not consider them in our effectiveness evaluations.

We also evaluate the effectiveness of Hecaton in generating complete bowknots. First, we

report whether the bowknots get executed automatically or if we manually encode the con-

dition for its execution. Second, we report whether the automatically generated bowknots

are complete or if we manually add statements to complete them. For each bug, we limit the

amount of manual effort to complete its bowknots to 2 hours. If we could not fix a bowknot

manually in 2 hours, we record it as unsuccessful.

CVEs and Real Bugs in Android To evaluate the effectiveness of bowknots and Hecaton

in mitigating real bugs and vulnerabilities of Android devices, we use 9 real bugs and reported

CVEs in four kernel components of the Pixel3 smartphone: binder IPC, camera driver, GPU

driver, and the TCP layer in the network stack (used with WiFi).

Table 3.1 shows the result. It shows that bowknots are effective in mitigating the bugs and

vulnerabilities in 100% of cases and maintain the system functionality in 100% of these cases.

88.9 % of bowknots use automatic triggers and only one case uses manual triggers. Moreover,

Hecaton is capable of generating complete bowknots in 55.6% of cases. In contrast, Talos

57

Kernel
Modules

Bug/
Vulnerability

Talos
Mitigate?

Talos
Preserve
Function?

Bowknot
Mitigate?

Bowknot
Preserve
Function?

Bowknot
Trigger
Mode

Hecaton’s
Generated
Bowknots

Binder
IPC

CVE-2019-2215 3 7 3 3 Manual Not-Complete
CVE-2019-1999 3 7* 3 3 Automatic Complete
CVE-2019-2000 7 7 3 3 Automatic Complete

Camera
Driver

CVE-2019-2284 7 7 3 3 Automatic Not-Complete
Bug1** 7 7 3 3 Automatic Not-Complete
CVE-2019-2293 3 7 3 3 Automatic Not-Complete

GPU
Driver

CVE-2019-10529 3 7* 3 3 Automatic Complete
CVE-2018-5831 3 3 3 3 Automatic Complete

Network (TCP) CVE-2019-18805 3 3 3 3 Automatic Complete

Table 3.1: CVEs and real kernel bugs tested with bowknots. (* In these cases, the system
was functional right after mitigation by Talos, but it stopped working after a while due to a
memory leak resulting from code disabling, **Bug1: bug in msm camera power down)

Total # of
tested Bugs

mitigated
by
Talos

function
preserved
by Talos

mitigated
by
bowknots

function
preserved
by bowknots

automatic
bowknot
trigger

complete
bowknots
by Hecaton

added
statements*

30 20 8 27 27 30 18 2

Table 3.2: Unpatched bugs experiments (x86 Linux kernel bugs reported by Syzbot).
(*Average # of added undo statements for incomplete bowknots by Hecaton)

can only mitigate the bugs in 66.7% of cases and preserve the functionality in 22.2% of these

cases. We discuss five of these vulnerabilities in Appendix.

Unpatched Real Bugs in x86 Linux kernel To further evaluate the applicability of

bowknots and Hecaton to different targets and unpatched bugs, we use 30 real bugs in x86

Linux kernels reported by Syzbot [40]. We choose the 30 latest unpatched bugs (as of July

2020), which have reproducer PoC programs. The 30 bugs we test are located in various

parts of the Linux kernel such as network stack, file system, memory management, HCI

Bluetooth driver, and TTY driver.

Table 3.2 shows the results. It shows that bowknots are effective in mitigating the bugs and

vulnerabilities in 90% of cases and maintain the system functionality in 90% of these cases.

Moreover, Hecaton is capable of generating complete bowknots in 60% of cases. In contrast,

Talos can only mitigate the bugs in 66.7% of cases and preserve the functionality in 26.7%

of these cases.

58

Kernel
Modules

Injected
Bugs

mitigated
by
Talos

function
preserved
by Talos

mitigated
by
bowknots

function
preserved
by bowknots

automatic
bowknot
trigger

complete
bowknots
by Hecaton

added
statements*

Camera 41 34 5 40 33 33 26 2

Binder 33 14 12 30 30 26 24 4

Table 3.3: Bug injection experiments (camera device driver and Binder IPC).(*Average #
of added undo statements for incomplete bowknots by Hecaton)

device driver version bugs U. reboots U. fuzz time B. reboots B. fuzz time

Pixel3 Camera 2018-08-22 3 1035 ± 60 12h18m± 9m 98.3 ± 114 22h49m± 1h5m
Nexus 5X Camera 2016-10-13 6 622.3 ± 48 12h10m± 19m 12.0 ± 0.0 23h19m± 1m

Table 3.4: Effective fuzzing time. U. and B. refer to using unmodified kernel vs. a kernel
updated with bowknots. The number of reboots are per hour. Up time which is the overall time
during which the fuzzer is running including wasted reboot time is 24h for all experiments.
Fuzz time (i.e., effective fuzz time) is the time during which the fuzzer is actually fuzzing the
kernel of the device.

Injected Bugs in Android To further test the ability of bowknots in maintaining the

system functionality, and test the robustness of Hecaton against the location of the bugs

in the kernel functions, we use bug injection. More specifically, we inject 41 bugs in the

camera driver of Pixel3 and 33 bugs in its binder IPC subsystem. To avoid any bias in

favor of or against Hecaton, we randomly choose the bug injection location. To do so, first,

we fuzz each module using Syzkaller to identify all lines of code reachable through the syscall

interface. Next, after excluding the locations in the kernel’s clean-up paths (see §3.7), we

randomly choose one of the reachable lines and insert an explicit BUG() function there. Since

the inserted BUG()’s location is random, an arbitrary number of state-mutating statements

might get executed prior to the bug, which needs to be undone by a bowknot. As a result,

this evaluates the ability of Hecaton in generating effective bowknots in various cases. We

then generate bowknots using Hecaton and apply them for each bug. Table 3.3 shows the

results. It shows that bowknots are effective in mitigating the bugs in 94.6% of cases and

maintain the system functionality in 85.1% of these cases. Moreover, Hecaton is capable of

generating complete bowknots in 70.4% of cases. In contrast, Talos can only mitigate the

bugs in 64.9% of cases and preserve the functionality in 23.9% of these cases.

59

For all bugs for which Hecaton’s bowknots were incomplete (injected bugs as well as real

bugs and vulnerabilities), we needed to add on average 3 statements.

Effectiveness of Syscall Undo

We perform a detailed case study to evaluate bowknots’ syscall undo capability. We perform a

manual line-by-line investigation on the execution path of 10 real bugs (5 Android kernel and

5 x86 Linux bugs randomly chosen from the bugs discussed in §3.6.1). In this investigation,

we search for any statement that changes the global state of the system but is not undone by

bowknots. The result of this analysis shows that, to the best of our knowledge, for 6 cases

the undo was complete and there were no changes to the system global state that did not

get undone by the bowknots. Additionally, in 3 of the 4 failed cases, we could manually add

the undo statements for the missed state-mutating statements and complete the bowknot in

less than 2 hours. In the remaining one case, the state gets corrupted in a way that we even

could not generate a complete bowknot manually. We discuss this case-by-case analysis in

detail in the Appendix.

Effectiveness of Confidence Score

To evaluate Hecaton’s confidence score, we use our corpus of 30 unpatched real bugs in x86

Linux kernel, which we discussed in §3.6.1. As mentioned in §3.4.3, Hecaton generates a

confidence score for each bowknot instrumented function. Even if only one bowknot fails

to undo the side effects of a partially executed function, the system state might remain

inconsistent. As a result, to evaluate each bug, we consider the minimum confidence score

for the bowknot instrumented functions in its call stack. We divide these 30 bugs into two

sets of 20 and 10 bugs for respectively tuning and testing our confidence score. We tune the

six coefficients of the confidence score (§3.4.3) in a way that it best separates the tuning set of

60

Tuning set Testing set
0

25

50

75

100

C
on

fid
en

ce
 sc

or
e

Complete Not-complete

Figure 3.3: Hecaton Confidence score prediction for Tuning and Testing sets

bugs into two groups, one with complete bowknots and one that needs manual effort. Then

we measure how well the tuned confidence score can predict the completeness of the bowknots

Hecaton generates for 10 bugs in the testing set. Note that a false negative prediction is

more acceptable than a false positive because in the case of a false negative the confidence

score predicts an incomplete bowknot, which ends up being complete. Figure 3.3 shows

that the confidence score works for 95% of the cases in the tuning set, and it predicts the

completeness of generated bowknot with 90% accuracy in the testing set. Please note that

there is no false positive in the results. In other words, whenever the minimum confidence

score is greater than 50, the bowknots are complete.

3.6.2 Manual Effort for the Pair Database

We measure how much manual effort is needed to keep Hecaton’s function-pair knowledge

database updated with the ongoing updates in the kernel. For this purpose, we use Hecaton

to generate the databases for 9 consecutive versions of x86 upstream Linux kernel, i.e., v5.0

to v5.8. As we discuss in §3.4.1, this database needs to be manually inspected and verified.

Our measurements show that when we move from one kernel version to the next, on average

115±18 additional function pairs need to be verified, which in our experience takes between

2 to 3 hours.

61

3.6.3 Performance Overhead

We measure the overhead of bowknots on the normal performance of the system. To do so,

we measure how the performance overhead increases as the number of executed functions

with bowknot instrumentation increases. To test the performance overhead of bowknots in

our ARM implementation, we use two benchmark applications, “GPU Mark benchmark”

that measures the output frame-rate of GPU renderings, and “Tamosoft Throughput Test”

that measures the downlink TCP throughput. To test the performance overhead of bowknots

in our x86 implementation, we use iPerf tool[8] in Linux kernel to measure the downlink TCP

throughput.

Each benchmark results in the execution of many functions in their corresponding kernel

components. First, we detect all these triggered functions (410 functions in the Pixel3 GPU

driver, 390 functions in the Pixel3 networking stack, and 370 functions in x86 Linux network-

ing stack). We then randomly choose a number of these functions and instrument them with

bowknots. For all modules, we either instrument 100, 200, or all available functions in them.

We run the benchmarks 10 times and show the average±stdev throughput in Figure 3.4.

The results show that there are no statistically noticeable performance drops even if all

executed functions are instrumented with bowknots.

3.6.4 Use-Case Evaluation

As discussed in §3.1.2, by neutralizing bug-triggering syscalls, bowknots can help reduce the

number of repetitive reboots during a fuzzing session. We evaluate the benefits of bowknots

for fuzzing in this section. We fuzzed 13 device drivers and kernel components (camera driver,

GPU driver, audio driver, WiFi driver, ION, Binder, and Ashmem) in three smartphones

(Pixel3, Nexus 5X, and Samsung S7). Out of these, 5 of them showed repetitive reboots due

62

0 100 200 410
#Bowknots

(a)

0
20
40
60
80

100
120
140

G
PU

 re
nd

er
in

g
(F

PS
)

0 100 200 390
#Bowknots

(b)

0
2
4
6
8

10
12
14
16

TC
P

do
w

nl
in

k
(M

b/
S)

0 100 200 370
#Bowknots

(c)

0
20
40
60
80

100
120
140
160
180

TC
P

do
w

nl
in

k
(M

b/
S)

Figure 3.4: GPU and TCP performance as the number of executed bowknots increase. (a)
Pixel3 GPU , (b) Pixel3 TCP, (c) x86 upstream Linux (running in QEMU) TCP.

to easily-triggered bugs. Out of these 5 drivers, 2 of them had easily-triggered bugs that

bowknots could effectively mitigate. We show the results for these two drivers: the camera

device driver of Pixel3 and the camera device driver of Nexus 5X. We note that bowknots

cannot provide any benefits for the other three drivers.

Figure 3.5: The setup used in our fuzzing experiments.

We use the following experimental methodology. We run each fuzzing experiment for 24 hours

as suggested by Klees et al. [157]. Moreover, we repeat each experiment 3 times and report

averages and standard deviations. To implement this methodology, we faced and solved a

practical challenge. More specifically, running 24-hour kernel fuzzing experiments on smart-

phones proved to be challenging due to unreliability of the Android Debug Bridge (ADB).

63

 0

 1

 2

 3

 4

 5

 6

N. 5X Cam. Pixel3 Cam.

T
o
ta

l
ex

ec
u
te

d
 p

ro
g
ra

m
s

(m
il

li
o
n
s) Unmodified driver

Driver with bowknots

(a)

0

2

4

6

8

10

N. 5X Cam. Pixel3 Cam.

C
o
v
e
re

d
 b

a
si

c
 b

lo
c
k
s

(H
u
n
d
re

d
s)

11.64%

14.38%

12.70%

23.52%

Unmodified driver

Driver with bowknots

(b)

Figure 3.6: (a) Total executed fuzzing programs. (b) Covered basic blocks (code coverage
percentage is also reported on top of each bar).

Occasionally, ADB would malfunction and the desktop machine running the fuzzer would

lose its connection to the device, disrupting the experiment. This phenomenon happened

more frequently when the device was rebooted more often. Our first attempt to address this

problem was to restart the experiment from scratch when this issue happened. Given that

experiments are 24 hours long, this proved to be a very lengthy process. Therefore, we built

a custom hardware-software framework to programmatically and forcefully reboot the device

using its power button when the connection to the device was lost. Figure 3.5 shows this

setup. We 3D printed the cover to hold the smartphone in place, used a 45 Newton linear

solenoid to press and hold the power button, and used an Arduino Uno board to control the

solenoid from the fuzzer.

Increased fuzzing time. Table 3.4 shows the effective fuzzing time achieved when fuzzing

the unmodified driver and the driver with bowknots. As the table shows, bowknots increase

the effective fuzzing time by 88.6%± 4.6%.

Executed programs. Figure 3.6a shows the total number of executed fuzzing programs.

Bowknots eliminate wasted fuzz time and hence the fuzzer executes more programs. Our

64

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9

D
e
te

c
ti

o
n
 t

im
e
 (

m
in

u
te

s)

Unmodified driver

Driver with bowknots

Figure 3.7: Time taken for the fuzzer to discover a bug (i.e., trigger a bug for the first time).
Each x-axis tick represents a unique bug.The points with no error bars represent bugs only
found once during experiments

results show that we manage to execute 723.5% ± 124% more fuzzing programs on average

with bowknots.

Code coverage. Figure 3.6b shows the code coverage in the driver under test. As can

be seen, the higher number of executed programs and fewer reboots result in 54.3%± 6.1%

higher code coverage.

Comparison with Talos. We compare the effectiveness of our approach in improving the

fuzzing efficiency with Talos. To do this, we apply Talos to buggy functions in our fuzzing

experiments. Our analysis shows that Talos, as a result, disables a large number of basic

blocks, effectively lowering the code coverage. Moreover, our analysis shows that bowknots,

when applied to the kernel, allow the fuzzer to cover a large part of the basic blocks that

Talos disables. Table 3.5 shows the results. The results are insightful. Talos’ approach

disables the code unconditionally resulting in disabling 1290 basic blocks overall. However,

bowknots only undo the syscall when they are triggered. Therefore, they allow the code

65

Bug
triggered
by fuzzer

Basic
blocks
disabled
by Talos

Basic blocks
disabled by Talos
& covered by
bowknots

msm actuator subdev ioctl 141 129

msm camera io w mb 2 2

msm camera io r 2 2

msm flash config 91 82

msm csid config 37 35

msm cpp subdev ioctl 785 459

cam ife mgr acuire hw 71 45

cam sensor core power up 109 67

msm camera power down 52 32

Table 3.5: Bowknots vs. code disabling (Talos) for fuzzing.

to be executed with good inputs, i.e., those that do not result in triggering the bug. This

proves to be critical for achieving good code coverage when fuzzing. As a result, bowknots

help cover 66% of the basic blocks disabled by Talos.

Faster and more effective bug detection. By eliminating reboots with bowknots, we

manage to find bugs faster. Figure 3.7 shows the list of all the bugs found in the two drivers.

It shows on average the time it takes to find the bug in drivers with and without bowknots.

Bowknots help us find all these bugs faster. On average, we find the same bugs faster by

42.6 minutes. This speed-up varies between 6 minutes to 162 minutes for different bugs.

3.7 Other Limitations

Undetected corruptions. Bowknots’ effectiveness depends on catching the errors before

they corrupt the system and undo the effect of the system call that causes the error. In some

cases, a crash as a result of a bug (e.g., out of bound write/read to/from a non-allocated

address) triggers the execution of bowknots. However, in cases that the same bug does not

result in a crash, bowknots rely on kernel sanitizers (e.g., KASAN) to catch the error before

it corrupts the kernel. In cases where there is no crash, kernel sanitizers do not catch the

error, or they are not enabled in the kernel for performance reasons, the analyst needs to

66

provide the check for triggering the bowknot, otherwise the bowknots might not be secure

and effective.

Bugs in clean-up paths. Bowknots are designed based on the idea of undoing the effect

of partially executed syscalls. However, undoing the effect of syscalls that are themselves

designed for clean-up is not possible. Consider a syscall designed to destroy a few kernel

objects and free all the allocated memories. If a crash happens in the middle of this syscall,

where half of the kernel objects are destroyed, no bowknot could re-create the exact objects

and undo the effect of this partially executed syscall. We studied the latest 100 bugs of

Linux upstream kernel reported by Syzbot (as of October 2020). Our study showed that

28% of the bugs are located in clean-up paths and hence were not amenable to bowknots.

67

Chapter 4

MegaMind: A Platform for Security

& Privacy Extensions for Voice

Assistants

Voice assistants, such as Amazon Alexa [45], Google Assistant [57], Apple Siri [67], and Mi-

crosoft Cortana [65], are becoming ingrained in our personal lives. Beyond their prevalent

integration into smartphones and tablets, they are now increasingly found in home speak-

ers [46, 59, 62, 60], cars [24, 36, 35], children’s toys [33], light bulbs [30], TV sets [34, 25],

and other appliances. Several companies have even released device SDKs to simplify adding

voice assistance to any hardware device [49, 58, 50].

Voice assistants provide a convenient user interface: natural language. However, this con-

venience comes with serious security and privacy risks. A voice assistant uses an always-on

microphone and operates by capturing audio and sending it to the manufacturer’s cloud

service for processing. The cloud service transcribes the audio and interprets it as user re-

quests. Audio recordings can have private and sensitive content, such as medical or sexual

68

information [140]. Moreover, interpreted requests may result in unintended or unapproved

actions, such as a purchase or a phone call. These unintended actions can be either due to

“mistakes” by the assistant, or attacks [32, 31]. Moreover, the assistants’ responses might

contain inappropriate content, such as content not suitable for children [21].

To make matters worse, voice assistants incorporate many third-party applications, i.e.,

skills1, which enhance the assistant functionality [69]. Unlike mobile apps, skills do not run

on the voice assistant hardware. Instead, they are cloud services invoked by the manufac-

turer’s cloud service. Researchers have shown a plethora of additional security and privacy

concerns surrounding third-party skills [118, 185, 234, 94], including malicious skills [161]

and unintended voice data leaks [28, 119].

This chapter presents MegaMind, a security and privacy extensibility platform for voice

assistants. MegaMind extensions execute locally on the assistant itself. They intercept the

recorded audio before sending it to the manufacturer’s cloud service, and the response audio

before delivering it to the user. Extensions can thus inspect, modify, or discard unwanted

content to meet a user’s security and privacy goals. For example, a redaction extension

removes any mentions of a user’s personal information from the recorded audio.

MegaMind’s design enables novel extensions that bring a level of unprecedented security to

users. For example, we implement secure conversation, an extension that provides end-to-

end encryption, integrity, and rollback protection to let a user conduct a secure conversation

with a trusted skill such as a bank, without the voice assistant manufacturer having unre-

stricted access to the conversation. As another example, we implement anonymous query, an

extension that employs a mixer cloud service to enable a user to remain anonymous (to the

voice assistant manufacturer and to third-party skills) when issuing sensitive queries such as

medical queries.

1Skill is Amazon’s Alexa service terminology for voice assistant apps, but we use it broadly for all
assistants.

69

MegaMind does not blindly trust extensions and assumes they can be malicious. To protect

users from such extensions, MegaMind provides two security guarantees, permission enforce-

ment, and non-interference. Permission enforcement limits the conversations each extension

can access (i.e., access permissions) and modifications it can perform on them (i.e., modifica-

tion permissions). Moreover, non-interference guarantees that a malicious extension cannot

modify the conversation in a way that disrupts the execution of other extensions.

Given the richness of natural language, providing such guarantees is challenging and requires

a careful design and a comprehensive security analysis. To do so, MegaMind provides a novel

programming model for extensions. Each extension consists of a manifest and an action

function. In the manifest, an extension declares its needed permissions using MegaMind’s

easy-to-review and straightforward permission description language. Action functions are

generic Python scripts that process the phrases. We enforce several limitations on what an

extension can do, and we demonstrate, with a careful analysis, that our design provides the

aforementioned security guarantees.

Any third-party can develop MegaMind extensions. In addition, MegaMind can provide an

extension market (similar to the application market for smartphones) in which developers

publish their extensions. Similar to application markets, a MegaMind extension market

can audit all extensions prior to publication, and reject those with malicious manifests. In

addition, the extension market can authenticate the extension developers. For example, if a

companion extension for a third-party skill implements secure conversation, then MegaMind

can easily check that this skill and its companion extension are published by the same entity.

We build MegaMind and integrate it with the Amazon Alexa Service SDK. Thus, it is

potentially deployable on many commercial devices that use the Alexa SDK, such as the

Acer Spin 5 Convertible Notebook [43] and the Fitbit Versa 2 smart-watch [71]. MegaMind

is also compatible with all Alexa skills. To minimize conversation latency, we optimize

MegaMind’s implementation in several ways, such as using a sandbox pool to reduce startup

70

latency. Our prototype is mature, allowing users to have multi-turn conversations with Alexa

Voice Service (AVS) or third-party skills. We open source the prototype for the benefit of

users and researchers and provide a video demo showing MegaMind’s performance and novel

extensions.2

We evaluate MegaMind’s implementation on three hardware platforms: two ARM SoC plat-

forms, Raspberry Pi 4 (RPi 4) and Raspberry Pi 3 (RPi 3), and an x86-based laptop. Our

ARM prototypes represent lower-end mobile devices such as smartphones, modestly-powered

standalone assistants, and embedded ones. Our x86 prototype, on the other hand, repre-

sents higher-end and more powerful assistants. MegaMind achieves good performance on the

RPi 4 and on the laptop, but suffers from high performance overhead on the weaker RPi 3.

This performance discrepancy is expected; MegaMind has moderate local processing needs,

including speech-to-text conversion and NLP processing, and the RPi 3 processor is not pow-

erful enough to meet these needs [41]. Nevertheless, our evaluation shows that MegaMind’s

processing requirements can still be met by an inexpensive platform such as the RPi 4. We

also perform extensive testing to evaluate MegaMind’s ability to deliver on its security and

privacy goals using a large corpus of sample conversations. Our results show that MegaMind

achieves high accuracy (less than 10% false positive and false negative rates) in many cases,

although it can sometimes experience lower accuracy. Our investigation shows that local

speech-to-text conversion is an important contributor to MegaMind’s inaccuracy. We expect

that future conversion engines will further improve MegaMind’s effectiveness.

We make the following contributions.

� We present the first extensible platform for enhancing the security and privacy of voice

assistants.

� We design a programming model for extensions that enables ease of development and

2https://trusslab.github.io/megamind/

71

https://trusslab.github.io/megamind/

high expressibility.

� We design an extension execution framework that provides permission enforcement and

non-interference guarantees for the extensions.

� We demonstrate novel extensions for voice assistants, including extensions for secure

conversation and anonymous query. These extensions provide security guarantees not

possible in today’s voice assistants.

� We perform several optimizations in our prototype to achieve a low conversation latency

overhead, critical for the adoption of MegaMind in practice.

� We perform an extensive evaluation of MegaMind and show that it incurs a small

conversation latency overhead, has modest CPU utilization, and is effective in achieving

its security and privacy goals.

4.1 Motivating Extensions

MegaMind enables many security and privacy extensions. In this section, we describe exten-

sions we have developed and tested.

Secure conversation. A user may want to converse in a secure manner with a trusted

third-party skill, such as a bank or a health provider skill. The user may want to protect

the conversation detail both from other third-party skills and from the voice assistant cloud

service, e.g., AVS. In §4.6.1, we discuss how an extension can provide end-to-end encryption,

integrity, and rollback protection for such conversations. MegaMind lets a user send and

receive ciphertext over AVS, a novel functionality not demonstrated before.

Anonymous queries. A user may want to issue a sensitive query without revealing their

identity. The user does not want the assistant cloud service or any third-party skills to

72

Voice
capture

Wake word +
utterance

Reply
(audio)

Voice
assistant

Third-party
skill(s) cloud

service

Alexa Voice
Service (AVS)

Utterance
(text)

Reply
(text/audio)

Audio
playback

audio

1

2

audio audio

Communic-
ation agent

3

4

5

6

78

Figure 4.1: Amazon Alexa
voice assistant architecture.

Third-party
skill(s) cloud

service

Alexa Voice
Service (AVS)

Utterance
(text)

Reply
(text/audio)

Speech-to-
text

conversion

Extensions
trigger

evaluation

audio

text

text/
audio

Sandbox Voice
assistant

Voice
capture

Wake word +
utterance

Reply
(audio) Audio

playback

text

audio

text

Text-to-
speech

conversion

text

audio text
Extension
actions

text

User utterance path

Cloud response path

Communic-
ation agent

1
2

4

5

7

8

9

10

11

121314

3
6

Figure 4.2: Adding the MegaMind extensibility platform
to Amazon Alexa. MegaMind’s functionality is shown
in green.

associate the query with them. For example, a user may want to issue a medical query

anonymously to protect the user’s underlying medical conditions. In §4.6.2, we show how a

MegaMind extension along with a mixer skill can realize this novel security feature.

Redaction. This extension’s goal is to protect sensitive user information, such as family

members’ names, phone numbers, or credit card numbers, from being revealed to AVS or

third-party skills.

Night mode. A user may want to disable an assistant placed in a certain location (e.g.,

bedroom) during a certain time period (e.g., 10 PM to 7 AM).

Parental control. A user may want to enforce access control policies when a voice

assistant is used by their children. For example, they might want to limit access to certain

skills or limit usage time periods. Moreover, they may want to block any form of purchases

and prevent assistant’s responses from including adult content, violent content, or profanity.

Phone call control. A user might want to block the assistant from making calls to phone

numbers outside a contact list. This can prevent unintended and malicious calls triggered

by the voice assistant [32, 38, 37].

73

Third-party skill limiter. A user might want to limit the set of third-party skills their

assistant can communicate with. Such an extension would help mitigate voice squatting

attacks [161].

Please note that these are only a few examples of extensions that MegaMind enables. Mega-

Mind’s programming model and permission system allow the development of various exten-

sions capable of performing edge computing in a controlled and secure manner.

4.2 Architectural Overview

This section presents an overview of MegaMind’s architecture. For simplicity and without

loss of generality, our description of MegaMind is based on Amazon Alexa voice assistants.

Figure 4.1 illustrates the interactions among users, their voice assistant, AVS, and third-

party skills in existing commodity voice assistants. A wake word, such as “Alexa”, invokes

the assistant to start recording a user’s utterances and send them to AVS. AVS parses the

audio and interprets it as a user request. Note that some captured utterances could be the

result of accidental [32, 31, 38] or malicious [94, 262, 208] wakings of the assistant rather

than intended user requests. AVS handles the request internally (i.e., using built-in skills)

or sends it to a third-party skill for processing.

In addition to one-shot queries (i.e., a question and an answer), the voice assistant may

enter a dialog mode that consists of multiple questions and answers, forming a multi-turn

conversation [77]. Dialog mode’s goal is to gather and confirm all the information needed

for servicing a user request. For example, when ordering an Uber, AVS may ask about the

type of the ride, the number of passengers, and the departure time. Hereafter, we refer to all

requests and responses in a conversation as one session. In each session, the user interacts

with either a built-in AVS skill or with a third-party one.

74

Figure 4.2 shows the voice assistant architecture when incorporating MegaMind. MegaMind

interposes on communications from the voice assistant device to the voice assistant cloud

service. It converts the user’s utterance to text, evaluates it against the trigger rules of

deployed extensions, and invokes the extensions’ action functions on a trigger rule match.

To protect against malicious extensions, MegaMind provides permission enforcement (§4.4)

and non-interference (§4.5) to limit what an extension can do. Once processed, the text-based

utterance is sent to AVS.

On receiving a response, MegaMind’s deployed extensions process it before sending the

possibly modified response for audio playback. The response from AVS can be in audio or

text formats. If in text format, the communication agent directly sends it to be evaluated

by the extensions. If not, the audio is first converted to text. Finally, the response needs

to be converted back to audio for playback for the user. MegaMind achieves this using a

text-to-speech converter.

The figure also shows that MegaMind executes the action functions of extensions in sand-

boxes (§4.7.1).

4.3 Trust & Threat Model

There are seven participants in MegaMind’s ecosystem: 1) the owner of the device, 2) the

user of the voice assistant (which might be the owner or someone else in owner’s household

such as their children) 3) voice assistant cloud service provider and its vendor (AVS/Ama-

zon in case of Alexa), 4) the vendor of the voice assistant hardware, 5) third-party skills,

6) MegaMind, including all its software components, and 7) extensions, including (7A) ex-

tensions’ manifest and (7B) extensions’ action function. We note that (4) can be different

from (3). For example, Amazon allows third-party hardware developers such as Sonos to

75

build voice assistant devices that use its voice assistant cloud service. Even users can deploy

Amazon’s open-source Alexa SDK on their personal computers. Therefore, (4) provides the

voice assistance hardware and the system software (OS and firmware) running on it.

We develop MegaMind’s threat model from the perspective of the device owner (1). We

assume that the owner always trusts the voice assistant hardware vendor (4) and MegaMind

(6). The owner does not trust the MegaMind third-party extensions’ action functions (7B).

Moreover, we assume the owner reviews the installed extensions’ manifest (7A) and ensures

it does not ask for malicious permissions. Hence, we suggest that extension developers make

the manifests publicly auditable. We also suggest that extensions developers sign extensions’

manifest and action functions. This signature can be checked before installing the extension

to verify its authenticity. Unless otherwise specified, the owner does not trust users (2).

Users may accidentally share their private information or intentionally perform actions that

the owner does not authorize.

In addition to the mentioned trust model, which applies to all the extensions, we discuss the

trust model specific to different goals each extension tries to achieve.

1. Privacy protection. These extensions prevent users from accidentally sharing their

private information with AVS and/or skills. For these extensions, the owner does not trust

AVS (3) and third-party skills (5).

2. Content control. These extensions prevent AVS and skills to send sensitive responses

to users. For these extensions, the owner does not trust AVS (3) and third-party skills (5).

3. Action limiting. These extensions prevent users from conducting some actions.

For example, the owner might deploy one extension to block all purchases for the device

installed in their child’s room. For these extensions, the owner needs to trust AVS (3) or

third-party skills (5) as they can conduct such action without the device sending them the

request anyway.

76

4. Skill allow-listing and deny-listing. The owner uses these extensions to selectively

trust a subset of skills. Using these extensions, the owner can either block the usage of a

subset of skills or selectively apply privacy preserving or content control on them. For these

extensions, the owner trusts AVS (3), and trusts/distrusts a subset of third party skills (5).

Please note the owner needs to trust AVS since it is in charge of routing the commands to

the third-party skills.

5. Skill security enhancement. The owner uses these extensions to provide a security

feature for one specific third party skill. These extensions use secure channels to protect the

content of the conversation from AVS. Using this extension, the owner trusts only one third

party skill and its companion extension on its assistant.

Adversarial model. We assume that the adversary has full control over untrusted partic-

ipants other than the user. For example, when we assume that AVS is untrusted, we assume

that it is controlled by the adversary. When the user is untrusted, we assume they can make

mistakes, but they do not act maliciously. Side-channels attacks, physical attacks, and any

other attacks that allows the adversary to compromise a trusted participant are out of this

work’s scope.

Defense against attacks. Several important attacks have been demonstrated on voice

assistants. Inaudible voice attacks (IVA) and concealed voice attacks (CVA) stealthily deliver

voice commands to a voice assistant without the user knowing. [207, 262, 208]. Similarly,

research projects on concealed voice commands showed that devices continue to respond to

wake words and utterances even when “mangled” to such a degree that they are unintelligible

to users [234, 94]. Another important attack is the voice squatting attack (VSA), where a

malicious skill developer creates an invocation phrase similar to a legitimate skill, in the

hope that sometimes the wrong skill may be invoked and data may leak [161, 264]. Another

important attack is the fake skill termination attack (FSTA), [264], where a malicious skill

developer creates a long silent audio response in order to trick the user into thinking that

77

Attack category Examples How?

Phishing VSA Skill deny-listing
Eavsdropping FSTA, CVA Privacy protction
Unautorized cmd IVA, CVA Action limiting

Table 4.1: MegaMind protection for attacks.

no skill is running anymore, at which point the user may say something private. Table 4.1

shows how MegaMind extensions help in protecting against attacks.

4.4 Permission Enforcement

Since MegaMind extensions are developed by untrusted third parties, we need to enforce

limitations on these extensions. MegaMind provides a permission system similar to the

Android permission system for applications. The owner reviews permissions an extension

asks for and installs it only if she approves the permissions.

Despite similarities, MegaMind’s permission model is fundamentally different from An-

droid’s. Android’s permissions help limit the application in accessing different systems re-

sources such as I/O peripherals. In contrast, MegaMind’s permission system divides the

permissions of each extension in two categories, access permissions and modification permis-

sions. Access permissions limit the conversations an extension can mediate, and modification

permissions limit how they can modify them.

Limiting the extensions’ permissions is not trivial and requires special care. Some extensions,

such as security enhancement extensions require to arbitrary change the phrases. However,

it is not secure to give all extensions this permission. Also, it is not secure to allow a

security extension to access and modify all the communications. As a result, we devise a

permission model that strikes a balance between access and modification permissions. In

our permission model, extensions that have more access permissions have more restricted

78

modification permissions. Based on this model, we divide extensions in three different types:

discarders, sanitizers, and companions. We define each of these types and their permission

model in the §4.4.2.

In the rest of the section, we first describe how an extension expresses its access permissions

through trigger rules. We then discuss how extension types bring a balance between access

and modification permissions.

4.4.1 Access Permissions

Every extension declares its required permissions in its manifest, a JSON formatted file con-

sisting of an extension type and a rule-set (i.e., an array of trigger rules) (Figure 4.3). Trigger

rules indicate an extension’s access permission by specifying the utterances or responses (i.e.,

jointly referred to phrases hereafter) the extension needs to process. MegaMind provides a

description language that makes it easier to declare trigger rules in a generic and transpar-

ent fashion. It facilitates reviewing the manifest to find malicious permissions. Besides, in

§4.4.2, we show how MegaMind helps in preventing malicious access permissions by limiting

the trigger rules an extension can use based on the extension’s type.

Trigger Rules Description Language Each extension expresses its access permissions

in a rule-set. MegaMind evaluates the rules of the rule-set against each phrase and, if any of

the rules evaluates to true, MegaMind executes the action function on all subsequent phrases

of the current session. A rule itself is a set of conditions on keywords, time, or third-party

skill ID. These conditions are grouped in two sets: (1) an inclusive disjunction (shown with

the predicate include or in Figure 4.3), and (2) an exclusive conjunction (shown with the

predicate exclude and). A rule evaluates to true if all of its conditions are true.

Our trigger rules description language is expressive because it allows arbitrary trigger logic

79

using its language constructs. Using this language, an extension can request access per-

missions to phrases containing or not containing certain words, occurring in certain time

periods, and belonging to conversations with certain skills. A MegaMind rule-set is the sum

of products (SoP) of the conditions on keywords, time and skill ID, and any arbitrary logic

can be expressed as an SoP.

NLP Helper Functions Although MegaMind’s trigger rule description language is expres-

sive, when using a natural language, constructing a set of conditions using keywords alone

is challenging. Consider an extension that blocks adult content from responses returned by

third-party skills. It is difficult to construct a comprehensive corpus of adult content using

keywords alone. To improve MegaMind’s expressiveness and ease of use, we provide Natural

Language Processing Helper (NLP Helper) functions. Examples of functions provided in our

prototype look for synonyms, antonyms, first and last names, phone numbers, addresses,

violent content, adult content, and profanity. Third party extensions can only use the NLP

helper functions and cannot modify or train them. Thus, they cannot use them as an attack

surface to increase their access permissions.

Secure Skill ID Detection Skill ID is a crucial factor in determining access permissions

of an extension. Hence, MegaMind needs to associate each phrase to a target skill in a secure

manner. MegaMind uses two methods for skill ID detection: an AVS-dependent method and

a local method. We use the former when AVS is trusted and the latter when it is not (e.g.,

for extensions that provide skill security enhancement, i.e. companions; see §4.3).

For the AVS-dependent method, we leverage the fact that AVS tags each response with the

ID of the skill that provided it. Therefore, we use this AVS’s metadata to associate a skill

ID to a phrase.

For the local method, we try to detect skill invocations locally by analyzing the user’s

utterances. AVS establishes a conversation session between a user and a third-party skill in

80

{

"type": "Extension Type", // discarder, sanitizer, or companion

"rule_set": [

// rule1

{

"keywords": {

"include_or": [

"contain(word 1)",

"adult_word()", ... // can add more included words

],

"exclude_and": [

"synonym(word 2)", ... // can add more excluded words

]

},

"time": {

"include_or": [

{ // time range 1

"start": "start time 1",

"end": "end time 1"

}, ... // can add more included time ranges

]

},

"Skill_ID": {

"exclude_and": [

"skill ID 1", ... // can add more excluded skill IDs

]

},

}, ... // can add more rules

]

}

Figure 4.3: Trigger rules description language.

two ways: explicit invocation and implicit invocation. An explicit invocation is when the

user deliberately invokes a skill using a specific grammar, e.g., “Open Uber”. This grammar

is deterministic and known by users and AVS [70]. An implicit invocation occurs when AVS

delegates handling a request to a skill without the user asking. The implicit invocation

only occurs with skills that implement the name-free skill invocation feature [70]. Our local

method can only detect explicit invocations. This is because the grammar of an explicit

skill invocation is known but there is no specific grammar for implicit ones. As a result,

third-party skills with companion extensions (that need to rely on MegaMind’s local method

for their security) cannot (and should not) implement the name-free invocation feature.

81

User’s requests Assistant’s responses

E1
E2

Discarder Sanitizer Companion Discarder Sanitizer Companion

UP OP UP OP UP OP UP OP UP OP UP OP

Discarder 3(E) 3(E) 3(E) 3(E) 3(E) 3(E) 3(E) 3(E) 3(E) 3(E) 3(E) 3(E)
Sanitizer 3(O) 3(L) 3(E) 3(E) 3(O) 3(E) 3(O) 3(L) 3(E) 3(E) 3(O) 3(E)
Companion 3(T) 3(O) 3(T) 3(O) 3(E) 3(E) 3(O) 3(T) 3(O) 3(T) 3(E) 3(E)

Table 4.2: This table summarizes all possible types of interference extension E1 can cause
on extension E2’s execution. “3” means MegaMind can prevent interference. In each case,
interference is avoided by: Extensions’ definition (E), Order of execution (O), Limitations
on extensions (L), and Trust model (T).

4.4.2 Modification Permissions

When a phrase triggers a rule, MegaMind invokes the extension’s action function to process

the phrase. It is not secure to permit extensions to modify the phrases arbitrarily. The set

of modifications MegaMind allows an extension to make depends on the extension type, as

described next.

Discarder. A discarder’s action function can drop a phrase from the conversation but

cannot modify it. Whenever a discarder extension drops a phrase, MegaMind notifies the user

by saying: “The last phrase is dropped by [discarder’s name] extension.” This notification

prevents a malicious discarder extension from stealthily dropping a sensitive phrase.

Given the limited modification permissions the discarders have, we give them broad access

permission by setting no limitation on their trigger rules. Discarders are useful for action

limiting and skill deny-listing goals.

Sanitizer. A sanitizer’s action function is allowed to modify the phrase, however, not

arbitrarily. MegaMind enforces two constraints on sanitizers’ modification permissions: (1)

it can change only the words within a phrase that its triggered rule specifies under the

keywords label (including those detected by NLP helpers), and (2) its replacement words

cannot be arbitrary but must be drawn randomly by MegaMind from a specific category,

such as a first or last name, a phone number, a city name, a country name, a random N-

82

digit number, or a bleep censor (i.e., the word bleep). In §4.5, we discuss how this second

limitation is also critical to MegaMind’s guarantee of non-interference.

As sanitizers have more modification permissions, we limit their access permissions. Sanitiz-

ers cannot use exclude and in the keyword section of their rule-set. This prevents sanitizers

from excluding a rare category of words and getting triggered on many generic phrases.

Sanitizers are useful for privacy protection and content control goals.

Companion. A companion extension is paired with a specific third-party skill. There-

fore, its rules must list only one third-party skill ID that the extension accompanies. A

companion’s action function is allowed to make arbitrary changes to phrases. A third-party

skill can have a single companion extension only. Companion extensions have strong mod-

ification permission, but their access permission is heavily limited. They are suitable for

implementing extensions for the skill security enhancement goal.

4.5 Non-interference

In some cases, the same phrase needs to be processed by more than one extension. For

example, consider two extensions, one that redacts the names of people living in a household

in all conversations, and one that implements secure conversation with a third-party skill.

Both extensions require processing the conversations between the user and that third-party

skill.

In MegaMind, the extensions operate on phrases sequentially. This is because parallel pro-

cessing would undoubtedly result in conflicts in the output that cannot be trivially resolved.

For example, merging the encrypted output of one extension with the redacted output of

another is impossible.

83

Since the extensions process phrases one by one, their execution’s order can affect the final

output. We develop a specific ordering for extension execution, which prevents interference.

Our proposed extension execution orderings (which we justify next) are:

User’s requests: sanitizers execute first, followed by discarders, and then followed by

companions.

Assistant responses: companions execute first, followed by sanitizers, and then followed

by discarders.

4.5.1 Non-interference definition

We show that our proposed orderings guarantee non-interference defined by the following

two criteria: 1) No under-protection (UP) and 2) No over-protection (OP). Below, we define

UP and OP based on the notion of protection actions. Protection actions are: discarding the

whole phrase, sanitizing words in the phrase, or securing the phrase (which might involve

any arbitrary changes by the companion.)

UP occurs when an extension: 1) undoes the effect of a previously executed protection action,

or 2) prevents the later extensions from performing their protection actions. As an example

for (1), consider two extensions, a companion and a sanitizer that redacts the adult content

from the assistant responses. If the companion executes after the sanitizer, it can add the

adult content back to the phrase. As an example of (2), consider a companion that encrypts

the user requests. If the companion executes prior to a privacy protecting extension, which

redacts the user’s personal information, the encryption hides the private information and

makes the privacy protecting extension useless.

No OP means if an extension performs any protection action on a phrase, it would have

performed the same action to the original phrase. As an example of an OP, assume a scenario

84

that a sanitizer extension runs before a discarder extension. If the sanitizer modifies a word in

a phrase to a word forbidden by the discarder, the discarder will block that phrase. However,

the discarder would not have blocked the original phrase.

Please note that the term “non-interference” might have been used with other meanings in

other contexts and research fields. Any reference to non-interference in this paper refers to

the above definition.

4.5.2 Non-interference guarantee

We list all possible interference types between extensions in Table 4.2. This section dis-

cusses how MegaMind provides a non-interference guarantee by preventing all these types.

MegaMind prevents interference in four different ways: (1) access/modification permission

limitations each Extension has by definition, (2) Order of execution, (3) extra Limitations

MegaMind enforces on extensions to guarantee non-interference, and (4) the MegaMind’s

Trust model.

Below we discuss how MegaMind successfully prevents interference for every entry in Ta-

ble 4.2 using one of the four ways mentioned above. In following paragraphs, we use

E1-E2-{req,resp}-{UP,OP} naming convention to point to each entry in Table 4.2. We

use ‘*’, and ‘{}’ to point to more than one entry. For example, {dis,san}-*-*-UP means

UP interference a discarder or a sanitizer can cause on all extensions while processing user’s

requests or assistant’s responses.

Extension Definition (1) Discarder extensions do not modify the phrases. As a result,

they cannot cause any interference to other extensions (i.e. no dis-*-*-*). Please note

that MegaMind’s guarantee of non-interference does not protect against denial-of-service. A

malicious discarder can drop all the messages. However, MegaMind will notify the user every

85

time the discarder drops a message, and the user will uninstall the malicious discarder. (2)

MegaMind only allows one companion extension per skill. As a result, the comp-comp-*-*

interference never happens. (3) No other extension can modify the skill ID of a session.

Hence, they cannot cause the companion to process a message with wrong skill ID (i.e., no

-comp--OP). (4) As discussed in 4.4.2, sanitizers cannot use the exclusion of keywords in

their trigger rules. It means a specific word (or word category) should be present in the

phrase to trigger a sanitizer. Also, they can only change those words to a random word

drawn by MegaMind. Together, these two limitations prevent a sanitizer from re-changing a

word previously changed by another sanitizer (i.e., no san-san-*-UP). The same limitations

prevent a sanitizer from changing a word to cause triggering of another sanitizer (i.e., no

san-san-*-OP).

Order of Execution (1) Sanitizers run before discarders; thus, they cannot undo the

protections discarders provide and cause UP (i.e. no san-dis-*-UP). (2) Companions run

immediately before sending users’ requests to AVS and immediately after receiving AVS re-

sponses. As a result, sanitizers cannot compromise the integrity or confidentiality of phrases

going to/from AVS. (i.e., san-comp-*-UP) (3) Companions run after discarders and sanitiz-

ers for user requests. Hence, there is no way for them to cause OP on discarders or sanitizers

(i.e. no comp-{san,dis}-req-OP). (4) Companions run before discarders and sanitizers for

assistant responses. Hence, they cannot undo the protection actions provided by discarders

or sanitizers. (i.e. no comp-{san,dis}-resp-UP)

Extra Limitations (1) Without further considerations, a sanitizer can cause OP interfer-

ence with a discarder (i.e. san-dis-*-OP). Consider a sanitizer that redacts personal phone

numbers and a discarder that blocks all the calls to phone numbers outside of a contact

list. In this case, when the user tries to call a number on his contact list, first the sanitizer

changes it to calling a random number, then the discarder blocks the call. However, if we

passed the original phrase to the same discarder, it would not block it. Hence, it is a case of

86

OP.

In the mentioned case, the discarder and the sanitizer have an inherent conflict, and no order

can result in their interference-free execution. MegaMind resolves this issue by identifying

and preventing these conflicts at the time of extension installation. The rule we enforce is

that a sanitizer and a discarder can have overlapping inclusion and exclusion keyword lists

only if they work on a non-overlapping set of skill IDs. In the above example, the conflict

would be resolved if the sanitizer extension makes an exception for a phone call skill and

the discarder blocks phone calls only for that skill.

Trust Model (1) Companion extensions run after discarders and sanitizers for user’s re-

quest with unlimited modification permission. Therefore, they can potentially undo the pro-

tection actions of discarders and sanitizers and result in UP (i.e., comp-{san,dis}-req-UP).

(2) Because companions run before discarders and sanitizers for assistant responses, they

can add keywords to the phrase which provoke discarders and/or sanitizers and cause OP

(i.e., comp-{san,dis}-resp-OP).

However, a companion extension only runs when the user is conversing with its accompanied

skill, and based on our trust model; it is as trusted as the skill. Companion is the last

extension that processes the user’s request before sending them to the skill, and it is the first

extension that processes the incoming responses. The companion executes in an isolated

sandbox; the only data it can access is the phrases in the ongoing conversation. Hence,

whatever action the companion extension does could have been done by the skill itself.

Thus, we do not consider these actions as interference with other extensions.

87

4.6 Novel Security Features

MegaMind enables novel security features for voice assistants. In this section, we provide

more details on two such features.

4.6.1 Secure Conversation

This extension lets a user conduct a secure conversation with a trusted third-party skill. The

whole conversation is encrypted, integrity- and rollback-protected, ensuring no intermediary

including AVS have access to the conversation’s plaintext nor can they tamper with the

conversation’s contents.

Workflow. Assume a user intends to converse securely with a bank skill named Great Bank.

The user invokes the skill by a phrase like “Alexa, Open Great Bank”. At this point, the

extension gets executed on the voice assistant. Its first task is to share a symmetric session

key with the skill. To do so, it generates the key, encrypts it with the skill’s public key and

waits for the response from the skill. The skill responds to the “Open Great Bank” message

with a welcome message and asks the user if they want to establish secure communication

to this skill. If the user answers “yes”, the extension replaces the user’s answer with “key is

[encrypted key]” and sends it to the skill. AVS delivers the encrypted key to the companion

skill. Since the key is encrypted with the public key of the skill, skill decrypts it with its

private key. Now both sides have the same symmetric key. The session key is then used

for encryption and integrity protection (HMAC). The skill sends all the messages back to

the user encrypted using this symmetric key. The extension also, encrypts all the user’s

utterances with the session key and sends a message as follows for every utterance: “search

for [ciphertext]”, where “search for” is a carrier phrase, described later in the skill support

subsection. In addition, messages include a monotonic counter value to prevent rollback.

88

The endpoints also check that the counter value is incremented with no gaps to ensure no

messages are dropped. Finally, session tear-down is done explicitly using an end-of-session

exchange to ensure the endpoints received all messages. If any of these checks fail, the session

terminates with an error and MegaMind instructs the user to try again.

Encoding. Voice assistants cannot send arbitrary data over AVS to a skill because AVS

restricts messages to include lower-case letters and numbers only. This creates a challenge for

sending ciphertext to a skill. To address this challenge, we encode the ciphertext using RFC

4648’s base32 encoding that converts 5-bit data chunks to a code comprised of upper-case

letters and the numbers between 2 and 7. With base32 encoding, each 5-bytes of ciphertext is

converted to 8 characters, padded with ’=’ characters in case the encoded message’s length

is not a multiple of 8. Finally, we convert upper-case letters in base32 to lower-case and

remove all the trailing ’=’. Decoding is done in a similar manner.

Skill support. A third-party skill can offer this functionality by developing a skill-specific

companion extension. This skill and its companion extension only communicate through

AVS. The extension sends the encryption key and encrypted messages to the skill in the

same way as regular messages (i.e., using AVS). Consequently, the skill must register specific

intents, sample utterances, and slots with AVS to let the extension achieve this goal. An

intent represents an action that fulfills a user’s request. The sample utterances indicate the

pattern of the words users can say to invoke intents. And slots are the optional arguments

of intents.

Slots are defined with different types. Amazon provides several built-in slot types to cap-

ture first names, phone numbers, city names, etc. In addition to the built-in slot types,

users can leverage a specific slot type for capturing users’ generic queries. This slot type is

AMAZON.SearchQuery, which is designed to be used in search engine skills or any skill that

needs to capture complete phrases from users. We use this slot type to receive the key from

the assistant.

89

In the case of the secure conversation extension, the skill should register the following intents

with AVS:

� Intent1: KeyIntent

Sample utterance: key is {KEY}

Slots: KEY ; Slot type: AMAZON.SearchQuery

� Intent2: SearchIntent

Sample utterance: Search for {PHRASE}

Slots: PHRASE ; Slot type: AMAZON.SearchQuery

This raises a challenge. To protect user’s privacy, AVS does not allow the first intent that

launches the skill to contain a slot with AMAZON.SearchQuery type. This limitation prevents

us from converting the user’s first request to a phrase such as Alexa, open secret health with

the {KEY}. Therefore, we share the encrypted symmetric key at the second request to the

skill, as described earlier in the workflow. Besides, Amazon also enforces another limitation

on the usage of a slot type used in this skill (i.e., AMAZON.SearchQuery) for privacy pur-

poses. Based on Amazon’s rules, any AMAZON.SearchQuery slot should be accompanied by

carrier phrases and cannot be used alone in an utterance [68]. This limitation is why we

added the phrase “search for” to the beginning of the utterances of our SearchIntent intent.

4.6.2 Anonymous Query

This extension lets a user issue sensitive queries anonymously. The query is relayed indirectly

through a mixer skill that prevents AVS or any other skill (including the mixer itself) from

correlating the user’s identity with the query’s content.

This extension forms a secure channel with the mixer. Upon receiving messages from a

user, the skill cannot identify the user because AVS never shares any of the user’s identity

90

information with third-party skills. Thus, the mixer skill receives the user’s query but does

not know the user’s identity. On the other hand, AVS knows the user’s identity but does

not have access to the query’s contents. This separation ensures that the sensitive query

remains anonymous. Note that we assume that AVS and the mixer skill do not collude.

Workflow. First, the user must invoke the mixer skill explicitly by saying ”Alexa, Open

Query Mixer”. The mixer skill asks the user to submit the query to be anonymized, and the

extension sends the query to the mixer over the secure channel. The mixer skill decrypts

the query and submits it in plaintext format to AVS. Upon receiving the response, the skill

forwards it back to the user over the secure channel.

We implement a prototype mixer for demonstration purposes. Our mixer reorders the re-

quests, adds randomized latency to each request, and submits them to AVS. Moreover, we

assume that the mixer skill has access to a small network of Alexa-enabled devices to submit

the queries.

4.7 Implementation

We implement MegaMind on top of Amazon’s Alexa Voice Service SDK. Therefore, Mega-

Mind is compatible with all built-in and third-party skills deployed on the Alexa ecosystem.

4.7.1 Key Implementation Components

MegaMind engine. The MegaMind engine is the conductor orchestrating all other

components. The Alexa SDK sends an IPC signal to the MegaMind engine whenever it

detects the wake word. It then waits until it receives the processed user’s command from

the MegaMind engine using another IPC channel. Upon receiving the wake-word detection

91

signal, the MegaMind engine uses the speech-to-text engine to obtain the transcribed text of

the user’s command. MegaMind engine similarly processes the response from AVS. Besides,

it forwards the altered response to a text-to-speech engine to read it for the user.

Runtime sandbox. We use the Firejail sandbox [56], which uses Linux namespaces and

seccomp, to completely isolate the execution of the action function from the rest of the

system.

Using the sandbox, we enforce the following restrictions. First, we limit file system accesses.

We configure Firejail to only allow access to the random number generator, libraries, and

binary programs that are essential for execution of action functions (which are written in

Python) including Python packages on cryptography and natural language processing. More-

over, for performance purposes, we allocate a temporary subfolder in the RAM-based /tmp

directory to be used as a home directory for the sandbox, which is needed for temporary

storage and communication with MegaMind. Second, we disallow sandboxes to communicate

with the outside world by disabling network access. Third, using seccomp filters, we limit

the syscalls that can be executed. We only allow open, read, and write syscalls. Finally,

we configure Firejail to limit the resources such as memory, number of files and size of files,

and the CPU time available to a sandbox.

Speech-to-Text conversion. We use Mozilla DeepSpeech as our speech-to-text engine

for the conversion. We choose DeepSpeech because it outperforms all of the open source

speech-to-text conversion implementations that we have tested, including Kaldi, CMUS-

phinx, Julius, and Simon. According to Mozilla, DeepSpeech achieves a 7.5% word error

rate on LibriSpeech clean database, and can convert speech to text faster than real-time

even on a single core of a RPi 4 board [39]. Moreover, our engine uses the Voice Activity De-

tection (VAD) algorithm to detect the end of utterances and responses based on the silence

detection.

92

Text-to-speech conversion. For our text-to-speech conversion, we use pico2wave from

SVOX [66]. pico2wave is fast; it converts the text to speech in less than 1 ms on a normal

laptop. The output voice of pico2wave sounds less artificial than its other alternatives such

as eSpeak engine on Linux.

NLP helper functions. We implement MegaMind NLP helper functions using Python

natural language processing toolkit (NLTK). MegaMind helper functions lie within three

main categories.

The first category includes helper functions that search words in a database. Examples are

functions that look for first/last names and profanity. For the former, we use a database

including the top 5000 of all the first/last names registered for a Social Security card in the

United States since 1879 [22]. For the latter, we use a list of 1383 profane words in English

from CMU [64]. The second category includes helper functions that look for a predefined

structure in the sentence. Examples are helper functions that find phone numbers or U.S.

addresses in sentences. The third category includes helper functions that use information

about a word’s meaning. Examples are helper functions that find synonyms and similar

words in the sentences, or functions that find a specific type of content such as violent

content or adult content. We implement these helper functions with the help of NLTK and

the WordNet database [72].

4.7.2 Performance Optimizations

Sandbox pool. One source of overhead in our earlier prototypes was the sandbox initial-

ization time. To avoid this high latency, we use a sandbox pool, which MegaMind initializes

at boot time. This optimization reduces the latency by 420±50 ms on a laptop, and 295±20

ms on a RPi 4 board.

93

Text submission to AVS. Another source of overhead in our earlier prototypes was the

time needed to covert the modified user utterance to audio in order to submit to AVS. To

eliminate this overhead, we used another API of AVS that allows submission of requests

in text format. This API is used in Alexa Developer Console for testing third-party skills.

Moreover, the response from AVS, which is normally in audio format, includes the corre-

sponding text of the response as well, when we submit the requests in text format. This

eliminates the need for converting the response to text before passing it to the extensions,

further reducing the latency. This optimization reduces the latency by about 310 ± 20 ms

on a laptop and 630± 90 ms on a RPi 4.

Stream processing. If we wait until the end of the utterance and then start converting

the recorded audio to text, it adds several seconds of latency. Therefore, we use stream

processing for the conversion. In its recent versions (> 0.6), DeepSpeech provides a full

streaming API. We use webRTC’s VAD to collect 300 ms of audio from the microphone and

pass it to the DeepSpeech streaming API. This way, regardless of the utterance length, we

can have the text after around 300 ms. This optimization reduces the latency by 2000±1500

ms.

4.8 Evaluation

We evaluate the performance and effectiveness of MegaMind. We deploy MegaMind on

three platforms, a laptop, a RPi 4 board, and a RPi 3 board. On the laptop, we use

a VMware virtual machine with 4 CPU cores and 2 GB of RAM. The laptop uses a 2.6

GHz Intel Core i7 x86 CPU with 4 cores, 8 GB of RAM, and Intel hardware virtualization

(VT-x). RPi 4 uses a 1.5 GHz ARM Cortex-72 with 4 CPU cores and has 2GB of RAM.

Finally, RPi 3 uses a 1.2 GHz ARM Cortex-53 with 4 CPU cores and has 1 GB of RAM. Our

ARM prototypes represent lower-end mobile devices such as smartphones, modestly-powered

94

SC RE PC AQ NM
0

500

1000

1500

2000

2500

3000
La
ta
nc
y(
m
s)

SDK
STT
Trigger

Action
TTS

(a) x86 laptop

SC RE PC AQ NM
0

500
1000
1500
2000
2500
3000
3500

La
ta
nc
y(
m
s)

(b) RPi 4 board

SC RE PC AQ NM
0

2000
4000
6000
8000
10000
12000
14000

La
ta
nc
y(
m
s)

(c) RPi 3 board

Figure 4.4: Latency breakdown for different extensions for three platforms. For each exten-
sion, first, second and third bars, respectively, show the average latency for first, middle, and
overall commands in a session. The last bar shows the baseline latency for that extension.

standalone assistants, and embedded one. Our x86 prototype, on the other hand, represents

higher-end and more powerful assistants.

4.8.1 Performance

Conversation latency. The latency of responses is one of the critical factors in user’s

satisfaction with a voice assistant. We measure the latency for several extensions and report

them in Figure 4.4. The figure shows the breakdown of the latency, showing contribu-

tions from local speech-to-text conversion, NLP helper function evaluation, and execution

of computationally-heavy action functions. In addition, the figure shows the latency for the

95

first utterance in a session, all utterances after the first one, and all utterances including the

first one. We show the results as such since the first utterance in a session suffers from higher

latency than the other utterances in the same session, for several reasons. First, the action

function execution initializes at this utterance. Second, extensions, specifically companion

extensions, perform heavy computations at the first utterance. The latency also depends

on the length of an utterance. As a result, we test each extension with a session consisting

of five utterances with different lengths. To further reduce the measurements’ noise, we

repeat each session five times. The final latency for each extension is the average latency of

twenty-five measurements in five different sessions.

As the figure shows, different types of extensions have different latency profiles. First, secure

conversation (SC) and Anonymous query (AQ), have heavy initialization and impose higher

latency on the first utterance. As we can see in the figure, most of this latency comes from

the execution of the action function. Second, for redaction (RE) and parental control (PC)

extensions, evaluating the trigger functions imposes the highest latency. This is because

of the usage of NLP helper functions in the trigger rules of these two extensions. Finally,

night mode (NM) and skill limiter (SL) experience a small latency since neither their action

functions nor their rule evaluations are computationally intensive. Please note since these

two extensions discard the utterances before submission to the SDK, there is no reported

SDK latency for them in the figure.

Speech-to-text conversion, on average, imposes similar latency to each extension in each

platform. On the laptop and RPi 4, speech-to-text performs near real-time and imposes

less than 400 ms of latency on average. However, for the weaker platform, RPi 3, speech-

to-text conversion imposes notable latency. This explains poor performance results on this

board. As MegaMind relies heavily on local computation, it requires adequate compute

power on the voice assistant. However, RPi 3 has much less computation power compared

to RPi 4 [42]. Fortunately, our results show that a device as inexpensive as RPi 4 can

96

1 2 3 4
0

2000

4000

6000

8000

10000

12000
La

ten
cy

 (m
s)

x86 VM
RPi 4

RPi 3

(a) #Registered extensions

1 2 3 4
0

2000

4000

6000

8000

10000

12000

La
ten

cy
 (m

s)
(b) #Executed extensions

Figure 4.5: Impact of number of extensions on latency.

provide adequate compute power. Most of the latency on weaker devices is for speech-to-

text conversion. Hence, such devices (e.g., smartwatches) can offload the speech-to-text

conversion to another edge device like a smartphone and still be able to deploy MegaMind.

Impact of the number of extensions. We next evaluate the effect of the number of

extensions on latency, in two steps. First, we evaluate the impact of the number of active yet

not triggered extensions. In this experiment, we measure the average latency for a sequence

of utterances that do not trigger any of extensions. This way, we measure the overhead

of evaluation of the trigger rules for these extensions, but not their action functions. To

increase the number of extensions, we add the following in order: (1) secure conversation, (2)

redaction, (3) night mode, and (4) skill limiter. Figure 4.5a shows the results. It shows that

increasing the number of enabled extensions does not have a notable impact on the overall

latency. Only adding the redactor, which uses NLP helper functions slightly increases the

overall latency of MegaMind.

Second, we evaluate the effect of the number of triggered extensions. This experiment cap-

tures not only the impact of evaluation of trigger rules, but also execution of actions func-

97

SC RE PC AQ NM
0

10
20
30
40
50
60

C
PU

 u
til

iz
at

io
n(

%
) MegaMind Baseline

Figure 4.6: Extensions CPU utilization. For each extension, first, second, and third bar
groups, respectively, represent laptop, RPi 4, and RPi 3.

tions. For this experiment, we use utterances that trigger all of the extensions. Please note

that we modify the discarder’s action function for this experiment to avoid discarding the

utterances when they get triggered. Figure 4.5b shows the results. It shows that even if an

utterance triggers four MegaMind extensions, the overall latency is only slightly higher than

the latency of only one extension. This is because most of MegaMind latency comes from

speech-to-text conversion (which executes once per command).

CPU utilization. We also measure the CPU utilization of each extension using the

same experimental setup. Figure 4.6 shows the results. Since the unmodified SDK delegates

almost all the computation to AVS, it is not surprising that running MegaMind increases

the CPU utilization. For all platforms and all extensions, CPU remains idle most of the

time. Thus, this increase in CPU utilization does not disrupt the normal execution of the

assistant.

4.8.2 Effectiveness

MegaMind extensions can effectively provide security and privacy features for voice assis-

tants. As mentioned in the introduction, we developed a few extensions and demonstrated

their usage in a video demo. We have developed a simple banking skill that supports Mega-

98

Mind’s secure communication alongside its MegaMind companion extension. In our experi-

ments, the user securely communicates with this banking skill, logs in to his account, queries

for his balance, and issues a transaction. We recorded the usage of this skill-extension pair

and published it in our demo. In another instance, we showed the usage of an anonymous

query extension. We showed how a user uses this extension to anonymously query for a

medical condition.

Besides, we evaluate the impact of inaccuracies in speech-to-text conversion and NLP helper

function components on the effectiveness of MegaMind. We note that these inaccuracies

mainly impact sanitizers and discarders in MegaMind. They have, otherwise, minimal im-

pact on companion extensions, such as secure conversation and anonymous query, for two

reasons. First, companion extensions do not use NLP helpers in their trigger rules. Sec-

ond, inaccuracies in the transcription can be easily mitigated by additional authentication

methods employed by the companion skill.

We evaluate the effectiveness of MegaMind in four tasks: (1) detecting sessions, (2) redacting

profanity, (3) redacting private information, and (4) preventing purchases. Table 4.3 summa-

rizes the results. For each of the above tasks, we report results from two sets of experiment,

one where we submit the test utterances in audio format hence requiring speech-to-text

conversion, and one where we bypass the speech-to-text conversation and feed the accurate

text of the utterances to MegaMind. These results help us understand the effectiveness of

MegaMind in the presence of a highly accurate speech-to-text converter. Below, we discuss

the effectiveness experiment results.

Effectiveness of skill ID detection.

To measure the accuracy of MegaMind in detecting explicit invocation of a skill, we test

MegaMind with a combination of 100 standard built-in commands randomly chosen out of

190 Alexa built-in commands reported in [55] and twenty commands that we generate to

99

Text Voice

Detection FN FP FN FP

New session 0% 8% 20% 8%
Profanity 0% 5% 10% 6%
Private info 0% 5% 15% 8%
Purchase 13% 1% 20% 2%

Table 4.3: MegaMind’s detection errors. FN stands for false negatives, and FP for false
positives.

ask Alexa to start a new session with a third-party skill. In generating these commands,

we randomly chose the grammar to open the skill, and we chose skill names randomly from

Alexa skill market.

Table 4.3 shows that MegaMind could find all of the commands aiming to start new session

accurately. However, in a few cases MegaMind detects a false session start for a normal

command. This is because the AVS grammar for starting a new skill has overlap with some

of the Alexa’s built-in commands. For example, a user can launch a third-party skill using

the following grammar: “[a request] from [skill invocation name]” (e.g. “Order pizza from

great pizza shop”.) A built-in command such as “Disconnect bedroom’s echo device from

John’s phone” follows the exact same grammar. MegaMind can potentially filter out all of

these false new session detections by having a database of Alexa’s published skills names.

Effectiveness of profanity redaction. For this experiment, we develop a custom skill,

which tells jokes. We combine ten jokes containing profanity with one hundred clean jokes in

a database, all randomly chosen from Laugh Factory [61]. Our result shows that MegaMind

redacts all the profane words. However, since the database we used for bad words is conser-

vative and contain dual-used words as well, MegaMind filters a few words in clean jokes as

well.

Effectiveness of private information redaction. In this experiment, we mix twenty

utterances containing private information such as first and last names, phone numbers, Social

100

Security Numbers, with 100 Alexa’s standard commands randomly chosen out of 190 Alexa

built-in commands reported in [55]. Our result shows that MegaMind could successfully

redact all the private information in the utterances. However, in a few cases, MegaMind

falsely redacts standard Alexa commands. These false alarms mostly happen in commands

related to playing music, in which the redactor redacts the name of the artist. This problem

only occurs when the redactor aims to redact all the matching first and last names. However,

in real cases, a redactor can be configured only to redact the name of people using the device.

Effectiveness of purchase prevention. Out of 190 built-in Alexa commands reported

in [55], 15 commands are listed as purchase-related commands. We measure how accu-

rately MegaMind parental control extension can block these purchase-related commands.

MegaMind parental control extension could find 13 of purchase-related commands using

MegaMind NLP helper functions. However, two commands related to getting a taxi from

ride-share skills were missed by MegaMind because there were no words associated with pur-

chasing a product in these utterances. However, the parental control extension of MegaMind

can easily block these utterances by disabling ride share skills.

Speech-to-text conversion accuracy. The word error rate for DeepSpeech speech-

to-text engine is reported to be 7.5% [39]. However, this word error rate is for generic

conversations. Voice commands may contain some words and phrases that were not present

in DeepSpeech’s training data-set. As a result, we use a database of Alexa built-in com-

mands [55] consisting of 190 commands for Alexa to measure DeepSpeech’s accuracy. We

convert these commands to Speech using a human-like neural network-based cloud text-to-

speech converter. We then convert back the spoken commands to text using DeepSpeech

and measure the accuracy. Our experiments shows that DeepSpeech word error rate for this

data set is 12.28%.

One other important aspect of speech-to-text conversion accuracy is in finding skill names.

We measure the accuracy of MegaMind using DeepSpeech in accurately detecting the skill

101

names for 100 commands aiming to open 100 randomly selected skills from the top skills of

Alexa skill market [44]. MegaMind could find the Skill names correctly in 82% of cases.

Speech-to-text conversion is a hot research topic and it is expected that the accuracy of local

speech-to-text engines improves in the future. Our prototype uses a pre-trained English

model for DeepSpeech, which has been trained with generic English speeches. However, we

envision that in the near future, it will be possible to train a voice assistant-specific language

model for DeepSpeech using voice assistant commands and skill names in order to further

improve the accuracy. In addition, the DeepSpeech pre-trained models are only trained with

noise-free pre-recorded standard and formal English speeches and do not support different

accents and ambient noise. Training a robust language model requires a huge amount of

labeled audio recording from users. Previously, only big companies had access to this kind

of database. This task is getting feasible given the recent efforts from the open source

community to build large transcribed databases of users’ speeches by asking people to donate

their voice to the database, and donate their time to validate the transcriptions [63]. For

instance, Mozilla Common Voice project, at the time of writing this paper has reached 12000

hours of audio recording in 40 different languages, which 9500 hours of that is validated [63].

102

Chapter 5

Split-Trust Machine Model

Because of their ubiquity and portability, modern mobile systems such as smartphones are

often used to run security-critical programs along with diverse, untrusted, and potentially

malicious programs. For example, most of us perform routine financial tasks, such as banking

and payments [181, 201], on our smartphones. And many of us run health-related programs,

e.g., to receive test results and diagnoses from our health providers, and in some cases, to

perform life-critical tasks, such as to control an insulin pump [230] or monitor breathing [188],

on these same devices.

Realizing this computing paradigm should be straightforward. We can use an OS (or

some other system software such as a hypervisor) to isolate these security-critical programs

from other programs running on the same hardware. Yet, this has proven to be challeng-

ing in practice due to vulnerabilities in system software (e.g., OS, hypervisor, and device

drivers) [237, 51, 29, 53, 54, 263, 198, 87, 108] and hardware (e.g., processor, memory, in-

terconnects, and I/O devices including their firmware) [155, 173, 160, 235, 196, 241, 114].

Malicious programs that interact with the OS and use the same hardware can exploit these

vulnerabilities to take control of the machine and any programs running on it. Therefore,

103

we must trust that the hardware and system software can effectively sandbox and neutralize

malicious programs. This trust often proves to be unwarranted.

To address this challenge, a new approach has emerged. It uses Trusted Execution En-

vironments (TEEs) to host security-critical programs without requiring trust in the OS.

Unfortunately, today’s TEEs still require us to trust the hardware and the security monitor

implementing the TEE guarantees. This trust has also proven unjustified. Existing TEEs

have fallen victim to various attacks, e.g., hardware-based side-channel attacks [91, 235, 98,

184, 183, 134, 212, 172, 265], attacks exploiting software vulnerabilities [95, 52, 204, 115],

and attacks based on design flaws [141, 167, 245].

In this chapter, we present a solution to enable mobile systems to be used for both security-

critical and non-critical programs. Our goal is to minimize both the number and the com-

plexity of hardware and software components that need to be strongly trusted by the owner

of the device in order to execute a security-critical program. As we will define in §5.1.1, we

say that a component is strongly trusted if it needs to be able to withstand and neutralize

adversarial inputs.

Our key principle is provably exclusive access to hardware and software components. That

is, we design a solution to enable a security-critical program to exclusively use complex

hardware and software components and be able to verify the exclusive use. Due to exclusive

use, a component only needs to be weakly trusted. That is, it only needs to operate correctly

in the absence of adversarial inputs.

More concretely, we present a hardware design for our computing system. Called a split-

trust machine model, it comprises multiple trust domains, one or multiple for TEEs, one

for each I/O device, one for a resource manager, and one for hosting a commodity OS and

its programs. The trust domains are statically-partitioned and physically-isolated : they each

have their own processor and memory (and one I/O device in the case of an I/O domain) and

104

do not share any underlying hardware components; they can only communicate by message

passing over a hardware mailbox. Moreover, we introduce a few simple, formally-verified

hardware components that enable a program to gain provably exclusive access to one or

multiple domains.

We rigorously evaluate the required trust, i.e., the Trusted Computing Base (TCB), of this

machine. We show that our machine significantly reduces the TCB compared to mainstream

TEEs and achieves one close to the lower bound.

We present a prototype of our machine model on top of a a CPU-FPGA board (Xilinx Zynq

UltraScale+ MPSoC ZCU102). We use the powerful ARM Cortex A53 CPU to host the

commodity OS (PetaLinux) and its programs with high performance. We use the FPGA to

build the other trust domains: two TEEs, a resource manager, and four I/O domains (an

input domain, an output domain, a storage domain, and a network domain). We use (weak)

microcontrollers for these other domains, including the TEEs. This choice as well as the

small number of TEE domains is based on our observation that security-critical programs,

unlike regular programs, are often not as computationally intensive, and the number of such

programs that run simultaneously is typically small. In other respects, however, they are

like normal programs: they start and stop, run in the background, do I/O, and so forth.

Using our prototype, we show that the added hardware cost is small (i.e., 1-2%) compared

to modern SoCs.

5.1 Background

5.1.1 Trust Definitions

The hardware and software components that need to be trusted for a program to execute

securely form its TCB. In our work, we find that it is not adequate to determine whether a

105

component is trusted. We need to determine the type of trust.

More specifically, we define two types of trust: strong trust and weak trust. We say a

component is strongly trusted if it needs to guard itself against adversarial inputs. For

example, imagine an OS that is trusted to isolate a program from other malicious programs.

The malicious programs can issue adversarial syscalls to the OS concurrently to the protected

program. In such a case, the program owner needs to trust that the component (e.g.,

the OS) can prevent these other programs from exploiting any vulnerabilities (logical or

implementation-related). Ensuring that a software or hardware component is not exploitable

is very challenging, as demonstrated by the plethora of reported exploits. Therefore, we

believe that strong trust should be minimized for security-critical programs. We note, however,

that there are methods for hardening hardware and software components, such as formal

verification. Strong trust is acceptable if a component is known to be adequately hardened

against vulnerabilities.

We say that a component is weakly trusted if it just needs to operate correctly in the

absence of adversarial inputs. For example, consider the same OS mentioned above, but

assume that the security-critical program is the only one running on top of the OS (and

assume no networking with the outside world). In such a case, the program owner only

needs to trust that: (1) the component (e.g., the OS) does not exert buggy behavior under

normal usage, i.e., when processing well-formed inputs, and (2) it is not compromised by

an adversary before use and upon distribution (e.g., through implanted backdoors). These

trust assumptions can be (more) easily met in practice by ensuring that: (1) component

designers test it adequately under various expected usage models, (2) the source code of the

component is available for inspection by security experts and users, and (3) users can verify

the component before use through remote attestation. Therefore, we believe that weak trust

is acceptable for security-critical programs.

106

I/O
device
HW

I/O
device
HW

Commodity OS

Security-cr
itical prog.

Normal
program

Normal
program

I/O
device
HW

I/O
device
HW

Commodity OS

Normal
program

Normal
program

DMA

Security-cr
itical prog.

TEE

DMA

DMA

DMA

(a) (b)

Security Monitor

Figure 5.1: (a) Traditional design where the OS isolates security-critical programs from
normal programs. (b) Use of a TEE to isolate a security-critical program.

5.1.2 Trust in Existing Systems

Historically, the OS has been a strongly-trusted part of the system. That is, the OS is trusted

to isolate a program from other programs, benign or malicious, and provide three important

security guarantees: integrity, confidentiality, and availability. Figure 5.1 (a) illustrates this

traditional design.

As commodity OSes have become more complex over the years, more and more bugs and

vulnerabilities have been found in them, allowing malware to exploit them and compromise

the OS [51, 237, 53, 29, 263, 99, 198, 87, 108]. As an example, there have been about 1400

vulnerabilities reported in the Linux kernel just since 2016. This trend means that strong

trust in the OS is no longer warranted.

There have been several attempts to build trustworthy OSes. These include microkernels [74,

171, 131, 159, 120], exokernels and library OSes [122, 150, 202, 89], formally verified OSes

(and hypervisors) [159, 137, 138, 238, 190, 222, 168, 169, 227], and OSes written in safe

languages [123, 145, 166, 189]. While effective, these solutions require replacing commodity

OSes with a new OS. This is a challenging task due to the abundance of existing programs,

device drivers, and developers for commodity OSes. More importantly, using these OSes still

107

requires strong trust in hardware, which is not warranted either, as we will discuss.

About two decades ago, a new approach started to gain popularity. The idea is to create

an isolated environment, called a TEE, to host a security-critical program. This allows

the use of a commodity OS, but relegates it to be only in charge of untrusted, normal

programs such as games, utility apps, and entertainment platforms. The TEE enables a

security-critical program to ensure its own integrity and confidentiality even if the OS is

untrusted, but leaves the OS in charge of resource management (and hence the availability

guarantee). Figure 5.1 (b) illustrates this design. It shows a security monitor is used to

isolate a TEE from the OS. The security monitor can be implemented purely in software (i.e.,

a hypervisor) [102, 143] or using a combination of hardware and software. ARM TrustZone

and Intel SGX are famous examples of the latter. Other examples include AMD Secure

Encrypted Virtualization (SEV), Intel Trusted Domain Extensions (TDX), Apple’s Secure

Enclave Processor (SEP), ARMv9’s Realms [135], and Keystone for RISC-V [163].

Despite their success, existing TEE solutions still require many components to be strongly

trusted including the security monitor and several hardware components such as the very

complex processor, memory, I/O devices in some cases, and dynamically-programmable pro-

tection hardware such as address space controllers and MMUs. Unfortunately, all of these

components can be compromised by an adversary. For examples, hypervisors contain many

vulnerabilities [54, 84]. The TEE OS in TrustZone also contains vulnerabilities and has been

exploited in the past [95, 52, 204, 115]. AMD SEV has also been shown to contain several

vulnerabilities due to design flaws, all of which have been exploited [141, 167, 245].

Hardware components have been exploited as well. Processor-based side-channel attacks

have recently emerged as a serious threat to computing systems. For example, SGX enclaves

and TrustZone have been compromised using several such attacks [91, 235, 98, 184, 183, 134,

212, 172, 265]. The core reason behind this is that existing solutions execute the untrusted

OS and TEEs on the same hardware, forcing them to share the underlying microarchitectural

108

features such as caches [91, 172, 265, 183, 134, 212] and speculative execution engine [173, 235,

160, 98], as well as architectural ones such as virtual memory [184]. The memory subsystem

has also proved vulnerable and fallen to Rowhammer attacks [155, 205, 236, 248, 136, 176].

The complexity of these hardware components ensures that many more such vulnerabilities

will be discovered and exploited. For example, researchers have recently demonstrated a

suite of new side channels using the interconnects [196], the x87 floating-point unit, and

Advanced Vector extensions (AVX) instructions (among others) [241].

5.2 Key Goal and Principle

Key goal. Our goal in this work is to minimize the (1) number and (2) complexity

of strongly-trusted components. The rationale for (1) is that it is difficult for hardware

or software components to adequately protect themselves against adversarial inputs. The

rationale for (2) is that it is easier to ensure that a component can fend off adversarial inputs

if it is simple, which allows for comprehensive testing, analysis, and formal verification.

Key principle. Our key principle to achieve this goal is provably exclusive access to

hardware and software components. That is, we design our machine to enable a security-

critical program to exclusively use complex hardware and software components and be able to

verify the exclusive use. More specifically, our goal is to have most components, especially

complex ones such as the processor and system software, (1) be reset to a clean state before

use, (2) then used exclusively by a security-critical program in a verifiable fashion through

remote and/or local attestation, and (3) then again reset to a clean state right after use. In

this case, such a component only needs to be weakly trusted as it does not need to worry

about adversarial inputs while serving the security-critical program, nor does it need to

worry about residual state from the security-critical program while serving other, potentially

malicious, programs.

109

To realize this principle, we introduce a novel hardware design, the split-trust machine model

(§5.3).

5.3 Split-Trust Machine Model

Modern machines leverage hardware with a hierarchical privilege model. That is, the hard-

ware provides multiple privilege levels, each with more privilege than previous ones, with one

all-powerful privilege level to “rule them all.”1 These privilege levels are implemented inside

the CPU and use other programmable protection hardware components, such as MMUs.

This model results inevitably in several complex, strongly-trusted components such as the

processor, protection hardware, and system software, which if compromised, affect all pro-

grams.

In this chapter, we demonstrate a novel hardware design, the split-trust machine model, in

which the hardware is split into multiple isolated trust domains. Each domain is intended

for one aspect of the machine: one or multiple for TEEs, one for each I/O device (i.e., an I/O

domain), one for a commodity OS and its untrusted programs (i.e., the untrusted domain),

and one for a resource manager, which is in charge of constrained resource scheduling and

access control. The benefit of the split-trust model is that a security-critical program can

exclusively take control of and use its own domain and exclusively communicate with other

domains, e.g., for I/O and IPC, hence significantly reducing the strongly-trusted compo-

nents. (Exclusive inter-domain communication is enabled with a novel hardware mailbox

abstraction that we will introduce in §5.3.2.) Figure 5.2 shows a simplified view of this

hardware design. Next, we discuss its key aspects.
1A reference to Tolkien’s The Lord’s of the Rings.

110

TEE 1 domain TEE 2 domainUntrusted domain

Resource
manager
domain

I/O 2 domainI/O 1 domain

mailbox mailbox

I/O
device
HW

I/O
device
HW

Trusted
Platform

Module (TPM)

Power
Management
Unit (PMU)

Security-crit
ical prog.

Security-crit
ical prog.Commodity OS

Normal
program

Normal
program

Delegatable writer Delegatable reader

Fixed writerFixed reader

Figure 5.2: Simplified overview of the split-trust machine model. The figure does not show
all mailboxes for clarity.

5.3.1 Static Partitioning and Physical Isolation

We follow two important principles in our hardware design: (1) domains must be physically

isolated (i.e., share no hardware components), and (2) the isolation boundary between them

cannot be programmatically and dynamically modified as there is no trusted-by-all hardware

or software component. The latter implies that we cannot rely on programmable protection

hardware, such as MMU, IOMMU, and address space controller, to enforce isolation. As

a result, our design statically partitions the hardware resources between domains. Each

domain owns its own hardware components (physical isolation) and that ownership is decided

at hardware fabrication time and cannot be changed later (static partitioning).

More specifically, each trust domain has its own processor and memory. We use a powerful

CPU for the untrusted domain, which accommodates a commodity OS and its (untrusted)

programs, to achieve high performance. We use weaker microcontrollers for other domains

111

in order to keep the hardware cost small. Each domain has its own memory as well and

domains do not (and cannot) share memory.

An I/O domain also has exclusive control of an I/O device, which is wired to and only

programmable by the processor of that domain and its interrupts are routed to that processor.

(We will discuss how DMA is handled in §5.3.5.)

5.3.2 Exclusive Inter-Domain Communication

To be able to act as one machine, the domains need to be able to communicate. We introduce

a simple, yet powerful, hardware primitive for this purpose: verifiably delegatable hardware

mailbox (mailbox for short).

At its core, a mailbox is a hardware queue, allowing two domains (i.e., the writer and reader)

to communicate through message passing. A mailbox provides one-way communication. For

two-way communication, two mailboxes are needed.

The key novelty of our mailbox is how it enables exclusive communication using its delegation

model. A mailbox has a fixed end (reader or writer) and a delegatable one. The fixed end is

hard-wired to a specific domain. The delegatable one is wired to multiple domains, but only

one can use it at a time, enforced by a hardware multiplexer within the mailbox. This end

is by default (i.e., after a mailbox reset) under the control of the resource manager domain.

But the resource manager can delegate it to another domain, which is then able to exclusively

communicate with the domain on the fixed end of the mailbox.

Figure 5.3 shows the design of the mailbox with a fixed reader. (The design of the fixed

writer mailbox is similar.) For example, consider the serial output domain in our prototype.

This domain is the fixed reader of a mailbox. Any domain with write access to the mailbox

can (exclusively) send content to the output domain to be displayed in the terminal.

112

mailbox

message queue

multiplexer

fixed reader
domain

writer
domain

writer
domain

mailbox
commands

mailbox
messages

Default writer
domain

(resource mgr.) status
register

multiplexing
logic

Figure 5.3: Mailbox design.

The delegation model of our mailbox has another important property: limited yet irrevo-

cable delegation. When the resource manager delegates the mailbox to a domain, it sets a

quota for the delegation in terms of both the maximum number of messages communicated

and maximum delegation time. As as long as the quota has not expired (i.e., a session),

the domain can use the mailbox and the resource manager cannot revoke its access to the

mailbox. The session expires when either the message limit or the time limit expires. (The

message limit can be set to infinite, but not the time domain, enforcing a temporal limit on

the session length.)

This delegation model enables a limited form of availability, which we refer to as session

availability. That is, a domain with exclusive communication access to another domain can

be sure to retain its access for a known period of time or number of messages. This is critical

for some security guarantees on personal computers. For example, a security-critical program

can ensure that the User Interface (UI) will not be hijacked or covered with overlays when

the program is interacting with the user [100, 256]. Or a security-critical program that has

authenticated to and hence unlocked a sensitive actuator domain (e.g., insulin pump, §4.1)

can ensure that no other program can hijack the session and manipulate the actuator.

As the resource manager is not trusted by other domains, the delegation must be verifiable.

The mailbox hardware provides a facility for this verification. As Figure 5.3 shows, all

domains connected to the mailbox can read a status register from the mailbox hardware.

113

The status register specifies the domain that can read/write to the mailbox and the remaining

quota. The domain with delegated access can therefore verify its access and quota. (Other

domains will receive a dummy value when reading the status register for confidentiality.)

5.3.3 Power Management

Our mailbox primitive cannot, on its own, guarantee session availability. This is because we

need to ensure that during a session, the domains used by a security-critical program remain

powered up (assuming there is adequate energy if battery-powered).

The Power Management Unit (PMU) normally takes commands from the resource manager.

The resource manager uses this capability to reset other domains when needed, e.g., reset a

TEE domain before running a new program, or apply Dynamic Voltage Frequency Scaling

(DVFS) to manage the system’s power consumption. (We do not support DVFS for the

domains in our prototype. Hence, in the rest of the paper, we mainly focus on the reset

interface, although similar principles can be applied to DVFS.)

However, the resource manager is not a trusted component; hence it may try to reset a

domain during a session. Therefore, we add a simple hardware, called the reset guard, for

the reset signals, which ensures that as long as the quota on a mailbox has not expired, the

domains on both sides of the mailbox cannot be reset, hence ensuring session availability.

5.3.4 Hardware Root of Trust

A hardware root of trust is needed during remote attestation to convince the party in charge

of a security-critical program of the authenticity of the hardware and the correctness of the

loaded program. In a split-trust machine, we use a Trusted Platform Module (TPM) to

realize the root of trust.

114

Why TPM? TPM, as specified by the Trusted Computing Group (TCG), is a tamper-

resistant security co-processor connected to the main processor over a bus [229]. Hence,

traditionally, it provides security features for the machine as a whole, such as the measure-

ments of the loaded software. This makes TPM unsuitable for more fine-grained security

features, such as remote attestation of a specific program. As a result, in-processor TEE

solutions, such as SGX, integrate the root of trust in the processor itself, further bloating

the strongly-trusted processor.

Our key insight is that TPM can provide fine-grained security features for a split-trust

machine since different components of this OS run in separate domains. This allows the

machine to enjoy the security benefits of TPM without suffering from its main limitation.

To integrate TPM into a split-trust machine, we need a different set of parameters from the

ones found in existing TPM chips in order to provide one Platform Configuration Register

(PCR) per domain and securely extend it with the measurement of software loaded in the

domain. We do not provide more details here due to space limitations. We do, however,

note that modifying the number of PCRs and their access permissions in TPM does not

change its fundamental design principles. Indeed, the TPM specification does not specify

these parameters [228], leaving them to implementers.

5.3.5 High Performance I/O

By default, the data plane of I/O domains are implemented over mailboxes. However, this

raises a performance concern due to additional data copies (to and from mailbox). While

the performance overhead is acceptable for TEE domains, it is not so for the untrusted

domain. An important hardware primitive that enables a legacy machine to achieve high

I/O performance is DMA. To safely use DMA in our machine, we introduce domain-bound

DMA, defined with the following two restrictions:

115

• The DMA engine is hard-wired to only read/write to the memory of the untrusted

domain.

• The DMA engine can stream data in/out of the I/O device only when the I/O domain

is used by the untrusted domain.

When an I/O domain is used by a TEE domain, DMA is not used and data is transferred

using mailboxes. But when the untrusted domain uses the I/O domain, data is transferred

using domain-bound DMA for performance reasons. We achieve this with a simple hardware

component called the arbiter, which is a switch that decides if the data streams of the I/O

device is connected to a DMA engine or to a simple FIFO queue accessible to the I/O domain.

As in a legacy machine, the untrusted domain may also use an IOMMU to further restrict

DMA targets in order to isolate its own address spaces.

5.3.6 Domain and Mailbox Reset

As mentioned in §5.2, a key requirement for exclusive use of a domain is that the domain

(and all its mailboxes) are reset to a clean state prior to and after use, in a way verifiable by

the security-critical program. We reset the mailboxes directly in hardware upon delegation,

yield, and session expiration. We leave the resetting of the domains to the resource manager,

albeit under the limitations enforced by the reset guard (§5.3.3). Even though the resource

manager is untrusted, this does not pose a problem since the program can verify, using local

and remote attestation through TPM as well as some measures provided by the domain

runtime that (1) a domain has been reset, (2) it has not been used since last reset, (3) it will

be reset after use and before use by other domains.

116

5.4 Prototype

We have built a prototype of the split-trust hardware, on the Xilinx Zynq UltraScale+

MPSoC ZCU102 FPGA board. The SoC on the board has an FPGA as well as an ARM

Cortex A53 processor. We use the ARM processor for the untrusted domain in order to

achieve high performance for the commodity OS (PetaLinux) and its programs. We use

the FPGA to synthesize 7 simple Microblaze microcontrollers (i.e., no MMU and no cache):

two TEE domains, the resource manager domain, and four I/O domains (serial input, serial

output, storage, and Gigabit Ethernet). For our TEE runtime, I/O services, and the resource

manager, we leverage the Standalone library [249], which is single-threaded, to program

the microcontrollers. We use the entirety of the main memory for the untrusted domain.

For other domains, we use a total of 3.2 MB of on-chip memory including some ROM for

bootloaders and some RAM. We run the TPM (emulator) [146] on a separate Raspberry

Pi 4 board connected to the main board through serial ports. We use another Microblaze

microcontroller to mediate the communications of the domains with the TPM.

In addition, we use the FPGA to synthesize the mailboxes (12 in total), the arbiter for

DMA for the network domain (other domains do not support DMA), the reset guard, as

well as 11 hardware queues for permanent domain connections (such as for all domains to

communicate with TPM or for TEE domains to communicate with the resource manager).

We note that we synthesize two types of mailboxes: control-plane mailboxes and data-plane

mailboxes. The former has 4 messages of 64 B each and the latter has 4 messages of 512 B

each. As a concrete example, our storage domain has 4 mailboxes: two for its control plane

(send/receive) and two for its data plane (send/receive). Our mailbox interrupts a domain

on every send and receive, which the domains can use to process incoming messages in a

timely fashion and to ensure that outgoing messages have been successfully queued.

As mentioned in §5.3.1, an I/O device is only programmable by its domain. This includes

117

Property Proved theorems

Exclusive
access

Domains w/o exclusive access to mailbox cannot change which domain has exclusive access,
nor the remaining quota.

If a domain does not yield its exclusive access, its exclusive access is guaranteed
as long as the quota has not expired.
The domain with exclusive access to the mailbox can correctly read or write from/to the queue.

The domains w/o exclusive access to the mailbox cannot read/write to the queue.

Limited

delegation

When given exclusive access, a domain cannot use the mailbox more than its delegated quota.
When the quota delegated to a domain expires, the domain loses exclusive access.

Exclusive Acc-

ess verification

The domain with exclusive access can correctly verify its exclusive access and remaining quota.
The domain on fixed end of mailbox can correctly verify the domain with exclusive access on the other

end and the remaining quota.

Default

exclusive

access

After reset, the resource manager domain has exclusive access by default.

The resource manager domain does not lose its exclusive access unless it delegates it.
When a domain loses exclusive access (yield/expiration), the exclusive access will be given to the
resource manager domain.

Confide-
ntiality

Domains w/o excl. access cannot use mailbox’s verification interface to find out which domain has

excl. access and the remain. quota.
Upon delegation/yield/expiration, the data in the queue is wiped.

Table 5.1: Theorems we prove for our mailbox. Proving some of these theorems require
proving multiple lemmas not listed here.

access to registers and receiving interrupts from the I/O device. In our prototype, we use I/O

interrupts only for the network domain and use polling for the rest. The interrupts to the

network domain’s microcontroller is from the FIFO queue that holds the packets and are only

used when the domain serves a TEE domain (§5.3.5). When serving the untrusted domain,

the domain-bound DMA engine directly interrupts the A53 processor on DMA completion.

When building the split-trust hardware, we faced numerous difficulties resulting from limi-

tations imposed by the FPGA board. One limitation is noteworthy: the on-board SD card

reader and flash memory are directly programmable by the A53 processor and hence could

not be used for the storage domain. Our solution was to connect a MicroSD card reader di-

rectly to FPGA through Pmod [127]. This provides physical isolation for the storage domain,

but significantly degrades its performance due to Pmod’s limited throughput (§5.5.2).

5.4.1 Verified Hardware Design

The split-trust machine model has only four simple hardware components that are strongly

trusted (see §4.3 for the TCB analysis): mailbox, DMA arbiter, reset guard, and ROM (for

118

bootloaders). We have implemented these components in 1630 lines of Verilog code as well

as 800 lines of Python code to generate various mailboxes (i.e., mailboxes with different

number of readers/writers) from a template design.

The simplicity of our strongly-trusted hardware components enables us to formally verify

them. We use SymbiYosys to perform formal verification [132]. SymbiYosys is a front-end

for Yosys-based formal hardware verification flows. We use the SMTBMC engine, which

uses k-induction to formally verify safety features in hardware. Table 5.1 shows the list of

theorems we prove for the mailbox (we omit the rest due to space limitation). Overall, we

developed 3000 lines of SystemVerilog code for our hardware verification.

5.5 Evaluation

Our FPGA-based hardware implementation serves two purposes. First, we use it to esti-

mate the hardware cost of our solution in terms of chip area. Second, it provides a bound

on the performance impact of the solution. A deployed solution would likely replace the

FPGA components with higher-performance non-reprogrammable ASIC elements, such as

an integrated SoC or specialized chiplets [187].

5.5.1 Hardware Cost

We calculate an estimate for the number of transistors needed for our additional hardware

components (all the components synthesized on the FPGA in our prototype). We calculate

this estimate by measuring the number of look-up tables, flip flops, and block RAMs used

by our hardware and converting them to transistor count using the following estimates: 6

NAND gates per look-up table [203], 6 transistors per NAND gate [226], 24 transistors for

each flip flop [219], and 6 transistor for each bit of on-chip memory (assuming a conventional

119

FPGA resource Count Equivalent transistor count

Look-up table 63,289 2,278,404

Flip flop 57,033 1,368,792

Block RAM 26,840,190 (bits) 161,041,140

Table 5.2: Cost of additional hardware in our machine.

6-transistor SRAM cell [83]). Our calculation shows that our machine requires about 164.7

M additional transistors (161 M of which are used for on-chip memory). Table 5.2 shows the

breakdown. This compares favorably with the number of transistors used in modern SoCs.

For example, Apple A15 Bionic and HiSilicon Kirin 9000 use 15 B transistors [216, 128]. This

means that, if our solution is added to an SoC or implemented as a chiplet, the additional

hardware cost would likely be 1-2%.

5.5.2 Performance

We measure various performance aspects of our machine. Note that all domains except

the untrusted one use an FPGA with a 100 MHz clock (the Ethernet controller IP uses an

external 156.25 MHz clock). We repeat each experiment 5 times and report the average and

standard deviation.

Mailbox performance. We measure the throughput and latency of communication

over our mailbox. For throughput, we measure the time to send 10,000 messages of 512

B over our data-plane mailbox. For latency, we measure the round trip time to send a 64

B message and receive an acknowledgment over our control-plane mailboxes. We perform

these experiments in two configurations: one for communication between the hard-wired

ARM Cortex A53 (the untrusted domain) and an FPGA-based Microblaze microcontroller,

and one for communication between two FGPA-based Microblaze microcontrollers. Table 5.3

shows the results. One might wonder why the A53-Microblaze configuration achieves lower

performance. We believe this is because this configuration requires the data to pass the

FPGA boundary, hence passing through voltage level shifters and isolation blocks [250].

120

Configuration Throughput (MB/s) Latency (µs)

A53-Microblaze 7.07±0 18.2±0

Microblaze-Microblaze 9.64±0.01 15.26±0.05

Table 5.3: Mailbox performance.
Configuration Read throughput(MB/s) Write throughput(MB/s)

Best-case 0.24±0.00 0.12±0.02

Untrusted dom. 0.24±0.09 0.09±0.02

TEE domain 0.21±0.00 0.11±0.01

Table 5.4: Storage performance.

Moreover, the FPGA is in a different clock domain than A53.

Storage performance. We measure the performance of our storage domain, which uses

the mailbox for its data plane (i.e., no DMA). As mentioned in §5.4, our prototype uses a

Pmod-based microSD card for storage. However, the Pmod connection limits the throughput

of our storage service.

To measure the storage performance, we perform 2000 reads/writes of 512 B each. We

evaluate three configurations: (1) a best-case performance where the storage domain directly

performs the reads/writes (hence mainly stressing the Pmod-based microSD card), and (2)

the untrusted domain as well as (3) a TEE domain storage performance (where the untrusted

domain or a TEE domain uses the storage service). Table 5.4 shows the results. They show

that our storage performance is mainly limited by the Pmod connection.

Network performance. We measure the performance of our network domain, which uses

domain-bound DMA for high performance for the untrusted domain (§5.3.5). We evaluate

three configurations: (1) a baseline where the A53 processor uses the Ethernet device (using

an IP on the FPGA provided by Xilinx) and (2) the untrusted and (3) TEE domains using

our network service. For measuring the throughput for the baseline and the untrusted

configurations, we use iPerf; for round-trip time (RTT) measurements, we use Ping. For the

TEE configuration, we develop custom programs for the measurements. For all experiments,

we connect the board to a PC and measure the numbers reported by the measurement

programs on the board. Table 5.5 shows the results. They show that our domain-bound

121

Configuration Throughput (Mbit/s) RTT (ms)

Baseline 943±0 0.17±0.01

Untrusted domain 943±0 0.17±0.02

TEE domain 0.022±0.001 23.92±0.02

Table 5.5: Network performance.

DMA is capable of matching the performance of a legacy machine.

122

Chapter 6

Related Work

6.1 Vulnerability Discovery

6.1.1 Remote I/O Access

Charm is a form of remote I/O. It enables software running in one machine to interact with

an I/O device in another machine over a network connection. Hence, Charm is related to

all systems that use remote I/O. The closest work to Charm is Avatar [259], a solution for

dynamic analysis of binary firmware in embedded devices, such as a hard disk bootloader,

a wireless sensor node, and a mobile phone baseband chip. Since performing analysis in

embedded devices is difficult, Avatar executes the firmware in a virtual machine and forwards

the low-level memory accesses (including I/O operation) to the embedded device. The

remote boundary in Avatar is similar to the boundary used in Charm. However, Avatar

focuses on a very different software and hardware. More specifically, it focuses on binary

firmware of embedded devices whereas Charm focuses on open source device drivers of mobile

systems. Moreover, in Avatar, the connections to the embedded device are low-bandwidth

123

UART or JTAG interfaces whereas Charm uses a USB interface. This, in turn, results in

different underlying techniques used in the two systems. First, in its full separation mode,

Avatar forwards all memory accesses to the embedded device, unlike Charm that ports the

device driver fully to the virtual machine and only forwards I/O accesses. This results in

poor performance in Avatar unlike Charm, which achieves performance on par with that

of native mobile execution. To optimize, Avatar uses heuristics to perform some memory

access locally. It also executes some or all of the firmware code directly on the embedded

device. In contrast, Charm runs all the device driver code in the virtual machine. And

for performance optimizations, it devises a custom low-latency USB channel and leverages

the native execution speed of x86 processors. Avatar is limited to analysis of embedded

firmware whereas our proposed solutions target analysis of device drivers in commodity

mobile systems. These technical differences also make these solutions useful for different

analysis techniques. For example, Charm can fuzz the device driver fully in a virtual machine.

Other forms of remote I/O exists for mobile systems as well, such as Rio [79] and M+ [195].

The main difference between Charm and these systems is the boundary at which I/O oper-

ations are remoted. Rio uses the device file boundary and M+ uses the Android binder IPC

boundary. In contrast, Charm uses the low-level software-hardware boundary. Therefore,

Charm uniquely enables the remote execution of the device driver. In both Rio and M+,

the device driver remains in the machine containing the I/O device.

6.1.2 Analysis of System Software

Over the years, many static and dynamic analysis solutions have been invented for a wide

range of applications such as safety, reliability, and security. In recent years, popular anal-

ysis techniques include taint tracking [191, 110, 257, 121], symbolic and concolic execu-

tion [92, 107, 96, 116, 252], unpacking and reverse engineering [156, 253, 152, 267], malware

124

sandboxing [3, 246, 90], and fuzzing [133, 97, 247, 240].

System-wide analysis. Many of these analysis frameworks are built on top of the virtu-

alization technology and can support full-system analysis, including the low-level code such

as kernel and device drivers [191, 110, 109, 257, 254]. For instance, Panorama [257] and

DroidScope [254] can analyze the entire Windows and Android operating systems, respec-

tively. Aftersight [109] uses virtual machine replay to feed recorded logs from a production

system to a testing system in real time where more expensive analysis is run. kAFL is a

hardware-based feedback-driven kernel fuzzer [211]. It uses the Intel Processor Tracer (PT)

to collect execution traces in the hypervisor and use that to guide the fuzzer. Digtool is a

kernel vulnerability detection solution based on a customized hypervisor, which can monitor

various events in the kernel such as memory allocation and thread scheduling. Keil et al.

fuzz wireless device drivers in a QEMU virtual machine [154]. To enable the driver to run

in a virtual machine, they emulate the wireless interface hardware in software. Dovgalyuk

et al. perform reverse debugging of device drivers in a QEMU virtual machine. They use

GDB as well as record-and-replay in their debugging. Unfortunately, none of these solutions

can be applied to device drivers of mobile systems. They can only support system software

running within a virtual machine, e.g., device drivers for emulated and virtualized I/O de-

vices (including direct device assignment for PCI-based I/O devices). Charm addresses this

problem and is complementary to all of these solutions. In other words, Charm enables all

of these dynamic analysis solutions to be applied to device drivers of mobile systems as well.

Fuzzing is an effective dynamic analysis technique, which can be applied to the OS kernel

and device drivers as well. Peach Fuzzer fuzzes the device drivers by running a fuzzer in a

separate physical machine than the one with the I/O device [27]. While superior to running

the fuzzer and driver in the same machine, their approach suffers from similar challenges

that Syzkaller suffers from when fuzzing a mobile system directly (§2.1.3). Charm solves

these problems by making it possible to run the device driver in a virtual machine.

125

In [180], Mendonça et al. fuzz the Wi-Fi interface card driver. They perform the fuzzing

directly on a Windows Mobile Phone. In contrast, Charm enables the fuzzing to be performed

in a virtual machine in a workstation, providing significant usability benefits.

DIFUZE automatically generates templates for fuzzing the kernel device drivers directly on

mobile systems [111]. OctopOS is orthogonal and can benefit from DIFUZE for template

generation.

Device driver or firmware analysis. The diversity of device drivers and their direct in-

teractions with physical I/O devices create challenges for dynamic analysis. Static analysis,

therefore, has been extensively used on device drivers [108, 87, 198]. Examples are symbolic

execution solutions such as in SymDrive [206], S2E [106], and DDT [162], which can effec-

tively analyze device drivers, and taint and pointer analyses as in DR. CHECKER [178].

Static analysis has the benefit of eliminating the need for the presence of actual devices.

However, static analysis tools cannot uncover all the bugs and vulnerabilities in the drivers.

They can only detect those for which the analyzer explicitly checks for. Moreover, static

analysis solutions often suffer from large false positive rates due to imprecision.

Analysis of firmware running inside embedded devices faces similar challenges stemming from

diversity as analysis of device drivers. Both static analysis [113] and dynamic analysis [259,

220] solutions have been used for firmware analysis as well. In contrast to this line of work,

Charm focuses on modern mobile systems.

6.1.3 Mobile Testing

Several mobile testing frameworks have recently emerged. BareDroid analyzes Android apps

directly on mobile systems [186]. SPOKE analyzes the access control policies of Android by

running test cases directly on mobile systems [239]. The main motivation behind this line

126

of work is the fact that the system software of mobile systems are so different from that

of x86 machines that these tests cannot be simply performed on existing virtual machines.

Our motivation is in line with these systems as well. However, directly analyzing the device

drivers in mobile systems is challenging, as we extensively discussed in the paper. Therefore,

we enable these device driver to execute in a virtual machine for enhanced analysis.

6.2 Vulnerability Mitigation

6.2.1 Bug workarounds.

Talos inserts SWRRs (Security Workaround for Rapid Responses) into functions of an

application in order to prevent the execution of known vulnerabilities [16]. Talos can be

used to protect a vulnerable application until a patch is available. Talos performs static

analysis to extract the right error number for a function and return that instead of executing

the vulnerable function. In contrast, bowknots do not disable a function. They only undo a

specific execution path that triggers a bug. In §3.6, we comprehensively compared bowknots

with Talos.

6.2.2 Automatic fault recovery.

FGFT provides fine-grained recovery for faults in device drivers [151]. To do so, it

checkpoints the memory and I/O device state on select entry points and restores them when

a fault is detected. FGFT’s key technique is to checkpoint and restore device state using

existing power management code in device drivers. There are two important limitations that

make this solution unsuitable to be used as a generic kernel bug workaround solution. First,

checkpointing the state of an I/O device using power management facilities is not feasible for

127

all I/O devices. In fact, some of the devices that we tested in our evaluation (e.g., the camera

of Nexus 5X smartphone) do not support this. Moreover, a checkpointing solution for the

kernel memory is difficult to integrate into existing kernels. Virtual machine checkpointing

exists; however, that does not apply to the kernels of real systems. Second, checkpointing

the state of the system before every syscall is costly.

ASSURE uses rescue points for automatic recovery from faults in an application [221]. Res-

cue points are sites within an application that handle known errors. When faced with an

unknown error, ASSURE restores the state of the application to a suitable and close rescue

point, which then returns an error. However, ASSURE requires checkpointing the state at

rescue points, which is expensive for syscalls and not feasible for all the hardware state.

Akeso uses recovery domains to undo a syscall or interrupt upon a fault [164]. Recovery

domains log modifications to the kernel state and commit only upon successful execution.

This allows the domains to undo the effects when facing a fault. Similar to hecaton, Akeso

can undo a syscall that ends up in a bug trigger. However, Akeso’s approach is not suitable

for a bug workaround either. First, Akeso has significant performance overhead (1.08× to

5.6×). Second, Akeso does not support “code that write directly to external devices”, which

includes important parts of device drivers.

RCV automatically recovers from null pointer dereference and divide-by-zero errors [175].

It does so by handling the corresponding signals, repairs the execution by performing a

default operation (e.g., return zero to a read from a zero address), monitors the effects of

the repair in order to contain its effects within the application process, and detaches from

the application when the effects are flushed. RCV is suitable for deployed applications as it

helps them survive otherwise fail-stop errors. However, it does change the behavior of the

application (even if slightly) and hence is not appropriate as a workaround solution.

128

6.2.3 Input filtering.

Another possible approach to work around a bug in the kernel is to filter those syscalls

that trigger it. For example, VSEF uses execution-based filters to detect and then prevent

exploits of a known vulnerability [192]. Sweeper monitors the execution of programs to detect

attacks, analyzes the attack, deploys an antibody to prevent future exploits, and recovers

the execution using the checkpoint/restore mechanism [232]. Vigilante generates a filter for

preventing worms from exploiting vulnerable services [112]. However, there are important

limitations for this approach to be used as a bug workaround. First, evaluating every syscall

against a filter causes performance overhead. Second, discovering the exact condition and

inputs under which a syscall triggers a bug is challenging. Third, there is currently no syscall

filtering solution that can perform complex checks on the syscall input. Seccomp provides

kernel syscall filtering but does not allow to maintain any state nor does it allow to check

the arguments passed in memory.

6.2.4 Automated patching.

The goal of this line of work is to generate a correct patch for a bug automatically. Recent

efforts do so by using simulated genetic processes to fix program faults [243], leveraging static

analysis to patch race conditions [149], policing invariants to curb heap buffer overflows and

control flow hijacks [200], utilizing the semantic analysis of test suites to correct program

states [193], and using code annotations (contracts) to generate patch candidates [242]. In

contrast, we focus on a workaround for a bug. Our goal is not to properly patch the bug,

rather to provide a temporary solution until a patch is ready. Hence, our work is orthogonal

to this line of work.

Hot-patching is a method for changing the behavior of binaries at runtime, commonly used

for delivering patches without the need to reboot [225]. Linux kernel and kernel extensions

129

implement hot-patching by modifying the impacted functions and redirecting the execution

flows [10] [9]. Recently, the urgent need for delivering security patches to fragmented Android

devices has become a hot research topic. KARMA [104], VULMET [251], Instaguard [103],

and Embroidery [266] extract rules and specifications from existing patches, and generate

hot-patches for the fragmented Android kernel or user space binaries that are poorly main-

tained. These hot-patching mechanisms work assuming that the patches are available. In

contrast, a workaround tries to mitigate a bug before a patch is available. Hence, our work

is orthogonal to this line of work.

6.2.5 Error handling analysis.

Several efforts have attempted to identify defective error handlers. For example, CheQ [177]

locates security checks and error handlers in the kernel by searching certain patterns, and

leverages this information to catch unhandled errors and other bugs. APEx [153] identi-

fies the error handlers based on the characteristics of error paths. EPEx [148] symbolically

executes the test programs and explores error paths to find the mishandled exceptions. Er-

rDoc [231] leverages both symbolic execution and function pair matching to identify error

handlers, and it automatically detects and then fixes incorrect or missing handlers. Hec-

tor [210] walks the control graph to identify the missing release statements in the error

handlers based on a list of acquisition-release function pairs. EIO [139] and Rubio-González,

et al. [209] present a method that uses data-flow analysis to detect unchecked errors as they

propagate in the file system code.

hecaton identifies function pairs using a method similar to PF-Miner [174] and ErrDoc [231],

which utilize string matching and path heuristics. However, there are two differences. First,

PF-finder uses Longest Common Substring (LCS) as a metric as opposed to hecaton’s string

similarity score discussed in §3.4.1. Second, PF-finder discards the paired functions with the

130

exact same name, which can result in errors. For example, regulator set voltage function

is used to both turn on and turn off a device.

6.2.6 Voice assistants security.

Our work on MegaMind is inspired by systems that provide security extensions for mobile

operating systems, such as ASM [142] and ASF [85].

Almond [93] is an open source virtual assistant system. It uses a natural language interface

and protects user’s privacy by keeping their data locally. PrIA [147] is an intelligent assistant

that provides personalized services, such as a news recommendation service, for the user

without providing user’s private information to cloud services. MegaMind shares Almond’s

and PrIA’s visions of enhancing user’s privacy when using assistants. Yet, we have designed

MegaMind as a security and privacy extension to existing voice assistant systems, in contrast

to these systems, which provide a new ecosystem or new services.

Use of assistants in a smart home setup creates security and privacy challenges when used

by multiple people [261]. These challenges are different from those addressed by MegaMind,

which focuses on security and privacy of using cloud services via voice assistants.

LipFuzzer [268] uses a linguistic-model-guided fuzzer to find semantic inconsistencies between

the user and the voice assistant, resulting in the user talking to an unintended skill. While

MegaMind’s goal is orthogonal to LipFuzzer’s, its extensions can alleviate some of these

unintended results.

There is a line of work on enhancing the privacy of voice-based systems by eliminating

personal features from audio recordings via local preprocessing [76, 75]. MegaMind’s local

speech-to-text conversion also eliminates all voice-based features. Although speech-to-text

conversion requires more processing power, having the transcribed commands enables more

131

sophisticated language processing.

Other previous research has also identified the need for voice assistants to provide strong

security defenses including authorization, access control, and privilege separation [117, 233,

124, 125, 223, 260]. Besides, there are previous empirical studies that highlight the impor-

tance of security and privacy of smart speaker applications [105, 170, 217].

There is a large body of work showing different classes of security attacks on voice assistants.

Inaudible voice attacks (IVA) and concealed voice attacks (CVA) stealthily deliver voice

commands to a voice assistant without the user knowing. BackDoor [207], Dolphin [262]

and LipRead [208] use inaudible sounds transmitted over ultrasound frequencies to issue

inaudible voice commands to virtual assistants. Similarly, research projects on concealed

voice commands showed that devices continue to respond to wake words and utterances even

when “mangled” to such a degree that they are unintelligible to users [234, 94]. Recently,

CommanderSong [258], Lyexa [182], SurfingAttack [255], MetaMorph [101], and Abdullah et

al. [73] proposed more elaborate and practical inaudible/concealed voice attacks.

Another important attack is the voice squatting attack (VSA), where a malicious skill devel-

oper creates an invocation phrase similar to a legitimate skill, in the hope that sometimes

the wrong skill may be invoked and data may leak [161, 264]. Another important attack is

the fake skill termination attack (FSTA), [264], where a malicious skill developer creates a

long silent audio response in order to trick the user into thinking that no skill is running

anymore, at which point the user may say something private.

132

6.3 Vulnerability Prevention

6.3.1 Security by physical isolation.

Using a separate, dedicated processor with its own memory and I/O devices for security-

critical tasks is a recent hardware trend in personal computers. Apple has integrated the

Secure Enclave Processor into its products [47] since about 2014 and used it to secure the

user’s secret data and to control biometric sensors (i.e., Touch ID and Face ID) [48]. Similarly,

Google recently announced that Pixel 6 uses the tensor security core to host security-critical

tasks such as key management and secure boot [158]. Our work takes the concept of security

by physical isolation further by allowing programs (including those that rely on I/O devices)

to use dedicated processors by developing a model for how that can be done safely.

Notary [82] safeguards approval transactions by running its agent on a separate SoC from

the ones running the kernel and the communication stack. Our work shares the idea of using

physically-isolated trust domains and also resets the domains before and after use by other

programs (although we have not formally verified our bootloader code that cleans up the

state upon reset, but plan to investigate adopting Notary’s deterministic start). We show

how to safely mediate access to shared I/O devices for a workload of concurrent security-

critical and untrusted programs. Likewise, I/O-Devices-as-a-Service (IDaaS) suggests that

I/O devices should have their own separate microcontrollers (and observes that they often

do) and advocates for hardening their interfaces against potentially malicious kernel behav-

ior [78]. Our approach also uses separate I/O microcontrollers but does not require strong

trust in the microcontroller software, by resetting the I/O domain between uses.

133

6.3.2 Secure I/O for TEEs.

SGXIO uses a hypervisor and a TPM to create a trusted path for an SGX enclave to

access an I/O device [244]. The solution requires the enclave program not only to trust

SGX’s firmware and hardware, but also the hypervisor. Cure [86] adds a few hardware

primitives in order to allow the security monitor to assign a peripheral (i.e., access to MMIO

registers and DMA target addresses) to an enclave. These primitives are designed to be

programmed by a trusted-by-all security monitor (unlike our work).

Helios [194] leverages satellite kernels to expose a uniform set of abstractions to applications

running on heterogeneous hardware. Moreover, I/O is accessed through remote message

passing, which has similarities to our I/O services. Barrelfish [88] runs a separate kernel

on each core in a multicore machine for better scalability and uses message passing for

communication between kernels.

M3 [81] and M3x [80] enable the use of heterogeneous processing elements (PEs) by hiding

them behind a hardware component, namely Data Transfer Unit (DTU). Since an application

runs on a separate PE, it does enjoy physical isolation. However, in M3, a kernel (running

on its own PE) makes unconstrained access control decision and hence needs to be strongly

trusted.

6.3.3 Time protection.

Ge et al. add time protection to seL4, which closes many of the available side channels

in commodity processors [130]. As the paper mentions, some processors do not provide

mechanisms needed to close channels. Moreover, channels using busses could not be closed,

and they have recently been shown to be effectively exploitable [196]. Our approach of

using completely separate hardware for security-critical programs addresses these concerns

134

for these programs. We do, however, note that our approach (as it stands) does not scale

to support all (normal) programs, which may have their own security needs. Therefore, we

believe that time protection remains an important abstraction to be explored for when the

same processor is asked to host multiple programs.

6.3.4 Other TEE solutions.

Flicker [179] uses the late launch feature of Intel Trusted Execution Technology (TXT) [129],

to exclusively run a program on the processor. The exclusive use of the hardware results in

minimizing the strongly-trusted components. However, Flicker’s design requires stopping all

other programs (including untrusted ones) when running a security-critical program. Our

approach can run untrusted programs and security-critical programs concurrently. Consider

our secure insulin pump program (§4.1), which might need to be run frequently while the

user is actively doing other, less security-critical, tasks on the main processor. Realizing this

in Flicker can result in significant disruptions to other programs and to the user as a result.

Komodo is a verified security monitor that can create enclaves for security-critical pro-

grams [126]. Use of formal verification warrants the strong trust in the security monitor, but

not the ARM processor that hosts both security-critical and untrusted programs. Sanctum

uses hardware modifications to RISC-V alongside a software security monitor to create iso-

lated enclaves. Compared to SGX, Sanctum enclaves are protected against both cache and

page fault side-channel attacks. While this is important, Sanctum does not address other

potential hardware vulnerabilities such as side channels through interconnects.

135

Chapter 7

Conclusions

In this dissertation, we presented four system solutions that improve security of mobile

devices. We showed how these systems effectively contribute in fighting bugs/vulnerabilities

through discovery, mitigation and prevention of bugs/vulnerabilities. We showed that our

systems improve security of mobile devices with reasonable and minimal added cost, while

they do not harm performance of mobile devices.

First, we presented Charm a system solution that improves vulnerability discovery through

facilitating dynamic analysis of mobile device drivers. Charm enables application of various

existing dynamic analysis solutions, e.g., interactive debugging, record-and-replay, and en-

hanced fuzzing to these device drivers. Our extensive evaluation showed that Charm is easy

to use, achieves decent performance, and is effective in enabling a security analyst to find,

study, and analyze driver vulnerabilities and even build exploits.

Second, we presented bowknots and showed how they can be used to workaround existing

kernel bugs. We also presented Hecaton that can automatically generate bowknots for mobile

kernels. Bowknots maintain the functionality of the system even when bugs are triggered,

are applicable to many kernel bugs, do not cause noticeable performance overhead, and have

136

a small kernel footprint. Our evaluations show that bowknots are effective in mitigating

bugs and security vulnerabilities and preserve the system functionality in most cases. We

also show how bowknots improve vulnerability discovery by eliminating unnecessary reboots

during kernel fuzzing.

Third, we presented MegaMind. We showed how it enables usage of novel and useful security

and privacy extensions in voice assistant with minimal overhead. We demonstrated several

such extensions, including one for secure communication with a third-party skill and one

for issuing queries anonymously, both of which bring a level of unprecedented security for

voice assistants. We presented a prototype that works with the existing Alexa Voice Ser-

vice ecosystem and showed that it achieves a low conversation latency even on inexpensive

hardware, such as a Raspberry Pi 4 board. We also showed that MegaMind is effective in

achieving various security and privacy goals. We showed how MegaMind helps users to keep

their existing voice assistant secure despite their vulnerable design.

And finally, we presented split-trust machine model that is more secure by design and let

users run their security-critical applications on their personal mobile devices. We present a

hardware design with multiple statically-partitioned, physically-isolated trust domains, coor-

dinated using a few simple, formally-verified hardware components. We describe a complete

prototype implemented on an FPGA and show that it incurs a small hardware cost.

137

Bibliography

[1] ANDROID FRAGMENTATION VISUALIZED (AUGUST 2015). http://

opensignal.com/assets/pdf/reports/2015_08_fragmentation_report.pdf.

[2] Android Security Bulletins. https://source.android.com/security/bulletin/.

[3] Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org/.

[4] Code coverage tool for compiled programs (KCOV). https://github.com/

SimonKagstrom/kcov.

[5] Google Issue Tracker: Issues. https://developers.google.com/issue-tracker/

concepts/issues.

[6] Google Syzkaller: an unsupervised, coverage-guided Linux system call fuzzer. https:

//opensource.google.com/projects/syzkaller.

[7] Instruction for using the Syzkaller to fuzz an Android device. https:

//github.com/google/syzkaller/blob/master/docs/linux/setup_linux-

host_android-device_arm64-kernel.md.

[8] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.

[9] Livepatch. https://www.kernel.org/doc/Documentation/livepatch/livepatch.

txt.

[10] Oracle Ksplice. https://ksplice.oracle.com.

[11] The Kernel Address Sanitizer (KASAN). https://github.com/google/kasan/wiki.

[12] The Kernel Memory Sanitizer (KMSAN). https://github.com/google/kmsan/

blob/master/README.md.

[13] The Kernel Thread Sanitizer (KTSAN). https://github.com/google/ktsan/wiki.

[14] The Kernel Undefined Behavior Sanitizer (KUBSAN). https://www.kernel.org/

doc/html/v4.11/dev-tools/ubsan.html.

[15] The ultimate, open-source X86 and X86-64 decoder-disassembler library. https://

zydis.re/.

138

http://opensignal.com/assets/pdf/reports/2015_08_fragmentation_report.pdf
http://opensignal.com/assets/pdf/reports/2015_08_fragmentation_report.pdf
https://source.android.com/security/bulletin/
http://anubis.iseclab.org/
https://github.com/SimonKagstrom/kcov
https://github.com/SimonKagstrom/kcov
https://developers.google.com/issue-tracker/concepts/issues
https://developers.google.com/issue-tracker/concepts/issues
https://opensource.google.com/projects/syzkaller
https://opensource.google.com/projects/syzkaller
https://github.com/google/syzkaller/blob/master/docs/linux/setup_linux-host_android-device_arm64-kernel.md
https://github.com/google/syzkaller/blob/master/docs/linux/setup_linux-host_android-device_arm64-kernel.md
https://github.com/google/syzkaller/blob/master/docs/linux/setup_linux-host_android-device_arm64-kernel.md
https://iperf.fr/
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://ksplice.oracle.com
https://github.com/google/kasan/wiki
https://github.com/google/kmsan/blob/master/README.md
https://github.com/google/kmsan/blob/master/README.md
https://github.com/google/ktsan/wiki
https://www.kernel.org/doc/html/v4.11/dev-tools/ubsan.html
https://www.kernel.org/doc/html/v4.11/dev-tools/ubsan.html
https://zydis.re/
https://zydis.re/

[16] What’s New in Android Security (Google I/O ’17) - Video. https://www.youtube.

com/watch?v=C9_ytg6MUP0.

[17] USB Gadget API for Linux. https://www.kernel.org/doc/html/v4.13/driver-

api/usb/gadget.html, 2004.

[18] american fuzzy lop. http://lcamtuf.coredump.cx/afl/README.txt, 2015.

[19] Android vs iPhone boot times tested: which one is the fastest? https://

www.phonearena.com/news/Android-vs-iPhone-boot-times-tested-which -one-

is-the-fastest_id69582, 2015.

[20] Qualcomm launches bug bounty program for Snapdragon chips, modems. https:

//www.zdnet.com/article/qualcomm-launches-hardware-bug-bounty-program/,
2016.

[21] Toddler asks Amazon’s Alexa to play song but gets porn instead. https:

//nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-

gets-porn-instead/, 2016.

[22] US First Names Database . https://data.world/len/us-first-names-database,
2016.

[23] Building a Pixel kernel with KASAN+KCOV. https://source.android.com/

devices/tech/debug/kasan-kcov, 2017.

[24] Cortana in the car: Microsoft launches new automotive tech platform, strikes
Renault-Nissan partnership. https://www.geekwire.com/2017/cortana-car-

microsoft-launches-new-automotive-tech-platform-strikes-renault-

nissan-partnership/, 2017.

[25] Google Home can now power on your Vizio TV. https://www.cnet.com/news/

google-home-can-now-power-on-your-vizio-tv/, 2017.

[26] How syzkaller works. https://github.com/google/syzkaller/blob/master/docs/
internals.md, 2017.

[27] Peach Fuzzer for Driver Fuzzing Whitepaper. https://www.peach.tech/datasheets/
driver-fuzzing/peach-fuzzer-driver-fuzzing-whitepaper/, 2017.

[28] Amazon Alexa-Powered Device Recorded and Shared User’s Conversation Without
Permission. https://www.wsj.com/articles/amazon-alexa-powered-device-

recorded-and-shared-users-conversation-without-permission-1527203250,
2018.

[29] Bugs and Vulnerabilities Founds by Syzkaller in Linux Kernel. https://github.com/
google/syzkaller/blob/master/docs/linux/found_bugs.md, 2018.

[30] Google Assistant – LIFX.com. https://www.lifx.com/products/google-

assistant, 2018.

139

https://www.youtube.com/watch?v=C9_ytg6MUP0
https://www.youtube.com/watch?v=C9_ytg6MUP0
https://www.kernel.org/doc/html/v4.13/driver-api/usb/gadget.html
https://www.kernel.org/doc/html/v4.13/driver-api/usb/gadget.html
http://lcamtuf.coredump.cx/afl/README.txt
https://www.phonearena.com/news/Android-vs-iPhone-boot-times-tested-which
https://www.phonearena.com/news/Android-vs-iPhone-boot-times-tested-which
-one-is-the-fastest_id69582
-one-is-the-fastest_id69582
https://www.zdnet.com/article/qualcomm-launches-hardware-bug-bounty-program/
https://www.zdnet.com/article/qualcomm-launches-hardware-bug-bounty-program/
https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/
https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/
https://nypost.com/2016/12/30/toddler-asks-amazons-alexa-to-play-song-but-gets-porn-instead/
https://data.world/len/us-first-names-database
https://source.android.com/devices/tech/debug/kasan-kcov
https://source.android.com/devices/tech/debug/kasan-kcov
https://www.geekwire.com/2017/cortana-car-microsoft-launches-new-automotive-tech-platform-strikes-renault-nissan-partnership/
https://www.geekwire.com/2017/cortana-car-microsoft-launches-new-automotive-tech-platform-strikes-renault-nissan-partnership/
https://www.geekwire.com/2017/cortana-car-microsoft-launches-new-automotive-tech-platform-strikes-renault-nissan-partnership/
https://www.cnet.com/news/google-home-can-now-power-on-your-vizio-tv/
https://www.cnet.com/news/google-home-can-now-power-on-your-vizio-tv/
https://github.com/google/syzkaller/blob/master/docs/internals.md
https://github.com/google/syzkaller/blob/master/docs/internals.md
https://www.peach.tech/datasheets/driver-fuzzing/peach-fuzzer-driver-fuzzing-whitepaper/
https://www.peach.tech/datasheets/driver-fuzzing/peach-fuzzer-driver-fuzzing-whitepaper/
https://www.wsj.com/articles/amazon-alexa-powered-device-recorded-and-shared-users-conversation-without-permission-1527203250
https://www.wsj.com/articles/amazon-alexa-powered-device-recorded-and-shared-users-conversation-without-permission-1527203250
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://www.lifx.com/products/google-assistant
https://www.lifx.com/products/google-assistant

[31] Hey, I didn’t order this dollhouse! 6 hilarious Alexa mishaps. https:

//www.digitaltrends.com/home/funny-accidental-amazon-alexa-ordering-

stories//, 2018.

[32] Is Alexa Listening? Amazon Echo Sent Out Recording of Couple’s Conversation.
https://www.nytimes.com/2018/05/25/business/amazon-alexa-conversation-

shared-echo.html/, 2018.

[33] Meet STEMosaur! https://cognitoys.com/, 2018.

[34] SmartThinQ with VoiceAssistants. https://www.lg.com/us/support/works-with-

google-alexa-voice-assistant, 2018.

[35] Tesla’s Siri integration now works with Model 3. https://electrek.co/2018/03/20/
teslas-siri-integration-now-works-with-model-3/, 2018.

[36] Volkswagen now lets Apple users unlock their cars with Siri. https://www.theverge.
com/2018/11/12/18087416/volkswagen-vw-car-net-app-siri-shortcuts, 2018.

[37] Was the Alexa Butt Dial a Big Deal? Steps You Can Take if You Are Con-
cerned. https://voicebot.ai/2018/05/28/was-the-alexa-butt-dial-a-big-

deal-steps-you-can-take-if-you-are-concerned/, 2018.

[38] Amazon’s Alexa Allegedly Calls 911 During Domestic Violence Inci-
dent. https://wflanews.iheart.com/featured/pm-tampa-bay-with-ryan-

gorman/content/2019-07-17-amazons-alexa-allegedly-calls-911-during-

domestic-violence-incident/, 2019.

[39] DeepSpeech 0.6: Mozilla’s Speech-to-Text Engine Gets Fast, Lean, and Ubiquitous
. https://hacks.mozilla.org/2019/12/deepspeech-0-6-mozillas-speech-to-

text-engine/, 2019.

[40] syzbot. https://syzkaller.appspot.com/upstream, 2019.

[41] DeepSpeech Slow Inference Speed Raspberry Pi 3B . https://github.com/mozilla/
DeepSpeech/issues/3000/, 2020.

[42] Raspberry Pi 4 vs Raspberry Pi 3B+. https://magpi.raspberrypi.org/articles/
raspberry-pi-4-vs-raspberry-pi-3b-plus//, 2020.

[43] Alexa for PC . https://developer.amazon.com/en-US/alexa/devices/pcs, 2021.

[44] Alexa skill market . https://www.amazon.com/alexa-skills/b?ie=UTF8&node=

13727921011, 2021.

[45] Amazon Alexa. https://en.wikipedia.org/wiki/Amazon_Alexa, 2021.

[46] Amazon Echo. https://en.wikipedia.org/wiki/Amazon_Echo, 2021.

140

https://www.digitaltrends.com/home/funny-accidental-amazon-alexa-ordering-stories//
https://www.digitaltrends.com/home/funny-accidental-amazon-alexa-ordering-stories//
https://www.digitaltrends.com/home/funny-accidental-amazon-alexa-ordering-stories//
https://www.nytimes.com/2018/05/25/business/amazon-alexa-conversation-shared-echo.html/
https://www.nytimes.com/2018/05/25/business/amazon-alexa-conversation-shared-echo.html/
https://cognitoys.com/
https://www.lg.com/us/support/works-with-google-alexa-voice-assistant
https://www.lg.com/us/support/works-with-google-alexa-voice-assistant
https://electrek.co/2018/03/20/teslas-siri-integration-now-works-with-model-3/
https://electrek.co/2018/03/20/teslas-siri-integration-now-works-with-model-3/
https://www.theverge.com/2018/11/12/18087416/volkswagen-vw-car-net-app-siri-shortcuts
https://www.theverge.com/2018/11/12/18087416/volkswagen-vw-car-net-app-siri-shortcuts
https://voicebot.ai/2018/05/28/was-the-alexa-butt-dial-a-big-deal-steps-you-can-take-if-you-are-concerned/
https://voicebot.ai/2018/05/28/was-the-alexa-butt-dial-a-big-deal-steps-you-can-take-if-you-are-concerned/
https://wflanews.iheart.com/featured/pm-tampa-bay-with-ryan-gorman/content/2019-07-17-amazons-alexa-allegedly-calls-911-during-domestic-violence-incident/
https://wflanews.iheart.com/featured/pm-tampa-bay-with-ryan-gorman/content/2019-07-17-amazons-alexa-allegedly-calls-911-during-domestic-violence-incident/
https://wflanews.iheart.com/featured/pm-tampa-bay-with-ryan-gorman/content/2019-07-17-amazons-alexa-allegedly-calls-911-during-domestic-violence-incident/
https://hacks.mozilla.org/2019/12/deepspeech-0-6-mozillas-speech-to-text-engine/
https://hacks.mozilla.org/2019/12/deepspeech-0-6-mozillas-speech-to-text-engine/
https://syzkaller.appspot.com/upstream
https://github.com/mozilla/DeepSpeech/issues/3000/
https://github.com/mozilla/DeepSpeech/issues/3000/
https://magpi.raspberrypi.org/articles/raspberry-pi-4-vs-raspberry-pi-3b-plus//
https://magpi.raspberrypi.org/articles/raspberry-pi-4-vs-raspberry-pi-3b-plus//
https://developer.amazon.com/en-US/alexa/devices/pcs
https://www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011
https://www.amazon.com/alexa-skills/b?ie=UTF8&node=13727921011
https://en.wikipedia.org/wiki/Amazon_Alexa
https://en.wikipedia.org/wiki/Amazon_Echo

[47] Apple Platform Security - Secure Enclave. https://support.apple.com/guide/

security/secure-enclave-sec59b0b31ff/web, 2021.

[48] Apple Platform Security - Touch ID and Face ID security. https://support.apple.
com/guide/security/touch-id-and-face-id-security-sec067eb0c9e/web, 2021.

[49] AVS Device SDK. https://developer.amazon.com/alexa-voice-service/sdk,
2021.

[50] Cortana Devices SDK. https://developer.microsoft.com/en-us/cortana/

devices, 2021.

[51] CVE Details. Linux Kernel: Vulnerability Statistics. https://www.cvedetails.com/
product/47/Linux-Linux-Kernel.html, 2021.

[52] CVE Details. Op-tee: Vulnerability Statistics. https://www.cvedetails.com/

product/56969/Linaro-Op-tee.html, https://www.cvedetails.com/product/

42749/Linaro-Op-tee.html, https://www.cvedetails.com/product/36161/Op-

tee-Op-tee-Os.html, 2021.

[53] CVE Details. Windows 10: Vulnerability Statistics. https://www.cvedetails.com/

product/32238/Microsoft-Windows-10.html, 2021.

[54] CVE Details. XEN: Vulnerability Statistics. https://www.cvedetails.com/

product/23463/XEN-XEN.html, 2021.

[55] Every Alexa command you can give your Amazon Echo smart speaker.
https://www.cnet.com/how-to/every-alexa-command-you-can-give-your-

amazon-echo-smart-speaker/, 2021.

[56] Firejail Security Sandbox. https://firejail.wordpress.com/, 2021.

[57] Google Assistant. https://assistant.google.com, 2021.

[58] Google Assistant SDK for devices. https://developers.google.com/assistant/

sdk/, 2021.

[59] HomePod. https://en.wikipedia.org/wiki/HomePod, 2021.

[60] Invoke. https://en.wikipedia.org/wiki/Invoke_(smart_speaker), 2021.

[61] Laugh factory joke bank. http://www.laughfactory.com/jokes/, 2021.

[62] Mi AI Speaker. https://www.mi.com/aispeaker/, 2021.

[63] Mozzila Common Voice. https://voice.mozilla.org/en//, 2021.

[64] Offensive/Profane Word List . http://www.cs.cmu.edu/~biglou/resources/bad-

words.txt, 2021.

141

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://support.apple.com/guide/security/touch-id-and-face-id-security-sec067eb0c9e/web
https://support.apple.com/guide/security/touch-id-and-face-id-security-sec067eb0c9e/web
https://developer.amazon.com/alexa-voice-service/sdk
https://developer.microsoft.com/en-us/cortana/devices
https://developer.microsoft.com/en-us/cortana/devices
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/56969/Linaro-Op-tee.html
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html
https://www.cvedetails.com/product/42749/Linaro-Op-tee.html
https://www.cvedetails.com/product/36161/Op-tee-Op-tee-Os.html
https://www.cvedetails.com/product/36161/Op-tee-Op-tee-Os.html
https://www.cvedetails.com/product/32238/Microsoft-Windows-10.html
https://www.cvedetails.com/product/32238/Microsoft-Windows-10.html
https://www.cvedetails.com/product/23463/XEN-XEN.html
https://www.cvedetails.com/product/23463/XEN-XEN.html
https://www.cnet.com/how-to/every-alexa-command-you-can-give-your-amazon-echo-smart-speaker/
https://www.cnet.com/how-to/every-alexa-command-you-can-give-your-amazon-echo-smart-speaker/
https://firejail.wordpress.com/
https://assistant.google.com
https://developers.google.com/assistant/sdk/
https://developers.google.com/assistant/sdk/
https://en.wikipedia.org/wiki/HomePod
https://en.wikipedia.org/wiki/Invoke_(smart_speaker)
http://www.laughfactory.com/jokes/
https://www.mi.com/aispeaker/
https://voice.mozilla.org/en//
http://www.cs.cmu.edu/~biglou/resources/bad-words.txt
http://www.cs.cmu.edu/~biglou/resources/bad-words.txt

[65] Personal Digital Assistant – Cortana Home Assistant. https://www.microsoft.com/
en-us/cortana, 2021.

[66] Pico Text-to-Speech. https://www.openhab.org/addons/voice/picotts/, 2021.

[67] Siri – Apple. https://www.apple.com/siri/, 2021.

[68] Slot Type Reference. https://developer.amazon.com/en-US/docs/alexa/custom-
skills/slot-type-reference.html/, 2021.

[69] Total number of Amazon Alexa skills from January 2016 to September 2019 . https:
//www.statista.com/statistics/912856/amazon-alexa-skills-growth/, 2021.

[70] Understand How Users Invoke Custom Skills. https://developer.amazon.com/en-

US/docs/alexa/custom-skills/understanding-how-users-invoke-custom-

skills.html/, 2021.

[71] Voice Assistant on Fitbit Smartwatches . https://www.fitbit.com/global/us/

technology/voice, 2021.

[72] What is WordNet? https://wordnet.princeton.edu/, 2021.

[73] H. Abdullah, W. Garcia, C. Peeters, P. Traynor, K. R. B. Butler, and J. Wilson.
Practical Hidden Voice Attacks Against Speech and Speaker Recognition Systems.
2019.

[74] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: A New Kernel Foundation For UNIX Development. In Proc. Summer 1986
USENIX Conference, 1986.

[75] R. Aloufi, H. Haddadi, and D. Boyle. Privacy Preserving Speech Analysis Using Emo-
tion Filtering at the Edge: Poster Abstract. In Proceedings of the 17th Conference on
Embedded Networked Sensor Systems, SenSys ’19, 2019.

[76] R. Aloufi, H. Haddadi, and D. Boyle. Privacy-preserving Voice Analysis via Disentan-
gled Representations. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud
Computing Security Workshop, pages 1–14, 2020.

[77] Amazon Alexa. Create the Interaction Model for Your Skill. https:

//developer.amazon.com/docs/custom-skills/create-the-interaction-

model-for-your-skill.html, 2018.

[78] A. Amiri Sani and T. Anderson. The Case for I/O-Device-as-a-Service. In Proc. ACM
HotOS, 2019.

[79] A. Amiri Sani, K. Boos, M. Yun, and L. Zhong. Rio: A System Solution for Sharing
I/O between Mobile Systems. In Proc. ACM MobiSys, 2014.

[80] N. Asmussen, M. Roitzsch, and H. Härtig. M3x: Autonomous Accelerators via Context-
Enabled Fast-Path Communication. In Proc. ACM ASPLOS, 2019.

142

https://www.microsoft.com/en-us/cortana
https://www.microsoft.com/en-us/cortana
https://www.openhab.org/addons/voice/picotts/
https://www.apple.com/siri/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/slot-type-reference.html/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/slot-type-reference.html/
https://www.statista.com/statistics/912856/amazon-alexa-skills-growth/
https://www.statista.com/statistics/912856/amazon-alexa-skills-growth/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/understanding-how-users-invoke-custom-skills.html/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/understanding-how-users-invoke-custom-skills.html/
https://developer.amazon.com/en-US/docs/alexa/custom-skills/understanding-how-users-invoke-custom-skills.html/
https://www.fitbit.com/global/us/technology/voice
https://www.fitbit.com/global/us/technology/voice
https://wordnet.princeton.edu/
https://developer.amazon.com/docs/custom-skills/create-the-interaction-model-for-your-skill.html
https://developer.amazon.com/docs/custom-skills/create-the-interaction-model-for-your-skill.html
https://developer.amazon.com/docs/custom-skills/create-the-interaction-model-for-your-skill.html

[81] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis. M3: A
Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores. In Proc.
ACM ASPLOS, 2016.

[82] A. Athalye, A. Belay, M. Kaashoek, R. Morris, and N. Zeldovich. Notary: A device
for secure transaction approval. In Proc. ACM SOSP, 2019.

[83] P. Athe and S. Dasgupta. A Comparative Study of 6T, 8T and 9T Decanano SRAM
cell. In Proc. IEEE Symposium on Industrial Electronics & Applications, 2009.

[84] A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang, and P. Ning. SKEE:
A Lightweight Secure Kernel-level Execution Environment for ARM. In Proc. ACM
MobiSys, 2016.

[85] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android Security Frame-
work: Enabling Generic and Extensible Access Control on Android. arXiv preprint
arXiv:1404.1395, 2014.

[86] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A. Sadeghi, and
E. Stapf. CURE: A Security Architecture with CUstomizable and Resilient Enclaves.
In Proc. USENIX Security Symposium, 2021.

[87] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek,
S. K. Rajamani, and A. Ustuner. Thorough Static Analysis of Device Drivers. In Proc.
ACM EuroSys, 2006.

[88] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for scalable
multicore systems. In Proc. ACM SOSP, 2009.

[89] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from an Untrusted
Cloud with Haven. Proc. USENIX OSDI, 2014.

[90] T. Blasing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and S. Albayrak. An Android
Application Sandbox System for Suspicious Software Detection. In MALWARE, 2010.

[91] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A. Sadeghi.
Software Grand Exposure: SGX Cache Attacks Are Practical. In Proc. USENIX
Workshop on Offensive Technologies (WOOT), 2017.

[92] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs. In OSDI, 2008.

[93] G. Campagna, R. Ramesh, S. Xu, M. Fischer, and M. S. Lam. Almond: The Architec-
ture of an Open, Crowdsourced, Privacy-Preserving, Programmable Virtual Assistant.
In Proc. ACM WWW, 2017.

[94] N. Carlini, P. Mishra, V. T., Y. Zhang, M. Sherr, C. Shields, D. Wagner, and W. Zhou.
Hidden Voice Commands. In Proc. of 25th USENIX Security Symposium (USENIX
Security 16), 2016.

143

[95] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. SoK: Understanding the Prevailing
Security Vulnerabilities in Trustzone-assisted TEE Systems. In Proc. IEEE Symposium
on Security and Privacy (S&P), 2020.

[96] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem on Binary
Code. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, 2012.

[97] S. K. Cha, M. Woo, and D. Brumley. Program-Adaptive Mutational Fuzzing. In IEEE
Symposium on Security and Privacy, 2015.

[98] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre: Stealing intel
secrets from sgx enclaves via speculative execution. In IEEE European Symposium on
Security and Privacy (EuroS&P), 2019.

[99] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek. Linux
kernel vulnerabilities: State-of-the-art defenses and open problems. In Proc. ACM
Asia-Pacific Workshop on Systems (APSys), 2011.

[100] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App without Actually Seeing
It: UI State Inference and Novel Android Attacks. In Proc. USENIX Security, 2014.

[101] T. Chen, L. Shangguan, Z. Li, and K. Jamieson. Metamorph: Injecting Inaudible
Commands into Over-the-air Voice Controlled Systems. 2020.

[102] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. K. Ports. Overshadow: a Virtualization-Based Approach to
Retrofitting Protection in Commodity Operating Systems. In Proc. ACM ASPLOS,
2008.

[103] Y. Chen, Y. Li, L. Lu, Y. Lin, H. Vijayakumar, Z. Wang, and X. Ou. Instaguard:
Instantly deployable hot-patches for vulnerable system programs on android. In Proc.
Internet Society NDSS, 2018.

[104] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei. Adaptive android kernel
live patching. In Proc. USENIX Security Symposium, 2017.

[105] L. Cheng, C. Wilson, S. Liao, J. Young, D. Dong, and H. Hu. Dangerous Skills Got
Certified: Measuring the Trustworthiness of Skill Certification in Voice Personal As-
sistant Platforms. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’20, 2020.

[106] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a Platform for In-Vivo Multi-Path
Analysis of Software Systems. In Proc. ACM ASPLOS, 2011.

[107] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E Platform: Design, Implemen-
tation, and Applications. ACM Trans. Comput. Syst., 2012.

[108] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical Study of Operating
Systems Errors. In Proc. ACM SOSP, 2001.

144

[109] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling Dynamic Program Analysis from
Execution in Virtual Environments. In USENIX Annual Technical Conference, 2008.

[110] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Understanding
Data Lifetime via Whole System Simulation. In USENIX Security, 2004.

[111] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna.
DIFUZE: Interface Aware Fuzzing for Kernel Drivers. In Proc. ACM CCS, 2017.

[112] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham.
Vigilante: End-to-end Containment of Internet Worms. In Proc. ACM Symp. Operating
Systems Principles, 2005.

[113] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis. A Large-Scale
Analysis of the Security of Embedded Firmwares. In Proc. USENIX Security Sympo-
sium, 2014.

[114] N. V. Database. CVE-2021-0200: Out-of-bounds write in the firmware for Intel(R)
Ethernet 700 Series Controllers before version 8.2 may allow a privileged user to po-
tentially enable an escalation of privilege via local access. https://nvd.nist.gov/

vuln/detail/CVE-2021-0200.

[115] N. V. Database. Vulnerability summary for cve-2015-6639.

[116] D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on Firmware: Finding
Vulnerabilities in Embedded Systems Using Symbolic Execution. In USENIX Security,
2013.

[117] T. Denning, T. Kohno, and H. Levy. Computer Security and the Modern Home.
Communications of the ACM, 56, 2013.

[118] W. Diao, X. Liu, Z. Zhou, and K. Zhang. Your Voice Assistant is Mine: How to Abuse
Speakers to Steal Information and Control Your Phone. In Proc. of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices (SPSM), 2014.

[119] D. Dubois, R. Kolcun, A. Mandalari, M. Paracha, D. Choffnes, and H. Haddadi.
When Speakers Are All Ears: Characterizing Misactivations of IoT Smart Speakers.
Proceedings on Privacy Enhancing Technologies, 2020.

[120] K. Elphinstone and G. Heiser. From L3 to seL4 What Have We Learnt in 20 Years of
L4 Microkernels? In Proc. ACM SOSP, 2013.

[121] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
TaintDroid: An Information-flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In OSDI, 2010.

[122] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokernel: an Operating System Archi-
tecture for Application-Level Resource Management. In Proc. ACM SOSP, 1995.

145

https://nvd.nist.gov/vuln/detail/CVE-2021-0200
https://nvd.nist.gov/vuln/detail/CVE-2021-0200

[123] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and S. Levi.
Language Support for Fast and Reliable Message-based Communication in Singularity
OS. In Proc. ACM EuroSys, 2006.

[124] E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging Smart Home
Applications. In Proc. of 37th IEEE Symposium on Security and Privacy, 2016.

[125] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practice Data Protection for Emerging IoT Application Frameworks. In
Proc. of 25th USENIX Security Symposium, 2016.

[126] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software. In Proc. ACM SOSP, 2017.

[127] K. Franz. Add a microSD Slot with the Pmod MicroSD. https://digilent.com/

blog/add-a-microsd-slot-with-the-pmod-microsd/, 2021.

[128] A. Frumusanu. Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm
Kirin 9000. https://www.anandtech.com/show/16156/huawei-announces-mate-

40-series, 2020.

[129] W. Futral and J. Greene. Intel Trusted Execution Technology for Server Platforms: A
Guide to More Secure Datacenters. Apress Media LLC, Springer Nature, 2013.

[130] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser. Time Protection: The Missing OS
Abstraction. In Proc. ACM EuroSys, 2019.

[131] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig, J. E. Tidswell,
L. Deller, and L. Reuther. The SawMill Multiserver Approach. In Proc. ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating system, 2000.

[132] Y. GmbH. SymbiYosys (sby) Documentation. https://symbiyosys.readthedocs.

io/en/latest/index.html, 2021.

[133] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In
NDSS, 2008.

[134] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache Attacks on Intel SGX. In
Proc. ACM European Workshop on Systems Security (EuroSec), 2017.

[135] R. Grisenthwaite. Arm CCA will put confidential compute in the hands of ev-
ery developer. https://www.arm.com/company/news/2021/06/arm-cca-will-put-

confidential-compute-in-

the-hands-of-every-developer, 2021.

[136] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl,
and Y. Yarom. Another Flip in the Wall of Rowhammer Defenses. In Proc. IEEE
Symposium on Security and Privacy (S&P), 2018.

146

https://digilent.com/blog/add-a-microsd-slot-with-the-pmod-microsd/
https://digilent.com/blog/add-a-microsd-slot-with-the-pmod-microsd/
https://www.anandtech.com/show/16156/huawei-announces-mate-40-series
https://www.anandtech.com/show/16156/huawei-announces-mate-40-series
https://symbiyosys.readthedocs.io/en/latest/index.html
https://symbiyosys.readthedocs.io/en/latest/index.html
https://www.arm.com/company/news/2021/06/arm-cca-will-put-confidential-compute-in-
https://www.arm.com/company/news/2021/06/arm-cca-will-put-confidential-compute-in-
the-hands-of-every-developer

[137] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S. Weng, H. Zhang, and Y. Guo.
Deep Specifications and Certified Abstraction Layers. In Proc. ACM POPL, 2015.

[138] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo. CertiKOS:
An Extensible Architecture for Building Certified Concurrent OS Kernels. In Proc.
USENIX OSDI, 2016.

[139] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
B. Liblit. Eio: Error handling is occasionally correct. In Proc. FAST, 2008.

[140] A. Hern. Apple contractors ’regularly hear confidential details’ on Siri recordings.
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-

regularly-hear-confidential-details-on-siri-recordings, 2019.

[141] F. Hetzelt and R. Buhren. Security Analysis of Encrypted Virtual Machines. In Proc.
ACM VEE, 2017.

[142] S. Heuser, A. Nadkarni, W. Enck, and A. Sadeghi. ASM: A Programmable Interface for
Extending Android Security. In Proc. USENIX Security Symposium, pages 1005–1019,
2014.

[143] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. InkTag: Secure
Applications on an Untrusted Operating System. In Proc. ACM ASPLOS, 2013.

[144] Z. Huang, M. D’Angelo, D. Miyani, and D. Lie. Talos: Neutralizing Vulnerabilities
with Security Workarounds for Rapid Response. In Proc. IEEE Symposium on Security
and Privacy (S&P), 2016.

[145] G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack. ACM
SIGOPS Operating Systems Review, 2007.

[146] IBM. Software TPM Introduction. http://ibmswtpm.sourceforge.net/ibmswtpm2.
html, 2021.

[147] S. Jain, V. Tiwari, A. Balasubramanian, N. Balasubramanian, and S. Chakraborty.
PrIA: A Private Intelligent Assistant. In Proc. ACM Workshop on Mobile Computing
Systems & Applications (HotMobile), 2017.

[148] S. Jana, Y. Kang, S. Roth, and B. Ray. Automatically Detecting Error Handling Bugs
Using Error Specifications. In Proc. USENIX Security Symposium, 2016.

[149] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated Atomicity-violation
Fixing. In Proc. ACM PLDI, 2011.

[150] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt, D. Mazieres,
T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie. Application Performance and
Flexibility on Exokernel Systems. In Proc. ACM SOSP, 1997.

[151] A. Kadav, M. J. Renzelmann, and M. M. Swift. Fine-Grained Fault Tolerance using
Device Checkpoints. In ACM Proc. ASPLOS, 2013.

147

https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
https://www.theguardian.com/technology/2019/jul/26/apple-contractors-regularly-hear-confidential-details-on-siri-recordings
http://ibmswtpm.sourceforge.net/ibmswtpm2.html
http://ibmswtpm.sourceforge.net/ibmswtpm2.html

[152] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden Code Extractor for
Packed Executables. In Proceedings of the 2007 ACM Workshop on Recurring Malcode
(WORM), 2007.

[153] Y. Kang, B. Ray, and S. Jana. Apex: Automated Inference of Error Specifications for
C APIs. In Proc. IEEE/ACM ASE, 2016.

[154] S. Keil and C. Kolbitsch. Stateful fuzzing of wireless device drivers in an emulated
environment. Black Hat Japan, 2007.

[155] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu. Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In Proc. ACM ISCA, 2014.

[156] D. Kirat and G. Vigna. MalGene: Automatic Extraction of Malware Analysis Evasion
Signature. In ACM CCS, 2015.

[157] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating Fuzz Testing. In Proc.
ACM CCS, 2018.

[158] D. Kleidermacher, J. Seed, B. Barbello, S. Somogyi, and P. . T. s. t. Android. Pixel
6: Setting a new standard for mobile security. https://security.googleblog.com/
2021/10/pixel-6-setting-new-standard-for-mobile.html, 2021.

[159] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In Proc. ACM SOSP, 2009.

[160] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting
Speculative Execution. In Proc. IEEE Symposium on Security and Privacy (S&P),
2019.

[161] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates, and M. Bai-
ley. Skill Squatting Attacks on Amazon Alexa. In Proc. of 27th USENIX Security
Symposium, 2018.

[162] V. Kuznetsov, V. Chipounov, and G. Candea. Testing Closed-Source Binary Device
Drivers with DDT. In Proc. USENIX Annual Technical Conference, 2010.

[163] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song. Keystone: An Open
Framework for Architecting Trusted Execution Environments. In Proc. ACM EuroSys,
2020.

[164] A. Lenharth, V. Adve, and S. T. King. Recovery Domains: An Organizing Principle
for Recoverable Operating Systems. In Proc. ACM ASPLOS, 2009.

[165] J. Lettner, D. Song, T. Park, P. Larsen, S. Volckaert, and M. Franz. PartiSan: Fast
and Flexible Sanitization via Run-time Partitioning. In International Symposium on
Research in Attacks, Intrusions, and Defenses, 2018.

148

https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html

[166] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and P. Levis.
Multiprogramming a 64 kB Computer Safely and Efficiently. In Proc. ACM SOSP,
2017.

[167] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Exploiting Unprotected I/O Operations in
AMD’s Secure Encrypted Virtualization. In Proc. USENIX Security Symposium, 2019.

[168] S. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui. A Secure and Formally Verified Linux
KVM Hypervisor. 2021.

[169] S. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui. Formally Verified Memory Protection for a
Commodity Multiprocessor Hypervisor. In Proc. USENIX Security Symposium, 2021.

[170] S. Liao, C. Wilson, L. Cheng, H. Hu, and H. Deng. Measuring the Effectiveness
of Privacy Policies for Voice Assistant Applications. In Annual Computer Security
Applications Conference, ACSAC ’20, 2020.

[171] J. Liedtke. Improving IPC by Kernel Design. ACM SIGOPS Operating Systems Review,
1993.

[172] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. ARMageddon: Cache
Attacks on Mobile Devices. In Proc. USENIX Security Symposium, 2016.

[173] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading Kernel
Memory from User Space. In Proc. USENIX Security Symposium, 2018.

[174] H. Liu, Y. Wang, L. Jiang, and S. Hu. PF-Miner: A New Paired Functions Mining
Method for Android Kernel in Error Paths. In IEEE COMPSAC, 2014.

[175] F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic Runtime Error Repair and
Containment via Recovery Shepherding. In Proc. ACM PLDI, 2014.

[176] K. Loughlin, S. Saroiu, A. Wolman, and B. Kasikci. Stop! Hammer Time: Rethinking
Our Approach to Rowhammer Mitigations. In Proc. ACM HotOS, 2021.

[177] K. Lu, A. Pakki, and Q. Wu. Automatically Identifying Security Checks for Detect-
ing Kernel Semantic Bugs. In Proc. European Symposium on Research in Computer
Security, 2019.

[178] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna. DR.
CHECKER: A Soundy Analysis for Linux Kernel Drivers. In Proc. USENIX Security
Symposium, 2017.

[179] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
Execution Infrastructure for TCB Minimization. In Proc. ACM EuroSys, 2008.

[180] M. Mendonça and N. Neves. Fuzzing Wi-Fi Drivers to Locate Security Vulnerabilities.
In In IEEE European Dependable Computing Conference (EDCC), 2008.

149

[181] A. Meola. The digital trends disrupting the banking industry in 2021. https://www.
businessinsider.com/banking-industry-trends, 2021.

[182] R. Mitev, M. Miettinen, and A. Sadeghi. Alexa Lied to Me: Skill-based Man-in-the-
Middle Attacks on Virtual Assistants. In Proc. ACM Asia Conference on Computer
and Communications Security (AsiaCCS), 2019.

[183] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX Amplifies the
Power of Cache Attacks. In Proc. Springer International Conference on Cryptographic
Hardware and Embedded Systems (CHES), 2017.

[184] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar. CopyCat: Con-
trolled Instruction-Level Attacks on Enclaves. In Proc. USENIX Security Symposium,
2020.

[185] D. Mukhopadhyay, M. Shirvanian, and N. Saxena. All your voices are belong to us:
Stealing voices to fool humans and machines. In Proc. of European Symposium on
Research in Computer Security (ESORICS), 2015.

[186] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat, C. Kruegel,
and G. Vigna. BareDroid: Large-Scale Analysis of Android Apps on Real Devices. In
Proc. Annual Computer Security Applications Conference (ACSAC), 2015.

[187] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. Loh, M. Subramony, and S. White.
Pioneering Chiplet Technology and Design for the AMD EPYC and Ryzen Processor
Families: Industrial Product. In Proc. ACM/IEEE ISCA, 2021.

[188] R. Nandakumar, S. Gollakota, and N. Watson. Contactless Sleep Apnea Detection on
Smartphones. In Proc. ACM MobiSys, 2015.

[189] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger, and A. Burtsev.
RedLeaf: Isolation and Communication in a Safe Operating System. In Proc. USENIX
OSDI, 2020.

[190] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, and
X. Wang. Hyperkernel: Push-Button Verification of an OS Kernel. In Proc. ACM
SOSP, 2017.

[191] J. Newsome. Dynamic Taint Analysis for Automatic Detection, Analysis, and Signa-
ture Generation of Exploits on Commodity Software. In NDSS, 2005.

[192] J. Newsome, D. Brumley, and D. Song. Vulnerability-Specific Execution Filtering for
Exploit Prevention on Commodity Software. In Proc. Network and Distributed Systems
Security Symposium (NDSS), 2006.

[193] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair
via semantic analysis. In Proc. IEEE ICSE, 2013.

150

https://www.businessinsider.com/banking-industry-trends
https://www.businessinsider.com/banking-industry-trends

[194] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt. Helios: Het-
erogeneous Multiprocessing with Satellite Kernels. In Proc. ACM SOSP, 2009.

[195] S. Oh, H. Yoo, D. R. Jeong, D. H. Bui, and I. Shin. Mobile Plus: Multi-device Mobile
Platform for Cross-device Functionality Sharing. In Proc. ACM MobiSys, 2017.

[196] R. Paccagnella, L. Luo, and C. W. Fletcher. Lord of the Ring(s): Side Channel
Attacks on the CPU On-Chip Ring Interconnect Are Practical. In Proc. USENIX
Security Symposium, 2021.

[197] S. Pailoor, A. Aday, and S. Jana. MoonShine: Optimizing OS Fuzzer Seed Selection
with Trace Distillation. In Proc. USENIX Security Symposium, 2018.

[198] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller. Faults in Linux:
Ten Years Later. In Proc. ACM ASPLOS, 2011.

[199] J. Pan, G. Yan, and X. Fan. Digtool: A Virtualization-Based Framework for Detecting
Kernel Vulnerabilities. In Proc. USENIX Security Symposium, 2017.

[200] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, W. Wong, Y. Zibin, M. D. Ernst, and M. Ri-
nard. Automatically patching errors in deployed software. In Proc. ACM SOSP, 2009.

[201] A. Phaneuf. State of mobile banking in 2020: top apps, features, statistics and mar-
ket trends. https://www.businessinsider.com/mobile-banking-market-trends,
2019.

[202] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt. Rethinking
the Library OS from the Top Down. In Proc. ACM ASPLOS, 2011.

[203] M. Posner. How many ASIC Gates does it take to fill an FPGA?
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-

gates-does-it-take-to-fill-

an-fpga/, 2015.

[204] Quarklab. BREAKING SAMSUNG’S ARM TRUSTZONE. https://i.blackhat.

com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-

TrustZone.pdf, 2019.

[205] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In Proc. USENIX Security Symposium,
2016.

[206] M. J. Renzelmann, A. Kadav, and M. M. Swift. SymDrive: Testing Drivers without
Devices. In Proc. USENIX OSDI, 2012.

[207] N. Roy, H. Hassanieh, and R. Choudhury. BackDoor: Making Microphones Hear
Inaudible Sounds. In Proc. of the 15th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2017.

151

https://www.businessinsider.com/mobile-banking-market-trends
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-
https://blogs.synopsys.com/breakingthethreelaws/2015/02/how-many-asic-gates-does-it-take-to-fill-
an-fpga/
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-
https://i.blackhat.com/USA-19/Thursday/us-19-Peterlin-Breaking-Samsungs-ARM-
TrustZone.pdf

[208] N. Roy, S. Shen, H. Hassanieh, and R. Choudhury. Inaudible Voice Commands: The
Long-Range Attack and Defense. In Proc. of 15th Symposium on Networked Systems
Design and Impalementation (NSDI), 2018.

[209] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau, and A. C. Arpaci-
Dusseau. Error propagation analysis for file systems. In Proc. ACM PLDI, 2009.

[210] S. Saha, J. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Hector: Detecting Resource-
Release Omission Faults in Error-Handling Code for Systems Software. In Proc.
IEEE/IFIP DSN, 2013.

[211] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels. In Proc. USENIX Security Symposium,
2017.

[212] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware Guard Exten-
sion: Using SGX to Conceal Cache Attacks. In Proc. Springer International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
2017.

[213] S. M. Seyed Talebi, A. Amiri Sani, S. Saroiu, and A. Wolman. MegaMind: A Platform
for Security & Privacy Extensions for Voice Assistants. In in Proc. ACM MobiSys,
2021.

[214] S. M. Seyed Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. Amiri Sani, and Z. Qian.
Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile Systems. In Proc.
USENIX Security Symposium, 2018.

[215] S. M. Seyed Talebi, Z. Yao, A. Amiri Sani, Z. Qian, and D. Austin. Undo Workarounds
for Kernel Bugs. In Proc. USENIX Security Symposium, 2021.

[216] S. Shankland. Apple’s A15 Bionic chip powers iPhone 13 with 15 billion transistors,
new graphics and AI. https://www.cnet.com/tech/mobile/apples-a15-bionic-

chip-powers-iphone-13-

with-15-billion-transistors-new-graphics-

and-ai/, 2021.

[217] F. Shezan, H. Hu, J. Wang, G. Wang, and Y. Tian. Read Between the Lines: An
Empirical Measurement of Sensitive Applications of Voice Personal Assistant Systems.
In Proceedings of The Web Conference 2020, WWW ’20. Association for Computing
Machinery, 2020.

[218] H. Shi, R. Wang, Y. Fu, M. Wang, X. Shi, X. Jiao, H. Song, Y. Jiang, and J. Sun.
Industry Practice of Coverage-guided Enterprise Linux Kernel Fuzzing. In Proc. ACM
European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE), 2019.

152

https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-
https://www.cnet.com/tech/mobile/apples-a15-bionic-chip-powers-iphone-13-
with-15-billion-transistors-new-graphics-
and-ai/

[219] Y. Shizuku, T. Hirose, N. Kuroki, M. Numa, and M. Okada. A 24-transistor static
flip-flop consisting of nors and inverters for low-power digital vlsis. In Proc. IEEE
International New Circuits and Systems Conference (NEWCAS), 2014.

[220] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice - Au-
tomatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware. In
Proc. Network and Distributed Systems Security Symposium (NDSS), 2015.

[221] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis. AS-
SURE: Automatic Software Self-healing Using REscue points. In Proc. ACM ASPLOS,
2009.

[222] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak, and X. Wang.
Nickel: A framework for Design and Verification of Information Flow Control Systems.
In Proc. USENIX OSDI, 2018.

[223] A. Simpson, F. Roesner, and T. Kohno. Securing Vulnerable Home IoT Devices with
an In-Hub Security Manager. In Proc. of 1st International Workshop on Pervasive
Smart Living Spaces (PerLS), 2017.

[224] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and M. Franz. SoK:
Sanitizing for Security. In Proc. IEEE Symposium on Security and Privacy (S&P),
2019.

[225] A. Sotirov. Hotpatching and the rise of third-party patches. In Black Hat Technical
Security Conference, 2006.

[226] V. Strumpen. Introduction to Digital Circuits: Basic Digital Circuits. http://bibl.

ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html, 2015.

[227] R. Tao, J. Yao, X. Li, S. Li, J. Nieh, and R. Gu. Formal Verification of a Multiprocessor
Hypervisor on Arm Relaxed Memory Hardware. In Proc. ACM SOSP, 2021.

[228] T. C. G. (TCG). TCG PC Client Specific TPM Interface Specification (TIS), Spec-
ification Version 1.3. https://trustedcomputinggroup.org/wp-content/uploads/

TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf, 2013.

[229] T. C. G. (TCG). TPM 2.0 Library. https://trustedcomputinggroup.org/

resource/tpm-library-specification/, 2019.

[230] D. Team. NEWS: OmniPod Tubeless Insulin Pump to Offer Smartphone Con-
trol Soon. https://www.healthline.com/diabetesmine/omnipod-smartphone-

control-diabetes, 2019.

[231] Y. Tian and B. Ray. Automatically Diagnosing and Repairing Error Handling Bugs
in C. In Proc. ACM ESEC/FSE, 2017.

[232] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos, D. Brumley, Y. Zhou, and D. Song.
Sweeper: A Lightweight End-to-end System for Defending Against Fast Worms. 2007.

153

http://bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html
http://bibl.ica.jku.at/dc/build/html/basiccircuits/basiccircuits.html
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientTPMInterfaceSpecification_TIS__1-3_27_03212013.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.healthline.com/diabetesmine/omnipod-smartphone-control-diabetes
https://www.healthline.com/diabetesmine/omnipod-smartphone-control-diabetes

[233] B. Ur, J. Jung, and S. Schechter. The Current State of Access Control for Smart De-
vices in Homes. In Proc. of Workshop on Home Usable Privacy and Security (HUPS),
2013.

[234] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields. Cocaine Noodles: Exploiting the Gap
Between Human and Machine Speech Recognition. In In Proc. of the 9th USENIX
Conference on Offensive Technologies (WOOT), 2015.

[235] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,
T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the Keys to
the Intel SGX Kingdom with Transient Out-of-Order Execution. In Proc. USENIX
Security Symposium, 2018.

[236] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos,
K. Razavi, and C. Giuffrida. Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In Proc. ACM CCS, 2016.

[237] J. Vander Stoep. Android: Protecting the Kernel. In Linux Security Summit (LSS),
2016.

[238] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. überSpark: Enforcing
Verifiable Object Abstractions for Automated Compositional Security Analysis of a
Hypervisor. In Proc. USENIX Security Symposium, 2016.

[239] R. Wang, A. M. Azab, W. Enck, N. Li, P. Ning, X. Chen, W. Shen, and Y. Cheng.
SPOKE: Scalable Knowledge Collection and Attack Surface Analysis of Access Control
Policy for Security Enhanced Android. In Proc. ACM ASIA CCS, 2017.

[240] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection. In IEEE Symposium on
Security and Privacy, 2010.

[241] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow. Osiris: Automated
Discovery of Microarchitectural Side Channels. In Proc. USENIX Security Symposium,
2021.

[242] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller. Auto-
mated fixing of programs with contracts. In Proc. ACM ISSTA, 2010.

[243] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically Finding Patches
Using Genetic Programming. In Proc. IEEE ICSE, 2009.

[244] S. Weiser and M. Werner. SGXIO: Generic Trusted I/O Path for Intel SGX. In Proc.
ACM CODASPY, 2017.

[245] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth. SEVurity: No Secu-
rity Without Integrity: Breaking Integrity-Free Memory Encryption with Minimal
Assumptions. In Proc. IEEE Symposium on Security and Privacy (S&P), 2020.

154

[246] C. Willems, T. Holz, and F. Freiling. Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security & Privacy, 2007.

[247] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley. Scheduling Black-box Mutational
Fuzzing. In ACM CCS, 2013.

[248] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu. One Bit Flips, One Cloud Flops:
Cross-VM Row Hammer Attacks and Privilege Escalation. In Proc. USENIX Security
Symposium, 2016.

[249] Xilinx. Xilinx Standalone Library Documentation. OS and Libraries Document Col-
lection. UG643 (v2021.1) June 16, 2021.

[250] Xilinx. Zynq UltraScale + Device. Technical Reference Manual. UG1085 (v2.2) De-
cember 4, 2020.

[251] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and Y. Liu. Automatic Hot
Patch Generation for Android Kernels. In Proc. USENIX Security Symposium, 2020.

[252] B. Yadegari and S. Debray. Symbolic Execution of Obfuscated Code. In ACM CCS,
2015.

[253] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A Generic Approach to
Automatic Deobfuscation of Executable Code. In IEEE Symposium on Security and
Privacy, 2015.

[254] L. K. Yan and H. Yin. DroidScope: Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis. In USENIX Security, 2012.

[255] Q. Yan, K. Liu, Q. Zhou, H. Guo, and N. Zhang. SurfingAttack: Interactive Hidden
Attack on Voice Assistants Using Ultrasonic Guided Waves. 2020.

[256] Y. Yan, Z. Li, Q. A. Chen, C. Wilson, T. Xu, E. Zhai, Y. Li, and Y. Liu. Understand-
ing and Detecting Overlay-based Android Malware at Market Scales. In Proc. ACM
MobiSys, 2019.

[257] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing System-
wide Information Flow for Malware Detection and Analysis. In ACM CCS, 2007.

[258] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang, H. Huang, X. Wang,
and C. Gunter. CommanderSong: A Systematic Approach for Practical Adversarial
Voice Recognition. In Proc. of 27th USENIX Security Symposium, 2018.

[259] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A framework to Sup-
port Dynamic Security Analysis of Embedded Systems’ Firmwares. In Proc. Network
and Distributed Systems Security Symposium (NDSS), 2014.

[260] E. Zeng, S. Mare, and F. Roesner. End User Security & Privacy Concerns with Smart
Homes. In Proc. of the 13th USENIX Conference on Usable Privacy and Security
(SOUPS), 2017.

155

[261] E. Zeng and F. Roesner. Understanding and Improving Security and Privacy in Multi-
User Smart Homes: A Design Exploration and In-Home User Study. In Proc. USENIX
Security Symposium, 2019.

[262] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. DolphinAttack: Inaudible
Voice Commands. In CCS 2017, 2017.

[263] H. Zhang, D. She, and Z. Qian. Android Root and its Providers: A Double-Edged
Sword. In Proc. ACM CCS, 2015.

[264] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian. Dangerous Skills: Under-
standing and Mitigating Security Risks of Voice-Controlled Third-Party Functions on
Virtual Personal Assistant Systems. In Proc. of the IEEE Symposium on Security and
Privacy, 2019.

[265] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou. TruSpy: Cache Side-Channel
Information Leakage from the Secure World on ARM Devices. IACR Cryptology ePrint
Archive, 2016:980, 2016.

[266] X. Zhang, Y. Zhang, J. Li, Y. Hu, H. Li, and D. Gu. Embroidery: Patching Vulnerable
Binary Code of Fragmentized Android Devices. In IEEE ICSME, 2017.

[267] Y. Zhang, X. Luo, and H. Yin. DexHunter: Toward Extracting Hidden Code from
Packed Android Applications. In ESORICS, 2015.

[268] Y. Zhang, L. Xu, A. Mendoza, G. Yang, P. Chinprutthiwong, and G. Gu. Life after
Speech Recognition: Fuzzing Semantic Misinterpretation for Voice Assistant Applica-
tions. In Proc. Internet Society NDSS, 2019.

156

Appendix A

Bugs description

Here we discuss a few of realworld vulnerabilites and unpatched real bugs that we use in

evaluating bowknots in chapter 3. In this appenix we manually inspect the effectivness of

Hecaton in automatically generating bowknots for these bugs.

CVE-2019-2293 This vulnerability, which is rated as medium security severity, is caused

by a possible null pointer dereference in Qualcomm camera ife module. A null pointer

dereference might happen because of lack of a proper check on the isp resource length

variable before calling cam ife mgr acquire hw for ctx(). There are 7 functions in this

bug’s call stack. OctopOS overall generates 10 undo statements in these functions. Octo-

pOS successfully detects several types of state-mutating statements and their correspond-

ing undo statements including direct function calls, function pointers, and global variable

assignments. However, our manual investigation shows that one bowknot does not cor-

rectly undo the side effect of its function. In cam context handle acquire dev() function

ioctl ops.acquire dev(), which modifies the state of the camera device driver is called,

but it is not paired with its undo function, ioctl ops.release dev() . OctopOS missed

157

this statement because the original error handling code was not complete and did not call

ioctl ops.release dev().

After correcting the incomplete bowknot manually, when we run the PoC of this vulnerability

on the mitigated kernel, all bowknots in the call stack get executed and successfully undo

the side effects of the PoC. The camera device remains functional after this successful undo.

CVE-2019-1999 In function binder alloc free page(), there is a possible double-free

vulnerability due to improper locking. This vulnerability is rated as high security severity

because it could lead to local escalation of privilege in the kernel with no additional execution

privileges needed. In 2 functions in the call stack, there are 2 state-mutating statements,

which OctopOS automatically detects and uses to generate bowknots. Our manual investiga-

tion shows that the generated bowknots are complete. Also, OctopOS-generated bowknots

preserve the binder’s functionality after recovery. Hence, after the recovery, the system is

functional and successfully passes a binder test program that we execute. Our test pro-

gram consists of two processes, a binder-server and a binder-client. It checks for successful

communication between these two processes.

CVE-2019-10529 This is a use-after-free bug that can get triggered with a race condition

while attempting to mark the entry pages as dirty using the function set page dirty().

Use-after-free bugs in the kernel can cause a system crash, put the system in an unexpected

state, or be used in privilege escalation exploits. Automated bowknots generated by OctopOS

mitigate this vulnerability and preserve the GPU driver’s functionality. To test the GPU

driver’s functionality, we used the “GPU Mark BenchMark” application, which tests the

GPU under the stress of rendering. We do not notice any difference in the result before

and after OctopOS mitigates this vulnerability. Our manual investigation also shows that

bowknots undo worked correctly in this case.

CVE-2019-2000 This is a bug in the binder module of the Pixel3 phone. There are

158

4 functions in this bug’s call stack. OctopOS finds 6 state-mutating statements in these

functions and generate the undo code for them in their bowknots. Our experiments show that

the binder module remains functional after triggering this bug and executing the bowknots.

Our manual investigation confirms that there are no other statements that result in any

change in the system’s state, which leaks to non-local variables.

CVE-2019-2284: This is a bug in camera driver of Pixel3 phone. There are 4 functions

in this bug’s call stack. OctopOS finds 10 state-mutating statements in these functions and

generates the undo code for them. However, our experiments show that the Camera device

loses its functionality after triggering this bug and executing the bowknots. Our investigation

shows that 2 out of 4 bowknots OctopOS generates for this bug’s functions are incomplete.

In cam sensor core power up() function, there is a loop in which it turns on an array of

voltage regulators. Although this function has another for loop in its error handling path

which turns off the same array of the voltage regulators, OctopOS currently does not support

multi-statement undo, and only produces a warning for the user. Our investigation shows

that the bowknot generated for cam sensor driver cmd() is also not complete. In this case,

OctopOS fails to generate the complete bowknot because of the incomplete error handling

code. Please note that after we manually add the missing undo statements to the mentioned

functions, the system and the camera device remain functional after triggering the bug and

execution of bowknots.

Syzbot bug a11372b6c9b5fd4abe1c266903bcb27e80e8f2bc

This is a bug in the TTY driver of the x86 Linux-Next kernel. There are 5 functions in this

bug’s call stack. OctopOS locates two state-mutating functions and generates proper undo

code for them. It pairs kmalloc() with kfree() and console lock() with console unlock()

in the con font get() function. The system and TTY module remain functional after trig-

gering this bug and execution of bowknots. Our manual investigation shows that in one of

the functions, fbcon get font(), there are changes to a data structure called font, which

159

is not a local variable of fbcon get font() and is provided as an input variable. Since

there is no undo code to revert changes of the font data structure, at first glance, it seems

that the bowknot does not completely undo the driver’s state. However, our further analysis

shows that font data structure is not a global variable of the driver and is defined as a local

variable in con font get() function, which is the parent function of fbcon get font(). As

a result, changes to the font data structure do not leak to the other parts of the kernel be-

fore bowknot’s execution. Hence, our manual investigation shows that OctopOS-generated

bowknots correctly undo the effects of partially-executed system call, which confirms the

result of the functionality test.

Syzbot bug 9ad0eb3691bac24fd21ae3d8add8c08014a69f57

This is a bug in the file system of the upstream x86 Linux kernel. There are 10 functions

in this bug’s call stack. OctopOS finds one state-mutating statement and pairs it with its

undo statement. This pair is blk start plug() and blk finish plug(), which appears

twice in the execution path of this function. The file system functionality tests, including

kernel self-tests for the file system, successfully pass after triggering the bug and execution

of bowknots. In two functions in the call stack, we observe statements that change the

non-local variables of those functions. However, similarly to the previous case, our detailed

analysis shows that these non-local variables are not part of the global state of the system

or the file system; they are local variables defined in the parent functions in the call stack.

There is no change to the system’s state, which does not have undo code in the bowknots.

As a result, our manual investigation is in agreement with the functionality test.

Syzbot bug d708485af9edc3af35f3b4d554e827c6c8bf6b0f

This is a bug in HCI Bluetooth driver of the x86 Linux-Next kernel. There are three functions

in the call stack of this bug. OctopOS successfully pairs 4 state-mutating statements with

their undo code in these functions’ bowknots. We test the functionality of HCI Bluetooth

driver with a user-space program that uses this driver and with the network stack self-tests of

160

Linux kernel. The HCI Bluetooth driver and the network stack remain functional after trig-

gering the bug and execution of bowknots. Our manual investigation shows that, in addition

to the 4 state-mutating statements that OctopOS finds, there are three other function calls

that can potentially change the state of the system. One is hci req cmd complete(), which

manipulates the hdev the driver data structure. However, our further analysis shows that

this function does not get executed in the execution path of this bug. As a result, it is not

a concern. The two other function calls, which can possibly change the state of system, are

hci send to sock() and hci send to monitor(). Sending data over HCI socket changes

the state of system and it is not reversible. However, our deeper analysis shows in the case

of triggering this bug, these two functions return at the beginning and do not reach to the

point that they change the state of system. As a result, the success of functionality test

indicates the correct undo of system state in this case, too.

Syzbot bug f0ec9a394925aafbdf13d0a7e6af4cff860f0ed6

This is a bug in a network driver of the upstream x86 Linux kernel. The bug is located in

HCI Bluetooth driver. There are 11 functions in this bug’s call stack. Although OctopOS

generates complete bowknot for 10 out of the 11 functions in the call stack for this bug,

the remaining incomplete bowknot results in unsuccessful recovery. The last function in the

call stack of this bug, the list add() function, is designed to add an entry to a specified

location of a doubly linked list in the kernel. It modifies the two nodes that it wants to

insert a new node in between. The bug occurs after processing of the first node but before

the second node. At this point, the doubly link list is corrupted and there is no code to

undo this corruption. We could not fix this problem in the two-hour window that we allow

for manual work for each bug.

Syzbot bug 0d93140da5a82305a66a136af99b088b75177b99

This is a bug in a network driver of the upstream x86 Linux kernel. The bug is located in

HCI physical layer driver. There are 11 functions in this bug’s call stack. OctopOS pairs

161

5 state-mutating statements with their undo code in these function’s bowknots. However,

the network self-test result changes after triggering the bug and execution of the bowknots.

Hence, the functionality test for the automatically-generated bowknot fails for this func-

tion. Our investigation shows that there is one pair of state-mutating and undo functions,

which OctopOS missed because of its database’s incompleteness. When we manually add

hci conn drop() to the bowknot of the function hci phy link complete evt() to reverse

the effect of hci conn hold(), the bowknots become complete and the functionality test

passes successfully.

162

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Vulnerability Discovery
	Vulnerability Mitigation
	Bowknots
	MegaMind

	Vulnerability Prevention

	Charm: Facilitating Dynamic Analysis of Device Drivers of Mobile Systems
	Motivation
	Manual Interactive Debugging
	Record-and-Replay
	Fuzzing

	Remote Device Driver Execution
	Device and Device Driver Interactions
	Device Driver Initialization
	Low-Latency USB Channel
	Dependencies
	Porting a Device Driver to Charm

	Implementation & Prototype
	Evaluation
	Engineering Effort
	Performance
	Record-and-Replay
	Bug Finding

	Undo Workarounds for Kernel Bugs
	Motivation
	Unpatched Kernel Bugs
	Problems with Unpatched Kernel Bugs
	Current Approaches

	Overview
	Goals
	Key Idea & Design
	Workflow

	Bowknots
	Function Instrumentation
	Recursive Undo of Call Stack

	Automatic Generation of Bowknots
	Function-Pair Knowledge Database
	Generating the Undo Block
	Incompleteness and Confidence Score

	Implementation
	Evaluation
	Effectiveness
	Manual Effort for the Pair Database
	Performance Overhead
	Use-Case Evaluation

	Other Limitations

	MegaMind: A Platform for Security & Privacy Extensions for Voice Assistants
	Motivating Extensions
	Architectural Overview
	Trust & Threat Model
	Permission Enforcement
	Access Permissions
	Modification Permissions

	Non-interference
	Non-interference definition
	Non-interference guarantee

	Novel Security Features
	Secure Conversation
	Anonymous Query

	Implementation
	Key Implementation Components
	Performance Optimizations

	Evaluation
	Performance
	Effectiveness

	Split-Trust Machine Model
	Background
	Trust Definitions
	Trust in Existing Systems

	Key Goal and Principle
	Split-Trust Machine Model
	Static Partitioning and Physical Isolation
	Exclusive Inter-Domain Communication
	Power Management
	Hardware Root of Trust
	High Performance I/O
	Domain and Mailbox Reset

	Prototype
	Verified Hardware Design

	Evaluation
	Hardware Cost
	Performance

	Related Work
	Vulnerability Discovery
	Remote I/O Access
	Analysis of System Software
	Mobile Testing

	Vulnerability Mitigation
	Bug workarounds.
	Automatic fault recovery.
	Input filtering.
	Automated patching.
	Error handling analysis.
	Voice assistants security.

	Vulnerability Prevention
	Security by physical isolation.
	Secure I/O for TEEs.
	Time protection.
	Other TEE solutions.

	Conclusions
	Bibliography
	Appendix Bugs description

