STATS 8: Introduction to Biostatistics

Hypothesis Testing

Babak Shahbaba Department of Statistics, UCI

Hypothesis

- In general, many scientific investigations start by expressing a hypothesis.
- For example, Mackowiak et al (1992) hypothesized that the average normal (i.e., for healthy people) body temperature is less than the widely accepted value of 98.6F.
- If we denote the population mean of normal body temperature as μ , then we can express this hypothesis as $\mu < 98.6$.

Null and alternative hypotheses

- The null hypothesis usually reflects the "status quo" or "nothing of interest".
- In contrast, we refer to our hypothesis (i.e., the hypothesis we are investigating through a scientific study) as the alternative hypothesis and denote it as H_A.
- For hypothesis testing, we focus on the null hypothesis since it tends to be simpler.

Null and alternative hypotheses

- Consider the body temperature example, where we want to examine the null hypothesis H_0 : $\mu=98.6$ against the alternative hypothesis H_A : $\mu<98.6$.
- To start, suppose that $\sigma^2 = 1$ is known.
- Further, suppose that we have randomly selected a sample of 25 healthy people from the population and measured their body temperature.

- To decide whether we should reject the null hypothesis, we quantify the empirical support (provided by the observed data) against the null hypothesis using some statistics.
- We use statistics to evaluate our hypotheses.
- We refer to them as test statistics.
- For a statistic to be considered as a test statistic, its sampling distribution must be fully known (exactly or approximately) under the null hypothesis.
- We refer to the distribution of test statistics under the null hypothesis as the null distribution.

• To evaluate hypotheses regarding the population mean, we use the sample mean \bar{X} as the test statistic.

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
.

• For the above example,

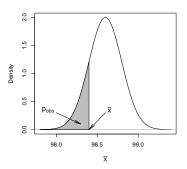
$$\bar{X} \sim N(\mu, 1/25)$$
.

· If the null hypothesis is true, then

$$\bar{X} \sim N(98.6, 1/25).$$

- In reality, we have one value, \bar{x} , for the sample mean.
- We can use this value to quantify the evidence of departure from the null hypothesis.
- Suppose that from our sample of 25 people we find that the sample mean is $\bar{x}=98.4$.

• To evaluate the null hypothesis $H_0: \mu = 98.6$ versus the alternative $H_A: \mu < 98.6$, we use the lower tail probability of this value from the null distribution.



Observed significance level

- The observed significance level for a test is the probability of values as or more extreme than the observed value, based on the null distribution in the direction supporting the alternative hypothesis.
- This probability is also called the *p*-value and denoted p_{obs} .
- For the above example,

$$p_{\rm obs} = P(\bar{X} \le \bar{x}|H_0),$$

z-score

- In practice, it is more common to use the standardized version of the sample mean as our test statistic.
- We know that if a random variable is normally distributed (as it is the case for \bar{X}), subtracting the mean and dividing by standard deviation creates a new random variable with standard normal distribution,

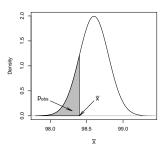
$$Z \sim N(0, 1)$$
.

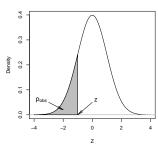
 We refer to the standardized value of the observed test statistic as the z-score,

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}},$$
$$= \frac{98.4 - 98.6}{0.2} = -1$$

z-test

- We refer to the corresponding hypothesis test of the population mean as the *z*-**test**.
- In a z-test, instead of comparing the observed sample mean \bar{x} to the population mean according to the null hypothesis, we compare the z-score to 0.





Interpretation of *p*-value

- The *p*-value is the conditional probability of extreme values (as or more extreme than what has been observed) of the test statistic assuming that the null hypothesis is true.
- When the p-value is small, say 0.01 for example, it is rare to find values as extreme as what we have observed (or more so).
- As the p-value increases, it indicates that there is a good chance to find more extreme values (for the test statistic) than what has been observed.
- Then, we would be more reluctant to reject the null hypothesis.
- A common **mistake** is to regard the *p*-value as the probability of null given the observed test statistic: $P(H_0|\bar{x})$.

One-sided vs. two-sided hypothesis testing

- The alternative hypothesis H_A : μ < 98.6 or H_A : μ > 98.6 are called *one-sided* alternatives.
- For these hypotheses, $p_{\rm obs}=P(Z\leq z)$ and $p_{\rm obs}=P(Z\geq z)$ respectively.
- In contrast, the alternative hypothesis H_A : $\mu \neq 98.6$ is two-sided.
- For the above three alternatives, the null hypothesis is the same, H_0 : $\mu = 98.6$
- In this case, $p_{\text{obs}} = 2 \times P(Z \ge |z|)$.

Hypothesis testing using *t*-tests

- So far, we have assumed that the population variance σ^2 is known.
- In reality, σ^2 is almost always unknown, and we need to estimate it from the data.
- As before, we estimate σ^2 using the sample variance S^2 .
- Similar to our approach for finding confidence intervals, we account for this additional source of uncertainty by using the t-distribution with n-1 degrees of freedom instead of the standard normal distribution.
- The hypothesis testing procedure is then called the **t-test**.

Hypothesis testing using *t*-tests

• Using the observed values of \bar{X} and S, the observed value of the test statistic is obtained as follows:

$$t=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}.$$

- We refer to t as the t-score.
- Then,

$$\begin{array}{ll} \text{if } H_{A}: \mu < \mu_{0}, & p_{\mathrm{obs}} = P(T \leq t), \\ \text{if } H_{A}: \mu > \mu_{0}, & p_{\mathrm{obs}} = P(T \geq t), \\ \text{if } H_{A}: \mu \neq \mu_{0}, & p_{\mathrm{obs}} = 2 \times P(T \geq |t|), \end{array}$$

• Here, T has a t-distribution with n-1 degrees of freedom, and t is our observed t-score.

Hypothesis testing for population proportion

- For a binary random variable X with possible values 0 and 1, we are typically interested in evaluating hypotheses regarding the population proportion of the outcome of interest, denoted as X=1.
- As discussed before, the population proportion is the same as the population mean for such binary variables.
- So we follow the same procedure as described above.
- More specifically, we use the z-test for hypothesis testing.

Hypothesis testing for population proportion

- Note that we do not use *t*-test, because for binary random variable, population variance is $\sigma^2 = \mu(1 \mu)$.
- Therefore, by setting $\mu = \mu_0$ according to the null hypothesis, we also specify the population variance as $\sigma^2 = \mu_0(1 \mu_0)$.

Hypothesis testing for population proportion

If we assume that the null hypothesis is true, we have

$$\bar{X}|H_0 \sim N(\mu_0, \mu_0(1-\mu_0)/n).$$

This means that

$$Z = rac{ar{X} - \mu_0}{\sqrt{\mu_0(1 - \mu_0)/n}} \sim N(0, 1).$$

As a result, we obtain the z-score as follows:

$$z = \frac{p - \mu_0}{\sqrt{\mu_0 (1 - \mu_0)/n}},$$

where p is the sample proportion (mean).