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Multinomial logistic model

Multinomial logistic model (MNL) is a generalization of
logistic regression when the outcome could have multiple
values (i.e., could belong to one of K classes).

The random component has a multinomial distribution,
yYilni, pit, -, pik ~ multinomial(n;, pj1, ..., pik )
where pji is the probability of class k for observation i such
K
that >, puik = 1.

y;i is also a vector of K elements with Zle Yik = n;.

The systematic part is now a vector njx = x;3, where 3 is a
matrix of size (p + 1) x K.



Multinomial logistic model

e For this model, we use a generalization of the link function we
used for the binary logistic regression

ik — exp(xiBy)
S exp(xiBir)

e The likelihood in terms of 3 is as follows:

p(ylp) o HHuy’k
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Multinomial logistic model

B in general is a (p+ 1) x K matrix. The first row,

(Bo1, ---, Bok) are intercepts, and (fj1, ..., Bjk) in row j + 1 are
regression parameters associated with the j predictor.

x; is the row vector of predictors value for observation i
(including the constant 1 at the beginning).

Vi is the number of cases in observation i that are in class k.

Each column k (where k =1, ..., K) corresponds to a set of
p + 1 parameters associated with class k.



Multinomial logistic model

This representation is redundant and results in
nonidentifiability, since one of the Si's (where k =1, ..., J)
can be set to zero without changing the set of relationships
expressible with the model.

Usually, either the parameters for k = 1 (the first column) or
for k = K (the last column) would be set to zero.

The likelihood function for the identifiable model is

exp(xBx) Vik
Pbe) /l_Ilkl_[l (1+Zk’ 1eXp(Xﬂk’)>

As we do for any GLM, we obtain the score function by taking
the first derivative of log-likelihood, L(3), with respect to 3.

Fisher information is the expectation of —gé égz




Modeling structured categorical response

e The MNL model discussed above treats classes as unrelated
entities without any hierarchical structure.

e This is not always a realistic assumption. In many
classification problems, one can arrange classes in a
hierarchical form.

e For example, gene functions are usually presented in a
hierarchical form starting with very general classes (eg, cell
processes) and becoming more specific in lower levels of the
hierarchy (eg, cell division).
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Modeling ordered classes

If the classes have in fact the assumed structure, one would
expect to obtain a higher performance by using this additional
information.

A special case is when the classes are ordered (e.g., education
level).

For these problems, we could use a more parsimonious model
to improve the power.

One such model is the cumulative logit defined as follows

P(yi < klxi, ) = p1+p2+ ...+ g
, p1 A+ p2 e
logit[P(y; < k|x;, B
gitlPly b ) Hk+1+uk+2+-~+MK]
P(yIS k‘Xhﬁ) ]
1_P(yi§k‘xf76)
= ai+ x5, k=1,...K—-1

log|

= log|



Modeling ordered classes

Note that in this model, we denote the intercept as «,
therefore 3 denotes regression coefficients only, and x; does
not include a constant 1 as its first element.

In this model, while the regression coefficients are shared
between all catogories, each category has its own unique
intercept «;.

Note that px = P(y; < k|x;, 8) — P(yi < k — 1|x;, B).

Therefore, the likelihood is as follows

HH( explas +xi8)  explas_i +xiB) )"

i L explar+x8) 14 exp(ak-1+xif



Modeling hierarchical classes

e In general, categorical response variables can have hierarchical
structures like the one we showed for gene functions.

e One approach for modelling hierarchical classes is to
decompose the classification model into nested models (e.g.,
logistic or MNL).

e Nested MNL models are extensively discussed in econometrics
in the context of estimating the probability of a person
choosing a specific alternative (i.e., class) from a discrete set
of options (e.g., different modes of transportation).



Modeling hierarchical classes

e For hierarchical classification problems with simple binary
partitions, we can use successive logistic models for each
binary class.

e In the figure below, for example, these partitions are {12, 34},
{1, 2}, and {3, 4}.

Class | Class 2 Class 3 Class 4



Modeling hierarchical classes

e The resulting nested binary models are statistically
independent, conditioned on the upper levels. The likelihood
can therefore be written as the product of the likelihoods for
each of the binary models.

e For example, for the above hierarchical structure we have

Ply =1x) = Py €{1,2}[x) x P(y € {1}y € {1,2},x)



Modeling hierarchical classes

e Restriction to binary models is unnecessary.

e At each level, classes can be divided into more than two
subsets and MNL can be used instead of logistic regression.



Modeling hierarchical classes- corMNL

e Shahbaba and Neal (2007) proposed an alternative method
for modeling hierarchical classes.
e Consider the the following figure:

®11 P12
2 3
®2 G22 ®23 G24
Class | Class 2 Class 3 Class 4

e For each branch in the hierarchy, they define a different set of
parameters: ¢11 and ¢1» for branches in the first level and
P21, P22, P23 and ¢4 for branches in the second level.



Modeling hierarchical classes- corMNL

e The model, which is referred to as corMNL, assigns objects to
one of the end nodes using an MNL model whose regression
coefficients for class j are represented by the sum of
parameters on all the branches leading to that class.

e In the above figure, these coefficients are 31 = ¢11 + @21,
B2 = ¢11 + ¢22, B3 = 12 + ¢23 and Ba = P12 + 24 for
classes 1,2,3 and 4 respectively.

e Sharing the common terms, ¢11 and ¢712, introduces prior
correlation between the parameters of nearby classes in the
hierarchy.



Modeling hierarchical classes- corMNL

By introducing prior correlations between parameters for
nearby classes, the model can better handle situations in
which these classes are hard to distinguish.

If the hierarchy actually does provide information about how
distinguishable classes are, the model is expected to perform
better.

This would be especially true when the training set is small
and the prior has relatively more influence on the results.

Using an inappropriate hierarchy will likely lead to worse
performance than a standard MNL model, but since the
hyperparameters can adapt to reduce the prior correlations to
near zero, the penalty may not be large.



Model assessment

e Since MNL is a generalization of logistic regression, to
evaluate its goodness-of-fit, we can use generalization of
model assessment measures we discussed for logistic
regression.

e More specifically, to evaluate significance of

Bj = (Bj1,---» Bjk ), we can use the multivariate versions of the
likelihood based tests we discussed for logistic regression.



Model selection for prediction

e To compare the performance of MNL models, we can use
average log-probability and accuracy rate as explained for
simple logistic regression.

e [t is also common to use other measurements such as F; and
precision.

e f7 is a common measurement in machine learning and is
defined as:

K
1 2A,
R = =y — 2k
1 Kkz_:l2Ak+Bk+Ck

where Ay is the number of cases which are correctly assigned

to class k, By is the number cases incorrectly assigned to class
k, and Ci is the number of cases which belong to the class k

but are assigned to other classes.



Model selection for prediction

While accuracy measurements are based on the top-ranked
(i.e., highest probability) category only, precision measures the
quality of ranking and is defined as follows:

.. 1
precision = Z (Zk PG >

= k|x;) > P(y = c|xi)]

where ¢ is the correct class of test case i.

The denominator is, therefore, the number of classes with
equal or higher rank compared to the correct class.

For categorical models with hierarchical structures, there are
model assessment measures that take the structure into
account. Some of these are discussed in Shahbaba and Neal
(2007).



Baseline model

e To provide a baseline for interpreting the performance of your
model, you can present the performance of a baseline model
that ignores the covariates and whose likelihood is solely
based on the observed frequency of classes.

e Such model, assigns all test cases to the class with the highest
frequency in the training set.



Poisson model

When the outcome variable, y, represents counts within a
specific time period, space limit, or any other index, we
usually use the Poisson model.

yilpi ~ Poisson(u;)

The systematic components are defined as before: n; = x; 5.

The canonical link for this model is the log link:
g(ni) = log(pi) = n
We therefore have

pi = exp(ni) = exp(xi3)



Poisson model

e The likelihood in terms of 3 can obtained as follows:

p(yilui) o Hexp A

p(yilxi, B) o Hexp[— exp(xi3)][exp(xi )]

e Recall that for the Poisson model, we obtained the following
score function and Fisher information

u(B) = Z[y;—eXP(X/ﬁ)]XU
in(B) = injxikeXP(XiB)



Poisson model

e Similar to logistic regression, we can use either
Newton-Raphson algorithm (which is the same as
Fisher-scoring algorithm for log link) or iterative weighted
least squares.

e For inference about the significance of /3, we can use one of
the three likelihood base tests.

e The interpretation j3; is that exp(f3;) is the amount increase in
the expected value of response variable for one unit increase
in x; when other covariates are fixed.



Poisson model

e When the response variable, y;, represents the counts over
time, space, or any other index, t; (where t; could vary from
one observation to another) it would be more reasonable to
model the adjusted rate of occurrence, p;/t; such that

log(ui/t) = xif
log(ui) — log(t;)) = xiB8

where the adjustment term — log(t;) is called an offset.
e Note that based on this model,

pi = tiexp(xi3)
e Therefor,
fi = tiexp(x;B)

which would be compared to y; to calculate the deviance.



Deviance for Poisson

For Poisson distribution, we have

P(ylp) = exp{log(n)y —p — log(y!)}

The deviance is therefore,

-2 Z{[log(ﬂi) —log(yi)lyi — fii + yi}

]

We can write this as

ZZ{log(%)Yi + (i — yi)}

A related statistic is called G2 and is defined as

G? =23 {yilog(3)}



Deviance for Poisson

e The deviance for Poisson model has the following form

2 )" Observed x log(Observed / Fitted)

e For comparing nested models, the deviance has the following

form:

2 )" Observed x log(Fitted using M; / Fitted using Mp)

e That is,

=

(1
(0)

7;>

G*(Mo|M1) = 2> {yilog(—z)}

i

7;>

where ﬁgo) and ﬁgl) are fitted values based on My and M;

respectively.



Pearson X? statistic

e Pearson X2 has the following form:
a2
X2 — (.yl ANI)
20

e For nested models
~(1) _ ~(0)y2
2 _ (" —n)
i) = > A
i N
e When My holds, both G2(Mo|My) and X2(Mp| M) have
asymptotic x? distribution with df equal to the difference
between parameters.



Deviance residuals

e For Poisson model, deviance residual for each observation is
defined as

dri = sign(y; — pui)\/di

where d; is defined as

di = 2{y; |og(§) + (i — yi)}

1



Pearson residual

e Pearson residual is simply defined as

e Note that
- o
i

e The standardized Pearson residual is then defined as

A

pr;

V1-— h \/u

where hj is the leverage.

spri




Other generalized linear models

So for, we have looked at the four most commonly used
GLMs: Normal, logistic, MNL, and Poisson.

There are other GLMs which are more specialized such as
Gamma (and its special case Exponential) and
inverse-Gaussian.

The approach to fit these models is very similar to what we
discussed so far.

We look at Exponential model for example.



Exponential model with log link
For continuous positive response variables, we can use an
Exponential model (or more generally a Gamma model).

The Exponential distribution has the following form

P(yl0) ~ 6Oexp(—0y), >0, y>0
~ exp[—0y + log(0)]

with mean = 1/60 and var(y) = 1/62.

As we can see, the natural parameter —0 is bounded, whereas
n; = x;B isin R.

Therefore, instead of setting —6; = n;, we could set

—log(0;) = n;, which is the same as log(u;) = n;.



Exponential model with log link

Then, we can obtain the score function as follows:

[yr - eXp(X,B)]XU
D Dy

Note that this has the general form of score function for
non-canonical link

) [YI ,U/]XU Opi
4O = 2" o

The observed Fisher information is
i(B) = x'wx
where w is a diagonal matrix with w; =

Yi
exp(x;3)
The expected Fisher information is



