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Multinomial logistic model

• Multinomial logistic model (MNL) is a generalization of
logistic regression when the outcome could have multiple
values (i.e., could belong to one of K classes).

• The random component has a multinomial distribution,

yi |ni , µi1, ..., µiK ∼ multinomial(ni , µi1, ..., µiK )

where µik is the probability of class k for observation i such
that

∑K
k=1 µik = 1.

• yi is also a vector of K elements with
∑K

k=1 yik = ni .

• The systematic part is now a vector ηik = xiβ, where β is a
matrix of size (p + 1)× K .



Multinomial logistic model

• For this model, we use a generalization of the link function we
used for the binary logistic regression

µik =
exp(xiβk)∑K

k ′=1 exp(xiβk ′)

• The likelihood in terms of β is as follows:

p(y |µ) ∝
n∏

i=1

K∏
k=2

µyikik

P(y |x , β) ∝
n∏

i=1

K∏
k=1

( exp(xiβk)∑K
k ′=1 exp(xiβk ′)

)yik



Multinomial logistic model

• β in general is a (p + 1)× K matrix. The first row,
(β01, ..., β0K ) are intercepts, and (βj1, ..., βjK ) in row j + 1 are
regression parameters associated with the j th predictor.

• xi is the row vector of predictors value for observation i
(including the constant 1 at the beginning).

• yik is the number of cases in observation i that are in class k .

• Each column k (where k = 1, ...,K ) corresponds to a set of
p + 1 parameters associated with class k.



Multinomial logistic model

• This representation is redundant and results in
nonidentifiability, since one of the βk ’s (where k = 1, ..., J)
can be set to zero without changing the set of relationships
expressible with the model.

• Usually, either the parameters for k = 1 (the first column) or
for k = K (the last column) would be set to zero.

• The likelihood function for the identifiable model is

P(y |x ,β) ∝
n∏

i=1

K∏
k=1

( exp(xβk)

1 +
∑K−1

k ′=1 exp(xβk ′)

)yik
• As we do for any GLM, we obtain the score function by taking

the first derivative of log-likelihood, L(β), with respect to β.

• Fisher information is the expectation of − ∂L2(β)
∂βj∂βk

.



Modeling structured categorical response

• The MNL model discussed above treats classes as unrelated
entities without any hierarchical structure.

• This is not always a realistic assumption. In many
classification problems, one can arrange classes in a
hierarchical form.

• For example, gene functions are usually presented in a
hierarchical form starting with very general classes (eg, cell
processes) and becoming more specific in lower levels of the
hierarchy (eg, cell division).



Modeling ordered classes

• If the classes have in fact the assumed structure, one would
expect to obtain a higher performance by using this additional
information.

• A special case is when the classes are ordered (e.g., education
level).

• For these problems, we could use a more parsimonious model
to improve the power.

• One such model is the cumulative logit defined as follows

P(yi ≤ k |xi , β) = µ1 + µ2 + ...+ µk

logit[P(yi ≤ k|xi , β)] = log[
µ1 + µ2 + ...+ µk

µk+1 + µk+2 + ...+ µK
]

= log[
P(yi ≤ k |xi , β)

1− P(yi ≤ k |xi , β)
]

= αk + xiβ, k = 1, ...,K − 1



Modeling ordered classes

• Note that in this model, we denote the intercept as α,
therefore β denotes regression coefficients only, and xi does
not include a constant 1 as its first element.

• In this model, while the regression coefficients are shared
between all catogories, each category has its own unique
intercept αj .

• Note that µk = P(yi ≤ k |xi , β)− P(yi ≤ k − 1|xi , β).

• Therefore, the likelihood is as follows

n∏
i=1

K∏
k=1

( exp(αk + xiβ)

1 + exp(αk + xiβ)
− exp(αk−1 + xiβ)

1 + exp(αk−1 + xiβ)

)yik



Modeling hierarchical classes

• In general, categorical response variables can have hierarchical
structures like the one we showed for gene functions.

• One approach for modelling hierarchical classes is to
decompose the classification model into nested models (e.g.,
logistic or MNL).

• Nested MNL models are extensively discussed in econometrics
in the context of estimating the probability of a person
choosing a specific alternative (i.e., class) from a discrete set
of options (e.g., different modes of transportation).



Modeling hierarchical classes

• For hierarchical classification problems with simple binary
partitions, we can use successive logistic models for each
binary class.

• In the figure below, for example, these partitions are {12, 34},
{1, 2}, and {3, 4}.

1

2 3

Class 1 Class 2 Class 3 Class 4



Modeling hierarchical classes

• The resulting nested binary models are statistically
independent, conditioned on the upper levels. The likelihood
can therefore be written as the product of the likelihoods for
each of the binary models.

• For example, for the above hierarchical structure we have

P(y = 1|x) = P(y ∈ {1, 2}|x)× P(y ∈ {1}|y ∈ {1, 2}, x)



Modeling hierarchical classes

• Restriction to binary models is unnecessary.

• At each level, classes can be divided into more than two
subsets and MNL can be used instead of logistic regression.
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Figure 3: A hypothetical hierarchy with a more complex structure.

Data
N=100 MNL treeMNL corMNL

log-prob acc log-prob acc log-prob acc

MNL -0.2539 89.9 -0.3473 87.7 -0.3106 88.7
Method treeMNL -0.6837 76.9 -0.2898 90.3 -0.3614 87.9

corMNL -0.2910 89.7 -0.2854 90.1 -0.2841 90.3

Table 2: Comparison of models on simulated data created based on Figure 3. Average
log-probability (log-prob) and accuracy rate (acc) are estimated on the test sets.

than the other two models (all p-values based on average log-probability are less than
0.01 using a paired t-test with n = 100). Moreover, the results show that when the sam-
ples are generated according to the MNL model (i.e., classes are unrelated), corMNL
has a significantly (p-value < 0.001) better performance compared to treeMNL. When
treeMNL is used to generate data, corMNL performs only slightly worse than treeMNL.
The conclusions remain the same when we use different priors and ranges of covariates.

While statistically significant, the results presented in Table 1 might not be signifi-
cant for some practical purposes. This is mostly due to the simplicity of the hierarchical
structure. We repeated the above tests with a more complex hierarchy, shown in Figure
3. For this problem we used four covariates randomly generated from the uniform(0, 1)
distribution. In all three models, we used the same prior as before for the intercepts.
For the MNL model we set τ−2 ∼ Gamma(1, 1). The hyperparameters of treeMNL
and corMNL were given Gamma(1, 5), Gamma(1, 20) and Gamma(1, 100) priors for
the first, second and third level of the hierarchy respectively.

Table 2 shows the average results over 100 datasets for each test. As we can see, the
differences between models are more accentuated. When data are generated by other
models, corMNL again performs well, being outperformed only by the true model. When
data come from treeMNL, the results from corMNL are very close to those of the true
model (i.e., treeMNL), and are actually better for log-probability, though this must of



Modeling hierarchical classes- corMNL

• Shahbaba and Neal (2007) proposed an alternative method
for modeling hierarchical classes.

• Consider the the following figure:

1

2 3

Class 1 Class 2 Class 3 Class 4

φ11 φ12

φ21 φ22 φ23 φ24

• For each branch in the hierarchy, they define a different set of
parameters: φ11 and φ12 for branches in the first level and
φ21, φ22, φ23 and φ24 for branches in the second level.



Modeling hierarchical classes- corMNL

• The model, which is referred to as corMNL, assigns objects to
one of the end nodes using an MNL model whose regression
coefficients for class j are represented by the sum of
parameters on all the branches leading to that class.

• In the above figure, these coefficients are β1 = φ11 + φ21,
β2 = φ11 + φ22, β3 = φ12 + φ23 and β4 = φ12 + φ24 for
classes 1, 2, 3 and 4 respectively.

• Sharing the common terms, φ11 and φ12, introduces prior
correlation between the parameters of nearby classes in the
hierarchy.



Modeling hierarchical classes- corMNL

• By introducing prior correlations between parameters for
nearby classes, the model can better handle situations in
which these classes are hard to distinguish.

• If the hierarchy actually does provide information about how
distinguishable classes are, the model is expected to perform
better.

• This would be especially true when the training set is small
and the prior has relatively more influence on the results.

• Using an inappropriate hierarchy will likely lead to worse
performance than a standard MNL model, but since the
hyperparameters can adapt to reduce the prior correlations to
near zero, the penalty may not be large.



Model assessment

• Since MNL is a generalization of logistic regression, to
evaluate its goodness-of-fit, we can use generalization of
model assessment measures we discussed for logistic
regression.

• More specifically, to evaluate significance of
βj = (βj1, ..., βjK ), we can use the multivariate versions of the
likelihood based tests we discussed for logistic regression.



Model selection for prediction

• To compare the performance of MNL models, we can use
average log-probability and accuracy rate as explained for
simple logistic regression.

• It is also common to use other measurements such as F1 and
precision.

• F1 is a common measurement in machine learning and is
defined as:

F1 =
1

K

K∑
k=1

2Ak

2Ak + Bk + Ck

where Ak is the number of cases which are correctly assigned
to class k , Bk is the number cases incorrectly assigned to class
k, and Ck is the number of cases which belong to the class k
but are assigned to other classes.



Model selection for prediction

• While accuracy measurements are based on the top-ranked
(i.e., highest probability) category only, precision measures the
quality of ranking and is defined as follows:

precision =
1

n

n∑
i=1

( 1∑K
k I [P(y = k |xi ) ≥ P(y = c |xi )]

)
where c is the correct class of test case i .

• The denominator is, therefore, the number of classes with
equal or higher rank compared to the correct class.

• For categorical models with hierarchical structures, there are
model assessment measures that take the structure into
account. Some of these are discussed in Shahbaba and Neal
(2007).



Baseline model

• To provide a baseline for interpreting the performance of your
model, you can present the performance of a baseline model
that ignores the covariates and whose likelihood is solely
based on the observed frequency of classes.

• Such model, assigns all test cases to the class with the highest
frequency in the training set.



Poisson model

• When the outcome variable, y , represents counts within a
specific time period, space limit, or any other index, we
usually use the Poisson model.

yi |µi ∼ Poisson(µi )

• The systematic components are defined as before: ηi = xiβ.

• The canonical link for this model is the log link:

g(µi ) = log(µi ) = ηi

• We therefore have

µi = exp(ηi ) = exp(xiβ)



Poisson model

• The likelihood in terms of β can obtained as follows:

p(yi |µi ) ∝
n∏
i

exp(−µi )µyii

p(yi |xi , β) ∝
n∏
i

exp[− exp(xiβ)][exp(xiβ)]yi

• Recall that for the Poisson model, we obtained the following
score function and Fisher information

uj(β) =
∑
i

[yi − exp(xiβ)]xij

ijk(β) =
∑
i

xijxik exp(xiβ)



Poisson model

• Similar to logistic regression, we can use either
Newton-Raphson algorithm (which is the same as
Fisher-scoring algorithm for log link) or iterative weighted
least squares.

• For inference about the significance of β, we can use one of
the three likelihood base tests.

• The interpretation βj is that exp(βj) is the amount increase in
the expected value of response variable for one unit increase
in xj when other covariates are fixed.



Poisson model

• When the response variable, yi , represents the counts over
time, space, or any other index, ti (where ti could vary from
one observation to another) it would be more reasonable to
model the adjusted rate of occurrence, µi/ti such that

log(µi/ti ) = xiβ

log(µi )− log(ti ) = xiβ

where the adjustment term − log(ti ) is called an offset.

• Note that based on this model,

µi = ti exp(xiβ)

• Therefor,

µ̂i = ti exp(xi β̂)

which would be compared to yi to calculate the deviance.



Deviance for Poisson

• For Poisson distribution, we have

P(y |µ) = exp{log(µ)y − µ− log(y !)}
• The deviance is therefore,

−2
∑
i

{[log(µ̂i )− log(yi )]yi − µ̂i + yi}

• We can write this as

2
∑
i

{log(
yi
µ̂i

)yi + (µ̂i − yi )}

• A related statistic is called G 2 and is defined as

G 2 = 2
∑
i

{yi log(
yi
µ̂i

)}



Deviance for Poisson

• The deviance for Poisson model has the following form

2
∑

Observed × log(Observed / Fitted)

• For comparing nested models, the deviance has the following
form:

2
∑

Observed × log(Fitted using M1 / Fitted using M0)

• That is,

G 2(M0|M1) = 2
∑
i

{yi log(
µ̂
(1)
i

µ̂
(0)
i

)}

where µ̂
(0)
i and µ̂

(1)
i are fitted values based on M0 and M1

respectively.



Pearson X 2 statistic

• Pearson X 2 has the following form:

X 2 =
∑
i

(yi − µ̂i )2
µ̂i

• For nested models

X 2(M0|M1) =
∑
i

(µ̂
(1)
i − µ̂

(0)
i )2

µ̂
(0)
i

• When M0 holds, both G 2(M0|M1) and X 2(M0|M1) have
asymptotic χ2 distribution with df equal to the difference
between parameters.



Deviance residuals

• For Poisson model, deviance residual for each observation is
defined as

dri = sign(yi − µi )
√

di

where di is defined as

di = 2{yi log(
yi
µ̂i

) + (µ̂i − yi )}



Pearson residual

• Pearson residual is simply defined as

pri =
yi − µ̂i√

µ̂i

• Note that

X 2 =
∑
i

pr2i

• The standardized Pearson residual is then defined as

spri =
pri√
1− ĥi

=
yi − µ̂i√
µ̂i (1− ĥi )

where ĥi is the leverage.



Other generalized linear models

• So for, we have looked at the four most commonly used
GLMs: Normal, logistic, MNL, and Poisson.

• There are other GLMs which are more specialized such as
Gamma (and its special case Exponential) and
inverse-Gaussian.

• The approach to fit these models is very similar to what we
discussed so far.

• We look at Exponential model for example.



Exponential model with log link

• For continuous positive response variables, we can use an
Exponential model (or more generally a Gamma model).

• The Exponential distribution has the following form

P(y |θ) ∼ θ exp(−θy), θ > 0, y ≥ 0

∼ exp[−θy + log(θ)]

with mean µ = 1/θ and var(y) = 1/θ2.

• As we can see, the natural parameter −θ is bounded, whereas
ηi = xiβ is in R.

• Therefore, instead of setting −θi = ηi , we could set
− log(θi ) = ηi , which is the same as log(µi ) = ηi .



Exponential model with log link

• Then, we can obtain the score function as follows:

uj(β) =
∑
i

[yi − exp(xiβ)]xij
exp(xiβ)

• Note that this has the general form of score function for
non-canonical link

uj(β) =
∑
i

[yi − µi ]xij
var(yi )

.
∂µi
∂ηi

• The observed Fisher information is

i(β) = x ′wx

where w is a diagonal matrix with wi = yi
exp(xiβ)

• The expected Fisher information is

i(β) = x ′x


