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What could go wrong with linear regression models

• In practice, one or more assumptions of linear regression
models might be violated.

• This could result in wrong inference.

• Here, we discuss these assumptions can be violated and
mention some possible fixes.



Linearity

• Using linear models, we implicitly assume that the relationship
between x and y is linear (note that this in general is different
from the linearity assumption of the function in terms of
parameters; i.e., g(x) = xβ).

• If the assumption of linear relationship (with respect to
variables) does not hold, we might still be able to use linear
regression models after some transformation of original
variables.

• Typical transformations are (we could use a combination of
these with the original variables)

• log(x): For variables with positive values and heavily
right-skewed distribution.

•
√

x :This transformation has milder effect compared to log
transformation, and it is usually recommended for counts.

• x2, x3, ...: To create nonlinear relationships in the form of
polynomial function.



TV Ad Yields

• This data appeared in the Wall Street Journal and can be
obtained from the “data and story” website.

• The advertisement were selected by an annual survey
conducted by Video Board Tests, Inc., a New York ad-testing
company.

• The data are based on interviews with 20,000 adults who were
asked to name the most outstanding TV commercial they had
seen, noticed, and liked.

• The retained impressions were based on a survey of 4,000
adults, in which regular product users were asked to cite a
commercial they had seen for that product category in the
past week.

• The objective was to investigate the relationship between TV
advertising budget (SPEND) and millions retained impressions
per week (MILIMP)



TV Ad Yields

• The following graphs shows the results of two regression
models:

1. E (MILIMP) = β0 + β1SPEND
2. E (MILIMP) = β0 + β1SPEND + β2SPEND2
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Additivity

• In linear regression models, the effects of explanatory variables
on the response variable are assumed to be additive. This
means, the expected value of the response variable changes by
a fixed amount when one of the explanatory variables is
varied, regardless of the values of the other variables

ŷ = β0 + β1x1 + β2x2

• If the theory suggests that the effects are not additive, i.e.,
the effect of one variable on response depends on the value of
the other variable, we can still use linear regression models
with some minor adjustment.

• For example, we could add interactions terms into our model.

ŷ = β0 + β1x1 + β2x2 + β12x1x2



Interaction

• The following graph shows the scatter plot of inorganic
phosphorus levels vs. age for sample elderly patients.

• As we see, the relationship seems to be different between men
and women.
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Additivity

• In some situations, we can use appropriate transformations to
create additivity. For example, consider the following model
with multiplicative effects:

ŷ = β0xβ1
1 xβ2

2

• We can use the log-transformation to create an additive model

log(ŷ) = log(β0) + β1 log(x1) + β2 log(x2)

where the effects (on log scale) are additive.

• When we can use simple transformations to make
non-linear/non-additive models linear/additive, we say the
models are intrinsically linear/additive.



Independence and constant variance assumptions for errors

• In linear regression models, the error terms are assumed to be
independent.

• In this case, the covariance matrix of error terms is not
diagonal (σ2I ) anymore, we need to use a full covariance
matrix (Σ).

• Moreover, they are assumed to have equal variance. When
this is not the case, we could use weighted least squares,
where the weight of each data point is inversely proportional
to its variance.

• The assumption of normality for errors is not as important as
the above two, but it should still be tested.



Unbounded response variable

• In linear regression analysis, we model the expected value of
the response variable as a function of explanatory variables,
E (y |x) = xβ.

• The right had side of this equation is unbounded in general.
This could cause a problem, if the left hand side, E (y |x), is
bounded.

• For example, if the response variable is binary, y ∈ {0, 1}, its
expectation is between 0 and 1.

• For count variables, the expectation would be a non-negative
number.



Generalized linear model

• To deal with some of these issues, we need a more flexible
family of models.

• The class of generalized linear models (GLM), that includes
linear models as a special case, provides such flexibility while
it is still easy to use.

• Generalized linear models have three components:
• A random component
• A systematic component
• A link function



Generalized linear model

• The random component identifies the response variable and
its probability distribution.

• In most situations, we assume parametric model P(y |θ) for
the distribution of y from the exponential family.

• Recall that the exponential family includes most of the
well-known distributions such as normal, binomial,
multinomial and Poisson.

• In general, if the outcome variable is continuous and
real-valued, we use the normal distribution.

• If the outcome is binary, we use the binomial distribution. For
outcome variables with multiple categories, we use the
multinomial instead.

• If the outcome variable represent counts data, we use the
Poisson distribution.



Generalized linear model

• The systematic component specifies the set of predictors (i.e.,
explanatory variables) x = (x1, ..., xp) used in a linear
predictor function.

• As before, we also append a vector of ones at the beginning of
x .

• In the matrix form, the linear predictor function η = xβ,
where β = (β0, β1, ..., βp).

• Alternatively,for each observation i , where i = 1, ..., n, the
linear predictor function is ηi = β0 +

∑p
j xijβj .

• Also, as before, some of predictors could be a transformation
(e.g., x2) of original predictors.



Generalized linear model

• The link function is a monotonic differentiable function that
connects the random and systematic components.

• More specifically, if µ = E (y |x), the link function g connects
µ to η such that g(µi ) = ηi = β0 +

∑p
j=1 xijβj for each

observation i .

• For the ordinary linear model we discussed before, the link
function is identity: g(µi ) = µi . That is µi = ηi = xiβ.



Logistic regression model

• As mentioned before, for binary outcome variable, we use the
binomial distribution.

yi |ni , µi ∼ binomial(ni , µi )

with the Bernoulli distribution as its special case when ni = 1.
• As usual, we define the systematic part of the model ηi = xiβ

(where xi is a row vector of all observed values for subject i ,
and β is a column vector of size p + 1).

• A common link function for this model is the logit function
logit and defined as

g(µi ) = log(
µi

1− µi
) = xiβ

where µi is the probability of success (i.e., yi = 1).
• As the result

µi =
exp(xiβ)

1 + exp(xiβ)



Logistic regression model

• The likelihood is therefore defined in terms of β as follows:

P(y |µ) ∝
n∏

i=1

µyii (1− µi )ni−yi

P(y |β) ∝
n∏

i=1

( exp(xiβ)

1 + exp(xiβ)

)yi( 1

1 + exp(xiβ)

)ni−yi

• Note that in this model the variance of y |x depends on the
mean and therefore will not be constant

var(yi |xi ) = µi (1− µi )



Logistic regression model

• The following two graphs show examples of logistic function
with negative and positive β
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Logistic regression model

• Fitting logistic model to simulated data from

xi ∼ N(0, 1)

yi ∼ Bernoulli
( exp(1 + 3x)

1 + exp(1 + 3x)

)
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Logistic regression model

• Fitting logistic model to simulated data from

xi ∼ N(0, 1)

yi ∼ Bernoulli
( exp(1− 3x)

1 + exp(1− 3x)

)
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Multinomial logistic model

• This is a generalization of logistic regression when the
outcome could have multiple values (i.e., could belong to one
of K classes).

yi |ni , µi1, ..., µiK ∼ multinomial(ni , µi1, ..., µiK )

where µik is the probability of class k for observation i such
that

∑K
k=1 µik = 1.

• yi is also a vector of K elements with
∑K

k=1 yik = ni .

• The systematic part is now a vector ηik = xiβ, where β is a
matrix of size (p + 1)× K .



Multinomial logistic model

• Each column k (where k = 1, ...,K ) corresponds to a set of
p + 1 parameters associated with class k.

• This representation is redundant and results in
nonidentifiability, since one of the βk ’s (where k = 1, ..., J)
can be set to zero without changing the set of relationships
expressible with the model.

• Usually, either the parameters for k = 1 (the first column) or
for k = K (the last column) would be set to zero.

• In Bayesian models, removing this redundancy would make it
difficult to specify a prior that treats all classes symmetrically.
Therefore, we do not remove redundancy (in general,
nonidentifiability does not create problem for Bayesian
models). In this case, what matters is the difference between
the parameters of different classes.



Multinomial logistic model

• For the multinomial logistic model, we use a generalization of
the link function we used for the binary logistic regression

µik =
exp(xiβk)∑K

k ′=1 exp(xiβk ′)

• The likelihood in terms of β is as follows:

p(y |µ) ∝
n∏

i=1

K∏
k=2

µyikik

P(y |x ,β) ∝
n∏

i=1

K∏
k=1

( exp(xβk)∑K
k ′=1 exp(xβk ′)

)yik
• Here βk is a column vector of p + 1 parameters corresponding

to class k .



Multinomial logistic model

• β in general is a (p + 1)× K matrix. The first row,
(β01, ..., β0K ) are intercepts, and (βj1, ..., βjK ) in row j + 1 are
regression parameters associated with the j th predictor.

• xi is the row vector of predictors value for observation i
(including the constant 1 at the beginning).

• yik is the number of cases in observation i that are in class k .



Poisson model

• When the outcome variable, y , represents counts, we use the
Poisson model.

yi |µi ∼ Poisson(µi )

• The systematic components are defined as before: ηi = xiβ.

• The usual link function for this model is the log link:

g(µi ) = log(µi ) = ηi

• We therefore have

µi = exp(ηi ) = exp(xiβ)



Poisson model

• The likelihood in terms of β can obtained as follows:

p(yi |µi ) ∝
n∏
i

exp(−µi )µyii

p(yi |β) ∝
n∏
i

exp[− exp(xiβ)][exp(xiβ)]yi

• Similar to logistic and multinomial models, the variance of y |x
in Poisson model depends on the mean and therefore will not
be constant

var(yi |xi ) = µi



Fitting GLMs in R

• In R, we use the function glm to fit generalized linear models.

• The function has the following format:

glm( formula, family = gaussian, data )

• formula- This specifies the systematic component, for
example, we could have

y ∼ x1 + x2, or y ∼ .

• family- This specifies the stochastic part of the model, i.e.,
probability of the response variable. The type of link function
could be given within our specification of family, for example,

family = binomial(link="logit")



Fitting GLMs in R

• Some of the default links are

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

poisson(link = "log")

• For multinomial logit model, we can use the function
multinom in nnet package.



Exponential family of distributions

• For the random component of models we discussed so far, we
assumed distributions such as normal, binomial, and Poisson.

• These distributional forms are members of the exponential
family.

• A single parameter distributional form belongs to the
exponential family if the distribution has the following form

P(yi |θ) = exp{g(θ)Ti (yi ) + ci (θ) + hi (yi )}

where P is the density function for continuous random
variables and probability mass function for discrete variables.

• For example, for Poisson distributions, we have

P(y |θ) = e−θθy/y !

= exp{log(θ)y − θ − log(y !)}

• Here, g(θ) = log(θ), T (y) = y , c(θ) = −θ, and
h(y) = − log(y !)



Sufficiency in exponential family

• For a vector of independent observations, y = (y1, y2, ..., yn),
we have

P(y |θ) = exp{g(θ)
∑

Ti (yi ) +
∑

ci (θ) +
∑

hi (yi )}

• If the observations are identically distributed, we can drop the
index i , and present the exponential family as

P(y |θ) = exp{g(θ)T (y) + c(θ) + h(y)}

• Based on the factorization theorem, T (y) is sufficient statistic
for θ.

• Recall that sufficiency in classical sense (and assuming that
the distribution is parametric) means that P(y |T , θ) does not
depend on θ.

• Sufficiency in Bayesian sense means that for any prior P(θ),
there exist versions of posterior P(θ|y) and P(θ|T ) such that
P(θ|y) = P(θ|T ).



Multiparameter exponential family

• In general, a distribution in exponential family can have
multiple parameters.

• In this case, g , T , and c would be vectors, and instead of
g(θ)T (y), we have their dot product, gT (θ)T (y).

P(y |θ) = exp{
K∑

k=1

gk(θ)Tk(y) + c(θ) + h(y)}

where T = (T1,T2, ...,Tk) is sufficient for θ.
• Note that while the dimension of T , which is K , is usually the

same as the dimension of θ, this does not have to be the case
in general.

• Also note that g and T are not unique. We can for example
use their linear transformation such that g∗ = ATg and
T ∗ = A−1T .

• The dot product of g∗(θ) and T ∗(y) is the same as
gT (θ)T (θ).



Multiparameter exponential family

• Let’s consider a normal distribution with unknown mean and
unknown variance.

P(y |µ, σ2) = exp{−(y − µ)2

2σ2
− log(2πσ2)

2
}

= exp{− y2

2σ2
+
µy

σ2
− µ2

2σ2
− log(2πσ2)

2
}

• Here,

g(µ, σ2) = (
1

σ2
,
µ

σ2
)

T (y) = (−y2

2
, y)

c(µ, σ2) = − µ2

2σ2
− log(2πσ2)

2
h(y) = 0



Degenerate forms of exponential family

• Sometimes, the dimensionality of g and T can be reduced.

• For example, consider the Bernoulli distribution

P(y |θ) = θy (1− θ)1−y

= exp{log(θ)y + log(1− θ)(1− y)}

• It seems that g(θ) and T (y) are vectors

g(θ) = (log(θ), log(1− θ))

T (y) = (y , 1− y)

c(θ) = 0

h(y) = 0

• However, there is only one parameter in this model.



Degenerate forms of exponential family

• We can modify the form of the distribution as follows:

P(y |θ) = exp{log(
θ

1− θ
)y + log(1− θ)}

• This way, g(θ) = log( θ
1−θ ), T (y) = y , and c(θ) = log(1− θ).

• A member of exponential family is called degenerate if

a Some linear combination of Tk(y) is constant.
For example, in the case of Bernoulli
distribution, (y) + (1− y) = 1.

b Some linear combination of gk(θ) is constant.

• As we saw in the case of Bernoulli distribution, we can modify
the form of the distribution so it is not degenerate any more.

• In this case, φ = g(θ) = log( θ
1−θ ) is called natural parameter.



Natural parameter

• In general, the form of exponential family does not change if
we perform one-to-one transformations of variable or
parameter.

• More specifically, notice that∫
χ

exp[h(y)] exp{
K∑

k=1

gk(θ)Tk(y)} = 1/ exp[c(θ)]

• Therefore, to define the distribution, all we need to specify is
g(θ) such that 1/ exp[c(θ)] is finite.

• g(θ), which in general is a vector of size K , is called the
natural parameter.

• We can change the parameter using the transformation
φk = gk(θ)

P(y |θ) = exp{
K∑

k=1

φkTk(y) + c∗(φ) + h(y)}



Distribution of natural sufficient statistic

• As we can see, we can change the random variable from y to
t = T (y).

• The sufficient statistic T also has an exponential family
distribution, and the natural parameter of its distribution is
the same as that y .

• That is,

P(y |θ) = exp{
K∑

k=1

gk(θ)Tk(y) + c(θ) + h(y)}

P(t|θ) = exp{
K∑

k=1

gk(θ)tk + c(θ) + h∗(t)}



Score function and information

• Recall that the first derivative of log-likelihood function, L(θ),
is called the score function

u(θ) =
∂L(θ)

∂θ

• For single parameter exponential family, the score function is

u(θ) = T (y)
∂g(θ)

∂θ
+
∂c(θ)

∂θ

• The value of score function for a given θ0 (e.g., H0 : θ = θ0)
is called the efficient score, u(θ0).

• In terms of natural parameter φ,

u(φ) = T (y) +
∂c∗(φ)

∂φ



Score function and information

• Under some regularity conditions (mainly to make it possible
to interchange integration and differentiation), for a given
value of θ we have

Eθ[u(θ)] = 0

• As the result

varθ[u(θ)] = E [u2(θ)] = i(θ)

• i(θ) is called Fisher information about θ given y .

• Under the regularity conditions assumed above,

i(θ) = E [u2(θ)] = E [−∂
2L(θ)

∂θ2
]



Moments of natural sufficient statistics

• For exponential family,

Eθ[T (y)] = −∂c(θ)

∂θ

/∂g(θ)

∂θ

• In terms of the natural parameter φ = g(θ)

Eφ[T (y)] = −∂c∗(φ)

∂φ

• For the second moment, note that

varφ[T (y)] = var [u(φ)] = i(φ)

• Therefore, we need to find the Fisher information about the
natural parameter φ = g(θ) given y .



Moments of natural sufficient statistics

• To find the Fisher information we have

−∂
2L(θ)

∂θ2
= −T (y)

∂2g(θ)

∂θ2
− ∂2c(θ)

∂θ2

• Therefore, Fisher information about θ is

i(θ) = −E [T (y)]
∂2g(θ)

∂θ2
− ∂2c(θ)

∂θ2

=
∂2g(θ)

∂θ2
∂c(θ)

∂θ

/∂g(θ)

∂θ
− ∂2c(θ)

∂θ2

• With respect to the natural parameter φ = g(θ)

i(φ) = −∂
2c∗(φ)

∂φ2

• Therefore,

varφ[T (y)] = −∂
2c∗(φ)

∂φ2



Results for multiparameter exponential family

• The above results easily generalize to K -dimensional
multiparameter exponential family distributions with
parameters θ = (θ1, ..., θK )

• The score function in this case is a vector of size K

uk(θ) =
∂L(θ)

∂θk
, k = 1, ...,K

• As before,

Eθ[u(θ)] = 0

• Fisher information is K × K matrix whose (j , k)th element is

ijk(θ) = E [ujuk ] = E [−∂
2L(θ)

∂θj∂θk
]



Results for multiparameter exponential family

• For the multiparameter case, we have

Eφ[Tk(y)] = −∂c∗(φ)

∂φk

covφ[TjTk ] = −∂
2c∗(φ)

∂φjφk

• Note that φ and T are vectors.



Maximum likelihood estimate

• Assignment: For single parameter exponential family, find
the maximum likelihood estimate (MLE) and show that MLE
is a method of moments estimator. (Similar results hold for
multi-parameter case, but you do not need to show it here.)
Show this is in fact true for Poisson models.



Hypothesis testing

• For a single parameter exponential family, the likelihood ratio
test for H0 : θ = θ0 vs. HA : θ = θ1 is as follows

LR = exp{[g(θ1)− g(θ0)]T (y) + c(θ1)− c(θ0)}

• Note that the test involve the data only through the sufficient
statistic T (y).

• If we assume (without loss of generality) that θ0 < θ1 and g is
strictly increasing in θ, the likelihood ration test is an
increasing function of T (y), and we can reject the null
hypothesis for large values of t = T (Y ).

• More specifically, we reject the null if T (y) ≥ k, where
P[T (y)|θ = θ0] = α.


