STATS 212: Generalized Linear Models
Lecture 6: Quasi-likelihood, overdispersion, and
GLMM

Babak Shahbaba

UCI, Spring 2010



Quasi-likelihood

Recall that for generalized linear models, the score function
has the following general form
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As we can see, the score function depends on the distribution
of y only through p; and Var(y;) only.

Moreover, Var(u;) itself is a function a p; such that
Var(y;) = V(pi), where V is called the variance function.

For example, in the Poisson model, V/(1;) = pj, in the
Bernoulli model, V/(u;) = pi(1 — w;), for the normal model
V(u;) = o2 (i.e., it is a constant function).

Instead of fully specifying the distribution of y;, we can specify

the mean-variance relationship, i.e., the variance function,
only. The resulting likelihood is called quasi-likelihood (QL).



Quasi-likelihood

Note that we still need to define the link function

g(pi) =ni = xiB.

The quasi-score function based on the quasi-lilihood model
will be
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This means that the derivative of quasi-likelihood function (or
more correctly, quasi-log-likelihood), 1), should be defined as

i
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And the quasi-log-likelihood function for n independent
observations is

Qlp) = Z Y(pi, i)



Quasi-likelihood

For example, if we define V(u) =

o, y) _y—p

o It

which means

Y(u,y) = ylog(p) —p+c(y)

In this case, the quasi-likelihood function has the same form
as the likelihood for the Poisson model

L(p,y) = ylog(p) —p— log(y!)

which was expected since we set the variance function equal
to the mean.



Quasi-likelihood

To estimate S8 based on QL function, we maximize the
quasi-likelihood function.

For this, similar to the ML approach, we set the partial
derivatives of Q(5) to 0.
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These are called estimating equations.
The generalization of QL for multivariate responses is called
generalized estimation equations (GEE).

As before, we can use iterative weighted least squares to
obtain £.



Quasi-likelihood

e The QL estimators have the similar properties to those of ML
estimators.

e Their sampling distribution is asymptotically normal with the
following approximate covariance matrix

A

cov(B) = (x'wx)71

where w is a diagonal matrix with diagonal elements




Overdispersion

The mean-variance relationships defined by the Poisson and
Bernoulli models are quite restrictive.

In the Poisson model, the variance is restricted to be equal to
the mean.

In reality, however, the variance is usually larger than the
mean for count data mainly due to the heterogeneity of
observations.

To account for this, we can utilize an additional parameter v,
called the dispersion parameter, and define the variance
function as Var(y) = vV/(u), where v is usually unknown.

For example, in the Poisson model, Var(y) = vu, and in the
Bernoulli model, Var(y) = vu(l — p).



Overdispersion

Note that the dispersion parameter in the above setting drops
out in the estimating equations, so the estimated (5 are the
same as ML estimates.

However, the covariance of 3 will be v times bigger than what
we previously defined since

O
: vV (pi)
To estimate v, note that by definition v = 15[(\};:(;”/1)1)2]

Therefore, we can use the method of moments estimator as
follows




Overdispersion

e The above estimate of dispersion parameter is the same as
X2/(n— p — 1) where X2 is the general form of Pearson
statistic.

e Therefore, we estimate the dispersion parameter by dividing
Pearson statistic by the residual degrees of freedom, n—p — 1.

e If U > 1, we should adjust the standard error by multiplying it

by /7.



Random effects: Generalized Linear Mixed Models
(GLMM)

e As we mentioned, the cause of overdispersion is usually
population heterogeneity, which is not captured by the model.

e Generalized linear models we discussed so far do not take the
heterogeneity of the population into account, since the effect
of covariates are fixed across all observations.

e To address this issue, generalized linear mixed models are
employed as a generalization of GLMs.

e The underlying assumption in these models is that the
population is in fact comprised of several sub-groups.

e The sub-groups could be related subjects (e.g., siblings,
matched pairs) or multiple observations for the same subject.

e As the results, one or more regression parameters (this may
include the intercept) in these models may vary from one
group to other. That is, the relationships between some of
covariates and the response variable are group specific.



GLMM
e In GLMM, the linear predictor has the following form
g(uir) = xieB+ zitvi

Here, i indexes the sub-groups, t is the index for observations
in each subgroup, 3 are the fixed effects, and ~; are the
random effects (which is group specific).

e A simple form of GLMM is a random intercept model

gluit) = a+7vi+xif



GLMM

The random effects are usually assumed to have a multivariate
normal distribution, ~; ~ N(0, X)

Y depends on few parameters defining the variance and
possibly the correlation for the random effects.

The likelihood based on GLMM is defined jointly based on
and X ; that is, the model parameters for which the likelihood
needs to be maximized is (3, X).

To estimate the model parameters, we can use numerical
methods such as quadrature method, Monte Carlo EM, and
penalized quasi-likelihood approximation.

In R, we can use the 1me4 package to fit a GLMM.



Logistic-normal model

A simple GLMM for binary outcome is logistic-normal

logit[P(yir = 117i)] = xaB+ i
Yi o~ N(Oa 02)

In this model, sharing the common +; in each group creates a
non-negative correlation for the response variable of
observations in that group.

The interpretation of § is different from what we had before.
In this model, (x;z — Xs)0 is the log odds ratio comparing
cases in the same group.

For cases in different group, the log odds ratio is

(xit — Xxns)8 + (vi — Yn), which of course depends on the
random effects. Moreover

(vi—n) ~ N(0,20%)
log-odds-ratio|8 ~ N((x;t—xh5)6,202)



Quadrature method

For simple models such as the logistic-normal model discussed
above, we can integrate out the random effects parameter.

In the logistic-normal, this leas to the following likelihood

exp(xitB +7i) .y, 1 1y 1 xp(—~2 /202 d~;
</oo1:1[1+e><p xtﬁ+m)]y[1+exp(x,-t/3+%')] ” Varo P(i/2e )d%>

The integral can be approximated using Gauss-Hermite
quadrature method.

Gauss-Hermite quadrature method uses the following
approximation
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Quadrature method

e You can use the ggz function from the R package npmlreg to
obtain the quadrature points g, and the corresponding
weights wp,.

o After approximating the integral (which eliminates ~;), we can
estimate 3 and ¢ using numerical methods such as
Newton-Raphson.



Monte Carlo EM

For problems with higher dimension, the EM
(expectation-maximization) algorithm would be more
appropriate.

The EM algorithm is widely used to solve complex maximum
likelihood problems, especially when dealing with missing data
and unobserved variables.

Here, the random effects are treated as missing data.

In each iteration, r, during the E-step the expectation is taken
with respect of (y]y, (", ().

In the M-step, we maximize the likelihood with respect of

(8, X) to obtain (31 x(r+1)),

The expectation in the E-step can be performed using Monte
Carlo method (MCEM).



Other mixture models

e The generalized linear mixed models we discussed so far is
based on normal mixtures of linear predictors.

e Non-normal mixture models could also be used to deal with
overdisperssion and in general for more flexibility.
e Some of these models are

e Beta-binomial
e Negative-binomial
e Zero-inflated Poisson



Beta-binomial
The beta-binomial model is used to handle the overdisperssion
issue for modeling binary response variables.

As before, the response variable is assumed to have
binomial(n, 8). However, in this model, 6 itself is assumed to
have beta(a, b) distribution.

The results is a beta mixture of binomials.

Beta is a conjugate prior for the parameter of binomial.
Therefore, the above model is an example of conjugate
mixture models.

By integrating 6 out, we obtain the following closed form

~ (m\Bla+y,b+n—y)
P = (7) 5500

where B is the Beta function.



Beta-binomial

e The mean and variance of this distribution are

E(y) = nu
(n—1)v
var(y) = ”M[l—ﬁ]
. a
Ay
B 1
YT a+b

e We can use the beta-binomial as the distribution of response
variable along with the following link function

logit(pi) = xiB



Negative binomial

e To deal with the overdispersion problem when modeling the
count data, we can assume y ~ Poisson(\) distribution as
before, but this time we also assume that A ~ Gamma(a, b).

e The result is a gamma mixture of Poisson distributions.

e We can marginalize over A. The results is the negative
binomial distribution for y.



Zero-inflated Poisson

When modeling count response variables, it is not uncommon
for the data to have excess zeros.

Lambert (1992), discussed the application of this model for
modeling defects in manufacturing. Another possible
application is number of accidents per year for each driver.

For such data, we can use zero-inflated Poisson (zip)
distribution for the response variable.

The probability mass function for this distribution is as follows

0+ (1—0)exp(—=A), fory=0

P(yl6, ) = { (1—0)exp(—A\)N/y!, fory=12,..



Zero-inflated Poisson

e The above model is in fact a mixture of a Poisson(\)
distribution and a point mass at 0. Or alternatively,

P(y|0,\) = 6Poisson(0) + (1 — #)Poisson(\)

e Model parameters (6, A) can depend on some covariates as
follows

/ogit(9,-) = x;f0
log(\i) = xiv



Zero-inflated Poisson

To obtain the MLE of 8 and ~, we can use EM algorithms
with data augmentation.

Data augmentation refers to methods where we increase the
dimensionality of the data by introducing latent variables.

While increasing the dimensionality might seem
counter-intuitive, in many situations, this makes the analysis
of complex data easier.

For the above model, we can introduce a latent variable
z; ~ Bernoulli(#) such that y; = 0 when z; = 1, and

yi ~ Poisson(\;) when z; = 0.

The complete data (i.e., observed and latent) is therefore
(y,2).

In R, you can use the zeroinfl function from the pscl
packages to fit a zip model.



