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Exponential family and GLM

• Recall that the single parameter exponential family has the
following general form:

P(y |µ) = exp{g(µ)T (y) + c(µ) + h(y)}

• For models with multiple parameters, we have

P(y |µ) = exp{
K∑

k=1

gk(µ)Tk(y) + c(µ) + h(y)}

where g , T , c , and h are vectors.

• We can change the parameter using the transformation
φk = gk(µ), and write the distribution in terms of natural
parameter φ:

P(y |µ) = exp{
K∑

k=1

φkTk(y) + c∗(φ) + h(y)}



Exponential family and GLM

• In GLM, the distribution of the random component is a
member of the exponential family.

• Therefore, what we previously learned about the exponential
family can be extended to GLM.

• The only caveat is that we need to make inference about
regression parameters β.

• To do this, we need to take the link function into account.

• We illustrate this for the Poisson regression model. All other
models follow a similar process.



Poisson model

• Consider the following Poisson model:

P(yi |µ) = e−µiµyii /yi !

= exp{log(µi )yi − µi − log(yi !)}

where φi = g(µi ) = log(µi ), T (yi ) = yi , c(µi ) = −µi , and
h(yi ) = − log(yi !).

• We have

φi = log(µi ) ⇒ µi = exp(φi )

c∗(φi ) = exp(φi )

Eφi [T (yi )] = E (yi ) = −∂c
∗(φi )

∂φi
= exp(φi ) = µi

varφi [T (yi )] = var(yi ) = −∂
2c∗(φi )

∂φ2i
= exp(φi ) = µi



Poisson model

• The score function with respect to φi can be obtained as
follows:

u(φi ) =
∂L(φi )

∂φi

= T (yi ) +
∂c∗(φi )

∂φi
= yi − exp(φi )

= yi − µi
• The total score function based on n observations is

u(φ) =
∑
i

yi − exp(φi ) =
∑
i

yi − µi

• As the result, the likelihood equation is:∑
i

yi − exp(φ̂i ) =
∑
i

yi − µ̂i = 0



Poisson model

• For Poisson regression model, we are of course interested in
regression parameters β.

• Therefore, we would like to write the score function in terms
of β.

• To do this, we fist need to specify the link function.

• Suppose we use the log link function

g(µi ) = log(µi ) = xiβ

• Since we have φi = g(µi ), we can write the link function as
follows:

φi = log(µi ) = xiβ

• The link function that transforms the mean to the natural
parameter is referred to as the canonical link.

• For Poisson model, the log link is the canonical link.



Poisson model

• Using the link function, we can now write the score function
in terms of β.

• For the j th element of β, we have

u(βj) =
∑
i

∂L(β)

∂βj

=
∑
i

∂L(φ)

∂φi

∂φi
∂βj

=
∑
i

[yi − exp(xiβ)]xij

• As the result, the likelihood equation in terms of βj is∑
i

[yi − exp(xi β̂)]xij = 0



Poisson model

• We can now easily obtain the Fisher information matrix in
terms of β.

i(βjβk) = E [− ∂
2L(β)

∂βj∂βk
]

= E [
∑
i

xijxik exp(xiβ)]

=
∑
i

xijxik exp(xiβ)

• In a matrix format

i(β) = x ′wx

where w is a diagonal matrix whose i th element is exp(xiβ).

• Moreover,

cov(β̂) = (x ′ŵx)−1



Logistic regression

• We can follow the same steps for models with binomial
outcome.

• For these models, the logit link is the canonical link

φi = g(µi ) = log(
µi

1− µi
) = xiβ

• Using the canonical link, we have

u(βj) =
∑
i

[yi − ni
exp(xiβ)

1 + exp(xiβ)
]xij

MLE :
∑
i

[yi − ni
exp(xi β̂)

1 + exp(xi β̂)
]xij = 0

i(β) = x ′wx ; where w is diagnoal

wii = ni
exp(xi β̂)

1 + exp(xi β̂)
× 1

1 + exp(xi β̂)

cov(β̂) = (x ′ŵx)−1



Ordinary linear regression

• We can follow the same steps for models with normally
distributed outcome.

• For these models, the identity link is the canonical link

φi = g(µi ) = µi = xiβ

• Using the canonical link, we have

u(βj) =
∑
i

[yi − xiβ]xij

MLE :
∑
i

[yi − xi β̂]xij = 0

i(β) = x ′wx ; where w is diagnoal

wii = 1/σ2

cov(β̂) = (x ′wx)−1 = σ2(x ′x)−1



GLM with canonical link

• In summary, when we use a GLM with canonical link, MLE
can be found as follows:∑

i

[yi − µ̂i ]xij = 0

x ′y − x ′µ̂ = 0

x ′y = x ′µ̂

• And the covariance matrix of MLE is

cov(β̂) = (x ′ŵx)−1

where ŵ is a diagonal matrix.



GLM with non-canonical link

• Of course, we do not have to use canonical link.

• In general, if we use the following link

m(µi ) = xiβ = ηi = φi

then, the score function becomes

u(βj) =
∑
i

∂L(β)

∂βj

=
∑
i

∂L(φ)

∂φi

∂φi
∂µi

∂µi
∂ηi

∂ηi
∂βj

• We can show that (Assignment 2) ∂φi/∂µi = 1/var(yi ).
Therefore,

u(βj) =
∑
i

∂L(φ)

∂φi

1

var(yi )

∂µi
∂ηi

xij



GLM with non-canonical link

• We can therefore write the general form of the score function
as follows regardless of whether the link function is canonical
or not:

u(βj) =
∑
i

[yi − µi ]xij
var(yi )

∂µi
∂ηi

where ∂µi/∂ηi depends on the link function we choose.

• As the result, the MLE can be found as the solution to the
following likelihood equation∑

i

[yi − µi ]xij
var(yi )

∂µi
∂ηi

= 0



GLM with non-canonical link

• It is easy to show that for a general link function, the Fisher
information matrix becomes

i(βj , βk) = E
(
− ∂2L(β)

∂βj∂βk

)
=

∑
i

xijxik
var(yi )

(∂µi
∂ηi

)2
i(β) = x ′wx

wii =

(∂µi
∂ηi

)2
var(yi )

• As before,

cov(β̂) = (x ′ŵx)−1



We will later discuss different methods to estimate β. For now, we
assume we know how to find β̂ and discuss model assessment.



Model assessment as a decision problem

• In analyzing data, our choice of model is not always obvious,
and we need to compare several competing models.

• Model comparison is more appropriately discussed as a special
case of decision problems.

• This is specially true in the Bayesian paradigm.

• Decision theory, in general, provides a mathematical
framework for making decisions under uncertainty.

• Here, our decision to accept model M1 over the alternative
model M0 depends not only on the posterior probability of M1

and M0, but also on the assumed loss function for such
decision.



Model assessment as a decision problem

• When a good loss function is not readily available, using a
simple 0-1 loss function (i.e., 0 if we identify the correct
model, and 1 if we fail to identify the correct model),
simplifies the decision rule such that M1 is accepted over its
corresponding alternative M0 if M1 has a higher posterior
probability compared to M0.

• In this case, higher posterior probability correspond to lower
posterior risk, and therefore, our decision rule is consistent
with the expected loss principle: “in deciding between different
rules, choose the one with the smallest posterior risk”.

• Commonly, researchers avoid expressing prior odds in favor of
either M1 or M0, and rely on likelihood alone.



Discrepancy measures

• Using likelihood, we can evaluate models based on the
distance of the data to alternative models.

• The deviance is a common measure of discrepancy (i.e., lack
of fit) between the data and the model (i.e., the lower
deviance, the better the model), and it is defined as follows

D(y , µ) = −2 log[p(y |µ)] = −2L(µ, y)

• When comparing different models, it is common to use the
minimum achievable deviance as the baseline. This
corresponds to the deviance of the saturated model where we
have one parameter for each observation, i.e., µ = y . The
deviance (scaled deviance in Agresti, and McCullagh and
Nelder) is then defined as

D(y , µ) = −2[L(µ, y)− L(y , y)]



Discrepancy measures

• Using deviance as a measure of model performance is
appealing partly due to its connection to the Kullback-Leibler
(KL) divergence measure.

• In the limit of large sample sizes, a model with the lowest K-L
divergence has the lowest expected deviance, and thus the
highest posterior probability.

• Therefore, when assuming 0-1 loss function, choosing the
model with the smallest deviance is consistent with the
expected loss principle.



Deviance for exponential family

• In a Frequentist framework, we use maximum likelihood, µ̂ to
estimate µ.

• Therefore, the deviance is in fact 2 times the difference
between the maximum log-likelihood achievable and the
maximum log-likelihood achieved using our model.

D(y , µ̂) = −2[L(µ̂, y)− L(y , y)]

• Note that in this case, the deviance is the same as likelihood
ratio statistic test comparing the fitted model to the saturated
model.

• In exponential family, the deviance would have the following
form:

D(µ̂, y) = −2
∑
i

{[g(µ̂)− g(yi )]T (yi ) + c(µ̂)− c(yi )}



Deviance for Poisson

• For Poisson distribution, we have

P(y |µ) = exp{log(µ)y − µ− log(y !)}
• The deviance is therefore,

−2
∑
i

{[log(µ̂)− log(yi )]yi − µ̂+ yi}

• We can write this as

2
∑
i

{log(
yi
µ̂

)yi + (µ̂− yi )}

• The second term is usually omitted (it would be zero for a
Poisson model with log link that includes intercept), and the
deviance reduces to another statistic called G 2

G 2 = 2
∑
i

{log(
yi
µ̂

)yi}



Deviance for Bernoulli

• Recall that for the Bernoulli distribution we had

P(y |µ) = exp{log(
µ

1− µ
)y + log(1− µ)}

• The deviance is therefor,

−2
∑
i

{[log(
µ̂i

1− µ̂i
)− log(

yi
1− yi

)]yi + log(1− µ̂i )− log(1− yi )}

• We can write this as

2
∑
i

{log(
yi
µ̂i

)yi + log(
1− yi
1− µ̂i

)(1− yi )}

• Of course, since the values for yi are either 0 or 1, it would be
better to write the deviance as

2
∑
i

{− log(µ̂i )I (yi = 1)− log(1− µ̂i )I (yi = 0)}



Deviance for Binomial and Poisson

• Alternatively, we can group the data (e.g., by discretizing
continuous random variables) and use the deviance based on
the binomial distribution to avoid observations with value of
yi equal to 0.

• The deviance for Binomial and Poisson [with log link and
intercept] would have the following form:

2
∑

Observed × log(Observed / Fitted)



Deviance for normal

• For the normal distribution, we have

P(y |µ, σ2) = exp{−(y − µ)2

2σ2
− log(2πσ2)

2
}

• The deviance D(µ̂, y) for a fixed σ is

−2
∑
i

{−(yi − µ̂)2/(2σ2)} =∑
i

{(yi − µ̂)2/(σ2)}

• Note that this is related to the residual sum of squares.

• In in Agresti, and McCullagh and Nelder,
∑

i{(yi − µ̂)2} is
called the deviance and

∑
i{(yi − µ̂)2/(σ2)} is called the

scaled deviance.



Pearson X 2 statistic

• For the normal distribution, the residual sum of squares is
equivalent to another commonly used measure of discrepancy
called generalized Pearson X 2 statistic defined in general as
follows:

X 2 =
∑
i

(yi − µ̂i )2/V (µ̂i )

where V (µ) is the estimated variance of yi given µ̂i .

• For the normal distribution, V (µ) = σ2; i.e., it is constant.

• for Binomial and Poisson, the original form of Pearson X 2 is
used

X 2 =
∑
i

(yi − µ̂)2/µ̂



Deviance in GLM

• For generalized linear models, we use the same definition for
deviance with µ̂i = g−1(xi β̂).



Deviance for nested models

• In generalized linear models, we are mainly interested in
comparing nested models as opposed to comparing a model of
interest to the saturated model.

• We denote the full model, which is a model that includes all
covariates, as M1.

• We denote the reduced model, which is the model similar to
the full model except that one or more covariates are removed
from the model, as M0.

• The deviance for M1 and M0 are

D1 = −2[L(µ̂, y ,M1)− L(y , y)]

D0 = −2[L(µ̂, y ,M0)− L(y , y)]

• The difference between the two deviance measures is

D0 − D1 = −2[L(µ̂, y ,M0)− L(µ̂, y ,M1)]



Deviance for nested models

• This difference is the amount of improvement in the model
due to the additional parameters included in M1.

• Also, not that the difference between deviance measures is the
same as likelihood ratio test statistic.

• The asymptotic null distribution of D0 − D1 is χ2 with df
equal to the difference between the number of parameters in
the two nested models.



Deviance for nested Poisson and Binomial

• When comparing nested binomial and Poisson [with log link
and intercept] models, the deviance has the following form:

2
∑

Observed × log(Fitted using M1 / Fitted using M0)



Residuals

• While deviance and Pearson X 2 measure the overall
discrepancy of the model, we could look at their individual
components for each observation separately to identify
suspicious values responsible for lack of fit.

• Using the above two statistics, we define two types of
residuals: 1) deviance residuals, and 2) Pearson residual.



Deviance residuals

• Deviance residual for each observation is defined as

dri = sign(yi − µi )
√

di

where di is defined such that

D(µ̂, y) =
∑
i

di

• For example, for Poisson distribution,

di = 2{yi log(
yi
µ̂i

) + (µ̂i − yi )}



Pearson residual

• Pearson residual is simply defined as

ei =
yi − µ̂i√
V (µi )

where V (µi ) is the estimated variance of yi given µi

ei =
yi − µ̂i√

ˆvar(yi )

• Note that

X 2 =
∑
i

e2i



Leverage and standardized Pearson residual

• Instead of dividing the residuals by their standard deviation,
the above Pearson residual divides them by the estimated√
var(yi ).

• To obtain the standardized Pearson residuals, we need to
divide the residuals by their asymptotic standard errors,√
var(yi − µ̂i ), which can be obtained by taking the square

root of the diagonal elements of cov(y − µ̂):

cov(y − µ̂) = [cov(y)]1/2[I − H][cov(y)]1/2

where

H = w1/2x(x ′wx)−1xw1/2

and w as we discussed before is a diagonal matrix with
wii = (∂µi/∂ηi )

2/var(yi ).



Leverage and standardized Pearson residual

• The diagonal elements of our estimate of H for each
observation is called the leverage, denoted as ĥi , for that
observation. The greater an observations’s leverage, the
greater its potential influence on the fit.

• The leverages fall between 0 and 1, and sum to the number of
parameters in the model.

• As we can see, the value of ĥi depends on the value of
covariates as well as the model fit. Therefore, just having an
extreme value for an observation does not necessarily mean
that the observation has high leverage.

• The standardized Pearson residual is then defined as

ri =
yi − µ̂i√

var(yi )(1− ĥi )

=
ei√

1− ĥi


