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Linear models

• Linear models have been extensively used in practice.

• They include a large class of models such as ANOVA and
linear regression.

• They owe their popularity mostly to the fact that they are
easy to interpret. (The computational aspect was also used to
be a factor in the past, but it is less crucial these days.)

• We use these models to capture the relationship between the
response variable, y , and a set of explanatory variables
(predictors, covariates, ...), x .

• What does it mean for two random variables to be related?

• When we talk about relationship between y and x , we usually
think about the change in the conditional distribution of y
given x , i.e., P(y |x), as x changes.



Relationship

• Regression models are based on the assumption that the only
change in the conditional distribution we are interested in is
the change in the expectation of the distribution, E (y |x)
(note that this by itself imposes limitations on the type of
relationships we can detect).

• In general, this means E (y |x) = g(x), and the relationship
between x and y exists if g(x) is not a constant function.

• In this setting, g(x) also defines the type of relationship
between x and y .



Linear regression models

• For linear regression models, g(x) is a linear function in terms
of model parameters, β.

• Recall that a function f : Rn → Rm is linear if

- f (z + t) = f (z) + f (t), ∀z , t ∈ Rn

- f (az) = af (z), ∀z ∈ Rn, ∀a ∈ R
• The function g(x) has the following general form:

g(x) = xβ

where x is a n × (p + 1) matrix (the first column is the
constant 1, and the remaining p columns are the observed
value of p explanatory variables)

• β is a (p + 1)-vector of parameters. The first element of this
vector is the intercept, and the remaining parameters are
called regression coefficients.



Linear regression models

• In regression terminology, ε = y − g(x) is called the error,
which is a random variable assumed to be independent of x .

• We can therefore write the relationship between the response
variable y and the explanatory variables x as follows:

y = g(x) + ε

• For the observed data, we usually refer to the corresponding
values of ε as residuals.



Least squares method

• There are many ways to estimate β, one of the most popular
approach is the method of least squares, which is in general
an optimization problem with no constraints

minimize||y − xβ||22

• Recall that `2-norm (Euclidean norm) is defined as

||z ||2 = (|z1|2 + |z2|2 + ...+ |zn|2)1/2

In general, the `p norm (p ≥ 1) is as follows:

||z ||p = (|z1|p + |z2|p + ...+ |zn|p)1/p

• ||y − xβ||22 =
∑n

i=1(yi − xiβ)2 is called residual sum of
squares, RSS , which is a quadratic function of regression
parameters, RRS(β).



Least squares method

• To find the value of β that minimizes RSS(β), we set the first
derivative to zero,

∂RRS

∂β
= −2x ′(y − xβ)

∂2RSS

∂β∂β′
= 2x ′x

• To have a unique solution for β, x ′x needs to be positive
definite (x has to be full column rank).

• If this holds, the unique solution is obtained by setting the
first derivative to zero

−2x ′(y − xβ) = 0

β̂ = (x ′x)−1x ′y



Geometrical view of least squares

• The least squares estimate for the response variable is

y = x β̂ = x(x ′x)−1x ′y

• Consider the n observed data points as vectors in Rn

• The column vectors of x span a subspace of Rn

• Denote the linear subspace of Rn as L(x)

• Each point in this linear subspace can be presented as a linear
function of column vectors x0, x1, ..., xp

L(x) = {b0x0 + b1x1 + ...+ bpxp|b0, b1, ..., bp ∈ R}

• Or in matrix form

L(x) = {xb|b ∈ Rp+1}



Geometrical view of least squares

• The least squares method provides the point in L(x), denoted
as ŷ = x β̂, that has the closesst Euclidean distance to y ∈ Rn.

• This point is obtained by the orthogonal projection of y onto
L(x) using the projection matrix H = x(x ′x)−1x ′.

x1

x2

y

!



Geometrical view of least squares

• The projection matrix, H, is also called the hat matrix since
puts a hat on y .

• H is symmetric (H ′ = H) and idempotent (H2 = H).

• I − H is also symmetric and idempotent. This is the
projection matrix onto L⊥(x), where

ε = (I − H)y



Geometrical view of least squares

• In other words, x ′ε = 0; that is, the residual vector is
independent of x , and it is orthogonal to L(x).

• Note that we are in fact decomposing y ∈ Rn onto two
orthogonal spaces

y = xβ + (y − xβ)
space L(x) L⊥(x)

dimension p + 1 n - p - 1



Prediction

• For a future observation whose values of explanatory variables
are x̃ , the predicted value of the response variable is

ỹ = x̃ β̂ = x̃(x ′x)−1x ′y

• What is the 95% confidence interval for ỹ?



Limitations of least squares

• In general, the least squares method would not work if the
column vectors of x are not linearly independent (i.e., there
are redundancy), or p > n (more covariates than
observations).

• In the first case, we can of course remove the redundant
covariate. In the second scenario, we can use regularization.



Sampling distribution of parameters

• So far, we have not made any assumption regarding the
distributional form of the random variables (more specifically
for the response variable since x is assumed to be fixed).

• We did not need to make such assumptions if all we wanted
was point estimates of regression parameters.

• Usually, we want more than point estimates; we, for example,
want to know about variability (e.g., standard error) of the
estimates.



Sampling distribution of parameters

• For this, we assume that x are fixed at the observed value and
y ’s are uncorrelated with a constant variance; i.e.,
cov(y |x) = σ2I (note that we have not fully specified the
distribution yet).

• As the result,

cov(β̂) = (x ′x)−1x ′[(x ′x)−1x ′]′σ2

= (x ′x)−1x ′x(x ′x)−1σ2

= (x ′x)−1σ2

• We also have

E (ε) = E (y)− E (E (y |x)) = E (y)− E (y) = 0

var(ε) = σ2



Estimating σ

• σ itself is almost always unknown and needs to be estimated
based on the data.

• To estimate σ, we usually use the following unbiased estimator

σ̂2 =

∑n
i=1(y − xi β̂)2

n − p − 1

We use n − p − 1 instead of n to make the estimate unbiased.

• The fit of the model can be measured based on σ̂2.

• For this, we use R2 = 1− σ̂2

S2
y

, which is the fraction of variance

of response variable explained by the model. Here, S2
y is the

observed variance of y .



Inference

• Note that while we could provide a measure of variability for
the estimator of regression parameters, to perform statistical
inference about these parameters, we need to make more
assumptions about the distribution of y .

• We assume that

y |x , β, σ ∼ N(xβ, σ2I )

• Therefore,

ε|σ ∼ N(0, σ2I )

• As the result, we have

β̂|σ ∼ N(β, (x ′x)−1σ2)

nσ̂2

σ2
∼ χ2(n − p − 1)

• Moreover, we can show that β̂ and σ̂2 are independent.



Inference

• Using the sampling distribution of β, we can obtain the
confidence interval for a given confidence level c.

• For each individual βj (corresponding to xj), the standard
error is the square-root of the i th element of the covariance
matrix (x ′x)−1σ2.

• The c level confidence interval for βj can be obtained as

β̂j ± t∗c se(β̂j)

where t∗c is the corresponding t-critical value based on
t(n − p − 1) distribution.



Inference

• To test the null hypothesis H0 : βj = 0, we can use the
following T -statistics:

T =
β̂j

se(β̂j)

• Under H0, T has a t(n − p − 1) distribution.

• If we want to test the null hypothesis with respect to a group
of coefficients, i.e., H0 : β1 = β2 = ..., βs = 0, we use the F
statistic

F =
(RSSr − RSS)/s

RSS/(n − p − 1)
∼ F(s, n − p − 1)

where RSSr is the residual sum of squares for the reduced
model.



Gauss-Markov Theorem

• Suppose var(y) = σ2I .

• Let β̃ = cy be an unbiased estimator of β.

• Then, the variance of linear functions of β̃ is at least as great
as the variance of linear functions of β̂

• That is, the ordinary least squares estimate is the best linear
unbiased estimator (BLUE) of β.



Likelihood function

• An alternative approach for estimating the parameters of
linear regression model (an in general, all statistical models) is
based on likelihood function.

• To find the likelihood function, we first need to assume a
probability distribution for the data, i.e., P(y |θ), where θ are
unknown parameters.

• This distribution is based on our opinion regarding the
mechanism that generates the data.

• The likelihood function is defined by plugging-in the observed
data in the probability distribution and expressing it as a
function of model parameters, i.e., f (θ, y).



Likelihood function

• For linear regression models, the data include the response
variables y and the explanatory variables x . Therefore, in
general we need to specify P(x , y).

• However, since x are assumed to be fixed at their observed
value, P(x) = 1, the joint distribution reduces to the
conditional distribution of y |x .

P(x , y) = P(x)P(y |x) = P(y |x)

• Therefore, we only need to specify the conditional distribution
of y given x .



Likelihood function

• We assume this P(y |x) is a normal distribution.

• As we mentioned, we model the expectation of this
distribution as a linear function of x , i.e., E (y |x) = xβ, and
we assume the variance of this distribution is σ2 (which is
independent of x and β).

• Therefore, assuming that the observations are independent,
we have

y |x , β ∼ (2πσ2)−n/2 exp(−
∑n

i=1(yi − xiβ)2

2σ2
)

• The likelihood function is specified by plugging-in the observed
values of x and y in the probability distribution and expressing
the result as a function of β (for now, we assume σ is fixed).

f (β) = (2πσ2)−n/2 exp(−
∑n

i=1(yi − xiβ)2

2σ2
)



Maximum likelihood estimation

• To estimate model parameters, we can find their values such
that the probability of the observed data is maximum.

• For this, we maximize the likelihood function with respect to
model parameters. Of course, it is easier to maximize the log
of likelihood function, i.e., L(β) = log(f (β)).

• This in general is convex optimization assuming that the
function is log-concave in β for a fixed x and y .

• To maximize the likelihood function, we obviously need to
focus on the part of the function that is related to the
parameter (this part of the likelihood function is called kernel).

• For linear regression models,

L(β) = −
n∑

i=1

(yi − xiβ)2 − log(2σ2)



Maximum likelihood estimation

• For simplicity, we can also remove all the constant (not
related to the parameters) parts;

L(β) = −
n∑

i=1

(yi − xiβ)2

• Now we can simply set the first derivative to zero (likelihood
equation) to obtain the maximum likelihood estimate

∂L(β)

∂β
= 2

n∑
i=1

xi (yi − xiβ)

x ′(y − xβ) = 0

β̂ = (x ′x)−1x ′y

• In this case, MLE is the same as the least squares estimate.



Maximum likelihood estimation

• Under weak regularity conditions, the MLE demonstrates
attractive properties as n→∞: the asymptotic distribution of
MLE is normal, MLE is asymptotically consistent and efficient.

• Under some regularity conditions (Rao, 1973), the asymptotic
covariance matrix for MLE, cov(β̂) is the inverse of Fisher
information matrix, i(β), where the (j , k) element of i(β) is

cov [
∂L(β)

∂βj
,
∂L(β)

∂βk
]

which is equal to the following (assuming that we can take
differentiate twice inside integral)

−E
( ∂2L(β)

∂βj∂βk

)



Maximum likelihood estimation

• This graphs shows the log-likelihood function and the location
of MLE for randomly simulated data.
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Wald, score, and likelihood ratio tests

• Wald, score, and likelihood ratio are three standard tests
based likelihood function to perform statistical inference.

• Consider the null hypothesis H0 : β = β0, where β0 is the
value of β under the null.

• Due to large-sample normality of MLE, we have

w =
β̂ − β0

SE (β̂)

where w has an approximately N(0, 1) distribution.

• This type of statistics where we use the standard error of the
estimator (as opposed to standard deviation of the null
distribution) is referred to as Wald statistic.



Wald, score, and likelihood ratio tests

• The multivariate version of this statistic is

w2 = (β̂ − β0)′[cov(β̂)]−1(β̂ − β0)

• Asymptotically, w2 has χ2 distribution with df equal to the
rank of cov(β̂).



Wald, score, and likelihood ratio tests

• Score test on the other hand is based on the slope at β0.

• This is in fact the value of score function, u(β) = ∂L(β)/∂β,
evaluated at β0.

• The dashed line in the above graph shows the slope at β0 = 0.

• As we expect, the further β0 is away from the MLE, the larger
this slope becomes in absolute value (i.e., we can reject the
null hypothesis more confidently).



Wald, score, and likelihood ratio tests

• The score statistic is obtained by dividing the u(β0) by its
corresponding standard error,

√
i(β0)

• Therefore,

s =
u(β0)√
i(β0)

∼ N(0, 1)

• Alternatively,

s2 =
[u(β0)]2

i(β0)
∼ χ2(1)



Wald, score, and likelihood ratio tests

• For the multi parameter case, the score test has the following
form (note that in general, E (u) = 0 and cov(u) = i(β) )

u′(β0)i−1(β0)u(β0)

This has an asymptotic χ2 distribution with the the df equal
to the number of constraints.



Wald, score, and likelihood ratio tests

• The advantage of score test is that we do not need to
estimate the maximum likelihood estimate.

• The third test statistic is the likelihood ratio test.

• Here, we maximize the likelihood function under H0 and under
H0 ∪ Ha (where Ha is the alternative hypothesis).

• The ratio of these two maximums is called the likelihood ratio
test. In general,

LR =
supθ∈Ω0

f (θ)

supθ∈Ω f (θ)

where Ω0 is the parameter space under to H0.



Wald, score, and likelihood ratio tests

• In general, the likelihood ratio cannot exceed 1, since the
maximized value under H0 would be less than or equal to the
maximum value under H0 ∪ Ha.

• For hypothesis testing, we have −2 log(LR) = −2(L0 − L1)
has asymptotic χ2 distribution with the degrees of freedom
equal to the difference between the dimension of parameter
space under H0 ∪ Ha and under H0.

• Here L1 is the maximum value of log-likelihood under H0 ∪Ha,
and L0 is the maximum value of log-likelihood under H0.

• For the simple linear regression, when testing the null
hypothesis, H0 : β = β0, L1 = L(β̂) and L0 = L(β0).

• L1 and L0 (assuming H0 : β = 0) are shown in the above
figure.


