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Introduction

• We saw that for for modeling more complex data (such as
grouped observations and variability in the response variable
beyond what explained by simple models) we used models
where parameters where regarded as random with their own
distribution.

• Such models fit more naturally in the Bayesian framework.

• This lecture provides a brief preview of Bayesian models in the
context of generalized linear models.

• A high level understanding of Bayesian methods is assumed.



Bayesian Linear regression models

• Consider the following ordinary liner regression model:

y |x , β, σ2 ∼ N(xβ, σ2In)

• y is a column vector of n observations for the outcome
variable, x is an n× (p + 1) matrix of observed predictors with
its first column being all 1’s.

• β is a column vector with p + 1 elements (β0, β1, ..., βp)
where β0 is the intercept and βj represents the effect of the
j th predictor xj on y .

• σ2 is the conditional variance of y |x , β.

• Therefore, E (yi |x , β) = β0 + β1xi1 + βpxip and
Var(yi |x , β) = σ2. That is yi ’s are conditionally independent
with the same variance σ2.



Bayesian linear regression models

• To perform Bayesian analysis, we need to obtain the posterior
distribution of parameters based on the model and the prior.

• We discussed the model above

y |x , β, σ2 ∼ N(xβ, σ2I )

• A common prior for parameters are

σ2 ∼ Inv-χ2(ν0, σ
2
0)

β|µ0,Λ0 ∼ Np+1(µ0,Λ0)

where µ0 = (µ00, µ01, ..., µ0p) and Λ0 = diag(τ2
0 , τ

2
1 , ..., τ

2
p ).

• µ0 is typically set to zero (unless we believe otherwise), Λ0

should be sufficiently broad.



Posterior distributions

• We now need to find the posterior distributions of β and σ2.

• We first consider situations where p + 1 < n and the rank of x
is p + 1 (these conditions are not required in Bayesian analysis
when we use informative prior).

• First do the following transformation: multiply y by (x ′x)−1x .

• Recall that if Y ∼ N(µ,Σ) then AY ∼ N(Aµ,AΣA′).
Therefore,

(x ′x)−1x ′y ∼ N((x ′x)−1x ′xβ, (x ′x)−1x ′ σ2I x(x ′x)−1)

(x ′x)−1x ′y ∼ N(β, (x ′x)−1σ2)



Posterior distributions of β

• Now set z = (x ′x)−1x ′y and regard it as the observed data.

• For a given σ2, this reduces to a simple multivariate normal
model with unknown mean, β, and conjugate prior.

z ∼ N(β,Σz) Σz = (x ′x)−1σ2

β ∼ N(µ0,Λ0)

• The posterior distribution of β|z , σ2 is

β|z , σ2 ∼ N(µn,Λn)

µn = (Λ−1
0 + Σ−1

z )−1(Λ−1
0 µ0 + Σ−1

z z)

Λ−1
n = (Λ−1

0 + Σ−1
z )

• Using this approach, we can see that, similar to the normal
model, the posterior expectation is a weighted average
between prior and the maximum likelihood estimate (assuming
it exists).



Posterior distributions of β

• Notice that we could obtain µn and Λn as follows:

µn = (x ′∗Σ
−1
∗ x∗)

−1x ′∗Σ
−1
∗ y∗

Λn = (x ′∗Σ
−1
∗ x∗)

−1

x∗ =

(
x

Ip+1

)
y∗ =

(
y

µ0

)
Σ∗ =

(
σ2In 0

0 Λ0

)
• Looking at it this way, the prior plays the role of extra data

with xβ=Ip+1 , yβ = µ0 and the covariance Λ0. Everything else
remains as before.

• The above approach works even if n < p + 1.



Posterior distributions of σ2

• Now, we want to obtain the posterior distribution of σ2

• Given β, again we have a simple normal model with
observations yi with known mean (xβ), unknown variance σ2,
and conditionally conjugate prior Inv-χ2(ν0, σ

2
0).

• As we saw before, the posterior distribution of σ2|x , y , β is
also scaled Inv-χ2

σ2|x , y , β ∼ Inv-χ2(ν0 + n,
ν0σ

2
0 + nν

ν0 + n
)

ν =
1

n

n∑
i=1

(yi − xiβ)2



Noninformative prior distribution

• If we do not have an informative priors, we can instead use
the following noninformative prior for regression models
(assuming n > p + 1 and the rank of x is p + 1)

p(β, σ2|x) ∝ σ−2

• For β this is equivalent (in limit) to taking all τ2
j →∞. The

posterior distribution therefore becomes

β|y , σ2 ∼ N(β̂,Vβσ
2)

β̂ = (x ′x)−1x ′y

Vβ = (x ′x)−1

• The posterior distribution of σ2 also has a closed form

σ2|x , y , β̂ ∼ Inv-χ2(n − p − 1, s2)

s2 =
1

n − p − 1

n∑
i=1

(yi − xi β̂)2



Logistic regression model

• Recall that the likelihood for logistic regression models in
terms of β is as follows:

f (β) ∝
∏
i=1

( exp(α + xiβ)

1 + exp(α + xiβ)

)yi( 1

1 + exp(α + xiβ)

)ni−yi
• Now similar to the ordinary linear regression model, we need

to specify a prior distribution for α and β.

• Note that we separated the intercept here to emphesize that it
should have it’s own separate prior even if we decide to use a
common prior for regression coefficients.



Logistic regression model

• It is common to set the prior for regression coefficients to
βj ∼ N(µ0j , τ

2
0j). We mostly set µ0j = 0 unless we believe

otherwise. For α, we can use α ∼ N(0, τ2
α)

• Unlike the ordinary linear regression model, this would not be
a conjugate prior, so we cannot use the Gibbs sampler directly.

• Alternatively, we might want to standardize the covariates to
have mean zero and standard deviation 1, and use
βj ∼ N(0, τ2

β); i.e., one parameter τβ for all covariates.



Poisson model

• For the Poisson model, the likelihood in terms of β is obtained
as follows:

f (β) ∝
n∏
i

exp[− exp(α + xiβ)][exp(α + xiβ)]yi

• We again use a nonconjugate normal N(µ0j , τ
2
0j) prior for βj .

As before, we set µ0 = 0 unless we believe otherwise.

• Again, we might want to standardize the covariates to have
mean zero and standard deviation 1, and use βj ∼ N(0, τ2

β)
prior.

• The posterior sampling for β’s can be performed using the
Metropolis algorithm with Gaussian jumps, or more advanced
method such as the slice sampler.



Multinomial logistic model

• For the multinomial logistic model, we use a generalization of
the link function we used for the binary logistic regression

µik =
exp(αk + xiβk)∑K

k ′=1 exp(αk ′ + xiβk ′)

• The likelihood in terms of β is as follows:

f (β) ∝
n∏

i=1

K∏
k=1

( exp(αk + xβk)∑K
k ′=1 exp(αk ′ + xβk ′)

)yik
• Here βk is a column vector of p parameters corresponding to

class k.



Setting up priors for the multinomial logistic model

• As before, we use normal priors for β’s. But there is an issue
we need to address.

• The above representation of multinomial logistic model is
redundant since we only need K − 1 parameters (say,
µ2, ..., µK ). The first one would be determined based on these
K − 1 parameters since

∑K
k=1 µik = 1, i.e.,

µi1 = 1−
∑K

k=2 µik .

• Without this constraints, we can have different set of
parameter values giving the same probability. For example,

ηi1 = 2, ηi2 = −3, ηi3 = 0.5⇒

p(yi = 1|η) =
exp(2)

exp(2) + exp(−3) + exp(0.5)
= 0.8131

ηi1 = 3, ηi2 = −2, ηi3 = 1.5⇒

p(yi = 1|η) =
exp(3)

exp(3) + exp(−2) + exp(1.5)
= 0.8131



Setting up priors for the multinomial logistic model

• In the above example, while the values of η’s changed the
probabilities didn’t. This is because we kept the difference
between η’s as before (we added 1 to all η’s). Therefore, for
the multinomial logistic model what really matters is the
difference between β’s from one class to another.

• In statistics, when distinct parameter values give the same
model, we say the model in unidentifiable

• In classical statistics, this is bad, and to avoid this issue for
the multinomial logistic model, we could set one set of
parameters (usually either β1 or βK ) to zero.



Setting up priors for the multinomial logistic model

• We do not do this in the Bayesian statistics since it would
become difficult to set up symmetric priors (i.e., when in prior
all classes have equal probability) based on β.

• If, for example, we assume all categories are equally probable
in prior and use N(0, τ2

β) for all β’s, after transformation
according to the identifiable multinomial logistic model, the
probabilities would not be the same (write down the
probability of all classes according to the identifiable model to
see this).

• For the multinomial logistic model, we use the unidentifiable
setting (no β will be set to zero).

• This does not matter if our goal is prediction.

• If our goal is inference, we can use the posterior distribution
of one of the β’s (say β1, i.e., the first column) as the
baseline and subtract other β’s (columns 2 to K) from it to
make it identifiable.



Example: Snoring and heart disease

• To show how we can set up a unidentifiable model and still
perform inference, we use the the snoring and heart disease
dataset for the first example (discussed in Agresti, 2002).

• Although the response variable is binary (heart disease/no
heart disease), we use a multinomial logit model.

• There would be two regression coefficients now, β11andβ12,
which are the snoring effects on Class 1 (no heart disease) and
Class 2 (heart disease).



Example: Snoring and heart disease

• Because of non-identifiablity the parameters would not
converge.

• However, the actual values of β11 and β12 are not important,
rather, the difference between these parameter (which is
identifiable parameter in the model) is what matters.

• The difference as we can see converges.
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Hierarchical Bayesian models

• Hierarchical Bayesian models are one of the main reasons
Bayesian methods have gained increasing popularity.

• To understand these models, we need to understand the
concept of exchangeability.



Exchangeability

• Informally, a set of observations y = (y1, ..., yn) are
exchangeable if in constructing their joint distribution, we
believe that the indices are uninformative.

• Exchangeability is important since according to deFinetti’s
representation theorem if we can judge an infinite sequence of
observations to be exchangeable, we can model any subset of
them as independent and identically distributed (iid) samples
from a parametric distribution p(y |θ), and there is a prior
distribution for p(θ).

• Moreover, there exists a prior probability distribution p(θ)
over the parameters of the model such that we can find the
unconditional (or marginal) joint distribution of observations.



Exchangeability

• Therefore, we have

P(y |θ) = P(y1, y2, ..., yn|θ) =
n∏

i=1

P(yi |θ)

P(y) = p(y1, y2, ..., yn) =

∫
Ω

n∏
i=1

P(yi |θ)p(θ)dθ

• Note that the above theorem is an existence theorem. We still
need to specify the form of these distributions.



Within-group exchangeability

• Now, assume that we are modeling the housing price, yi , for a
sample 4 bedroom houses in the US.

• We might regard this sample as exchangeable if all we know is
the price.

• However, if we also know in which state the house is located,
it might be more appropriate to assume exchangeability only
within each group since the age distribution would probably
be different from one state to another.

• In this case, the price is represented by yit , where i is an index
for the states.

• Now the index is not completely uninformative anymore, since
we expect different distributions for different i .

• However, we can still use the above theorem and consider
each sub-sample, (i.e., for a fixed i) as iid given their own
specific parametric model with parameter θi .



Within-group exchangeability

• For the above example, for each state j we have

P(yi .|θi ) = P(yi1, yi2, ..., yini |θj) =

ni∏
i=1

P(yit |θi )

• Therefore, the joint distribution of all samples is

P(y |θ) =
n∏

i=1

ni∏
t=1

P(yit |θi )

• Assuming a normal N(µj , σ
2
j ) for each state, we have

P(y |µ, σ2) =
n∏

i=1

ni∏
t=1

N(yit |µi , σ2
i )

• We can assume all states have the same variance

P(y |µ, σ2) =
n∏

i=1

ni∏
t=1

N(yit |µi , σ2)



Hyperprior

• Now, as we mentioned before, there exists a prior distribution
over parameters, θ1, θ2, ..., θn.

• Similar to y , if we could imagine the infinite sequence of such
θ’s being exchangeable, we can regard them as being iid
samples given the prior distribution p(θ|φ) with the parameter
φ

P(θ|φ) = P(θ1, ..., θn|φ) =
n∏

t=1

P(θi |φ)

• φ is referred to as hyperparameter, which since it is unknown,
we need to express our uncertainty using a probability
distribution p(φ).

• Additionally, the joint prior distribution p(φ, θ) = p(φ)p(θ|φ)
• And the posterior distribution of parameters is

P(φ, θ|y) ∝ P(φ, θ)P(y |φ, θ) = P(φ)P(θ|φ)P(y |θ)



Hyperprior

• Note that given θ (i.e., if we fix θ), y becomes independent of
φ.

• For the housing prices example, we can assume the following
priors

σ2 ∼ Inv-χ2(ν0, σ
2
0)

µi ∼ N(µ0, τ
2
0 )

µ0 ∼ N(M,V 2)

• Here, we are assuming that τ2
0 is fixed and only µ0 is the

hyperparameter.

• Moreover, we are assuming that the variance σ2 is the same
for all states, therefore, it is not hierarchical.

• In general, we can set up a hierarchical for some parameters
and and not for others. We usually do this if it makes sense
and results in a rather simpler model.



Hyperprior

• This graph shows the relation between the distribution of the
national average and state specific distributions for three
states.

−5 0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 
Distribution of national average
The average of three different states
State specific distribution of housing prices



Hierarchical Bayesian GLM

• We can use hierarchical priors for generalized linear models.
• Recall that we mentioned the possibility of using
βj ∼ N(0, τ2

β) prior, where all regression coefficients are

controlled by one parameter τ2
β .

• Instead of fixing τ2
β at a constant value, we can regard it as an

unknown parameter with its own prior distribution.
• In this case, τ2

β is the hyperparameter and its prior is the
hyperprior.

• For example, we can use the following hyperprior for τ2
β :

τ2
β ∼ Inv-Gamma(a0, b0)

• In this setting, if the covariates are not relevant to the
response variable, instead of forcing the individual parameters
βj to become small, the model shrinks τ2

β (which is only one
parameter) towards zero, which in turns results in shrinkage of
β’s towards zero.



Hierarchical Bayesian GLM

• This is specially useful in multinomial logit models, where we
can use one hypeparameter, τj for all the coefficients related
to βj1, ..., βjK related to covariate xj .

• This way, if a covariate is irrelevant, the corresponding
hyperparameter will tend to be small, forcing the coefficients
for that covariate be near zero.

• This method is called Automatic Relevance Determination
(ARD), and was suggested by Neal (1996).



Model evaluation based on deviance

• Previously, we mentioned that with a 0-1 loss function, we
choose the model with a higher posterior probability.

• It turns out (as discussed in Appendix B in Gelman et. al.,
2002), the model with the highest posterior probability would
have the lowest KL (Kullback-Leibler) information, and as the
result the lowest expected deviance.

• As we discussed before, deviance, which is defined as
D(y , θ) = −2 log(P(y |θ)), is a measure of discrepancy (i.e.,
lack of fit, therefore lower deviance is better).



Model evaluation based on deviance

• The deviance measure as described above, depends on both y
and θ.

• If we want to use a measure that depends only on y , we can
integrate the deviance over the posterior distribution

Davg (y) = E (D(y , θ)|y)

• We can estimate this by using simulated samples from the
posterior distribution

D̂avg (y) =
1

L

L∑
`=1

D(y , θ`)



Model evaluation based on deviance

• Deviance is especially used when we compare nested models;
that is, when we are deciding whether to include the predictor
x in the model or not, i.e.:

M0 : y = β0 + ε

M1 : y = β0 + β1x + ε

• However, we could decrease deviance by arbitrarily increasing
the complexity of model, for example, by adding more
predictors into the model.

• In general, it is recommended to use more complex models
only when they result in substantial (i.e., statistically
significant) improvement in performance (i.e, substantial
decrease in deviance).

• The above principle is widely known as Occam’s razor stating
that “entities should not be multiplied beyond necessity”, or
in simple words: “everything equal, we should use the simplest
solution”.



Deviance Information Criterion (DIC)

• When we are relying on deviance, we need a measurement
that accounts for the trade-off between complexity and
goodness-of-fit.

• In a decision model, this could be done by using a loss
function that penalizes larger models (i.e., everything equal,
we favor simplicity).

• A simple measure, which does this automatically, is called
deviance information criterion (DIC) defined as follows
(Spiegelhalter et. al. 2002):

DIC = D̂avg (y) + pD

• pD is called effective number of parameters and is a measure
of complexity

pD = D̂avg (y)− Dθ̂(y)



Deviance Information Criterion (DIC)

• Here, Dθ̂(y) is the deviance when we first average posterior
parameters and then calculate deviance (as opposed to
integrating deviance over posterior parameters).

• Therefore, we can obtain DIC as follows:

DIC = 2D̂avg (y)− Dθ̂(y)

• Caution! Although it is easy to use DIC for model evaluation,
remember that the best approach is still to use problem
specific loss function, and based on the posterior risk, to find
the optimal decision rule. Use DIC only when you don’t have a
better loss function or you simply want to report your findings.



Example: Titanic survival

• Recall the Titanic dataset.

• We consider two nested logistic regression models: Model M0,
which does not include the social class predictor (i.e., only the
intercept, age and gender are included), and Model M1, which
includes the social class as well as other variables.

• We fit these two models separately and present the results in
the following table

Model D̂avg Dθ̂ pD DIC

M0 2331.6 2329.1 2.5 2334.1
M1 2216.2 2210.1 6.1 2222.4

• As we can see, M1 has a smaller DIC, and therefore, provides
a better fit. This could be interpreted as statistical
significance of social class.


