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Numerical methods for finding MLE

• So far, we have discussed generalized linear models in the
context of exponential families.

• We saw that the likelihood equation for these models takes a
simple form, especially if we use canonical links.

• However, the likelihood equations are in general nonlinear in
β, and as the result, numerical methods are needed to find

ˆbeta.

• In what follows, we will discuss some of these methods.



Newton-Raphson method

• Newton-Raphson method is a general purpose iterative
algorithm for solving nonlinear equations.

• We would use this method to solve likelihood equations.

• Denote the log-likelihood as L(β). Our objective is to find the
value of β for which L(β) is maximized.

• We start with the single parameter case.



Newton-Raphson method

• Start with an initial guess β(0).

• Iteratively update your guess as follows.

• At each iteration n, use the Taylor series expansion (up to the
quadratic term) around the current value of β(n)

L(β) ' L(β(n)) + L′(β(n))(β − β(n)) +
1

2
L′′(β(n))(β − β(n))2

• Now take the derivative of L(β), set it to zero (this would be
the likelihood equation for the approximate function), and
solve for β.

• Regard the answer as your next guess β(n+1):

β(n+1) = β(n) − L′(β(n))

L′′(β(n))

• Continue the above process until the algorithm converges.



Newton-Raphson method

• We can rewrite the equation for our next guess as

β(n+1) = β(n) +
u(β(n))

o(β(n))

where u(β) is the score function, and

o(β(n)) = −L′′(β(n))

• o(β) is called the observed information.

• Note that the Fisher information, i(β) = E [−L′′(β)], is the
expected value of the observed information. Unlike the Fisher
information, the observed information depends on the the
observed data.

• We say the algorithm has converged when

|u(β(n))

o(β(n))
| < ε



Newton-Raphson method

• The following graph illustrates how this method works.
• The sold line is the log-likelihood function, β(0) is our initial

guess, the dashed line is the approximate quadratic function
around β(0), and β(1) is our next guess.
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Multiple parameter

• For multiple parameter models (where β is a vector), we have

β(n+1) = β(n) + [o(β(n))]−1u(β(n))

• where o(β) is a matrix whose (j , k) element is

ojk(β) = − ∂
2L(β)

∂βj∂βk

• Therefore, the observed information matrix o(β) is the
negative of the Hessian matrix.

• As before, the expected value of the o(β) is the Fisher
information matrix.



Fisher scoring algorithm

• If instead of the observed information, we use the expected
information, the algorithm is called the Fisher scoring
algorithm

β(n+1) = β(n) + [i(β(n))]−1u(β(n))

where

ijk(β) = E [− ∂
2L(β)

∂βj∂βk
]

• It seems that the Fisher scoring algorithm is less sensitive to
the initial guess. On the other hand, the Newton-Raphson
method tends to converge faster.

• For exponential family models with natural parameters and
GLM with canonical links, the two methods are identical
(Assignment 2).



Iterative re-weighted least squares

• Fisher scoring is related to the weighted least squares method
(e.g., linear regression with non-constant variance for error
terms).

• From the above equation for updating β, we have

i(β(n))β(n+1) = i(β(n))β(n) + u(β(n))

• Recall that for generalized linear models, i(β) = x ′wx .
Therefore,

(x ′w (n)x)β(n+1) = (x ′w (n)x)β(n) + u(β(n))

• After few simple steps, we have

(x ′w (n)x)β(n+1) = x ′w (n)z(n)

where

z
(n)
i = η

(n)
i + (yi − µ

(n)
i )

∂η
(n)
i

∂µ
(n)
i



Iterative re-weighted least squares

• At each iteration, we can find the next estimate for β as
follows:

β(n+1) = (x ′w (n)x)−1x ′w (n)z(n)

• The above estimate is similar to the weighted least squares
estimate. In this case, w (n) is a diagonal matrix whose i th

element is

w
(n)
ii =

(∂µ(n)i

∂η
(n)
i

)2
var(yi )

• Note that for GLM, the weights, w , and the response variable,
z , changes from one iteration to another based on the current
estimate of β.

• We iteratively estimate β until the algorithm converges.



MLE using R

• You can of course use R to estimate the parameter of
generalized linear models.

• The function has the following format:

glm( formula, family, data )

• Assignment 2: Write your own code for estimating the
parameters of logistic regression models using 1)
Newton-Raphson method, 2) iterative re-weighted least
squares method. Try your program on the Pima data set
(from MASS package in R), where the objective is to
investigate factors involved in diabetes among women of Pima
Indian heritage. Model the response variable type based on
the Pima.tr data set. Use your estimates to predict the
response variable type in the Pima.te data set. Evaluate
your model based on its prediction accuracy and ROC curve.



Logistic regression model

• Recall that for binary response variable, we use Bernoulli
distribution (or Binomial if ni > 1) for the random component:

yi |θi ∼ Bernoulli(µi )

• In this case, a common link function to connect the random
component to the systematic component ηi = xiβ is the logit
function defined as follows:

g(µi ) = log(
µi

1− µi
) = log[

P(yi = 1|xi , β)

1− P(yi = 1, β|xi )
] = xiβ

• For this model,

µi = P(yi = 1|xi , β) =
exp(xiβ)

1 + exp(xiβ)

• In this model, β = (β0, β1, ..., βp)



Logistic regression model

• The likelihood function for the general case where ni > 1 is
defined in terms of β as follows:

p(y |µ) ∝
n∏

i=1

µyii (1− µi )ni−yi

p(y |β) ∝
n∏

i=1

( exp(xiβ)

1 + exp(xiβ)

)yi( 1

1 + exp(xiβ)

)ni−yi
• Recall that the score function for this model is as follows:

uj(β) =
n∑

i=1

[yi − ni
exp(xiβ)

1 + exp(xiβ)
]xij

where u(β) is a p + 1 vector.
• The Fisher information is

ijk(β) =
n∑

i=1

nixijxik
exp(xiβ)

[1 + exp(xiβ)]2



Maximum likelihood estimation

• To find MLE of β, we showed that we could either use
Newton-Raphson (which is the same as Fisher scoring
algorithm in this case) or iterative re-weighted least squares.

• As usual, asymptoticly, cov(β̂) = [i(β̂)]−1.

• The standard error for each β is obtained by taking the square
root of the corresponding diagonal element of cov(β̂).

• To interpret β, notice that log[ P(yi=1|xi ,β)
1−P(yi=1,β|xi ) ] is the log of

odds for the outcome of interest, yi = 1.

• The intercept β0 is therefore the log of odds when the value
of all covariates is 0.

• Or we can say, exp(β0) is the odds when all covariates are 0.



Maximum likelihood estimation

• exp(βj) on the other hand is how much the odds
multiplicatively increases for one unit increase in xj when all
other covariates are fixed.

• Or we can say, exp(βj) is the odds ratio for subjects with
Xj = xj + 1 compared to subjects with Xj = xj when all other
covariates are fixed.

• Positive βj indicates that the odds increases as xj increases
(everything else fixed), where is for negative estimate of βj
the odds decreases as xj increases (everything else fixed).



Inference

• To decide whether βj is statistically significant or not, as
usual, we can use one of the three likelihood based tests.

• Using the asymptotic normality of β̂, we can use the Wald
test to make inference about the significance β’s.

• The [univariate] test statistic is

z =
β̂j

se(β̂j)

where z2 has an asymptotic null distribution χ2
1.



Inference

• Alternatively, we can use the score test with the following test
statistic

s2 =
u(βj = 0)

ijj(βj = 0)

where s2 has an asymptotic null distribution χ2
1.



Inference

• In most cases, the better test would be the likelihood ratio
test,

Λ = −2(L1 − L0)

where L1 is the maximum log-likelihood for the unrestricted
model with βj 6= 0, and L0 is the maximum log-likelihood for
the restricted model with βj = 0.

• Λ has an asymptotic null distribution χ2
1.



Model selection for inference about relationships

• Similar to ordinary linear regression analysis, modeling binary
response variables involves many decisions regarding the type
of model.

• The process of model selection in general includes a series of
decisions about the systematic component and (also the type
of link function).

• For the systematic component, we need to start with a list of
potential covariates. This by itself is a subjective decision.
That is, we exclude many variables that in or opinion are not
related to the response variable.

• From the list of potential covariates, we need to choose the
ones that are related to the response variable based the
evidence provided by the data.



Model selection for inference about relationships

• A common procedure (again similar to ordinary regression
analysis) is the stepwise model selection procedure. Where we
add variables that are significant and remove the ones that are
not significant (given all other variables already in the model).

• Some ther model selection criteria are Akaike information
criterion (AIC), and Bayesian information criterion (BIC).

• AIC penalizes (i.e., increases) the deviance (-2 times of
log-likelihood) by 2df , whereas BIC penalizes the deviance by
log(n)df , where n is the sample size.

• In R, you can use stepAIC in the package MASS to perform
stepwise selection using either AIC or BIC.



Model selection for prediction

• If our objective for building a logistic regression model is to
predict the values of response variable for future observations,
it makes more sense to select the model that would help us in
prediction.

• For this purpose, we could build the model on one part of the
data, called the training set, fine-tune it on another part,
called the validation set, and testing on the third part, called
the test set.

• Alternatively, we could use cross-validation or leave-one-out
procedure.

• When apply our model to the test set, we need a good
measurement for evaluating the predictive power of the
model; that is, how well our model can identify the correct
class (0 or 1) for future observations.

• We will discuss some of these measurements next.



Predictive power

• A common measure for predictive power is accuracy rate,
which is defined as the percentage of the times the correct
class (0 or 1 in this case) is predicted for future observations
(or observations in the test set).

acc =

∑nt
i=1 I (ŷi = ci )

nt

where nt is the number of observations in the test set, ci is
the true class, and ŷi is the predicted class for i th observation
in the test set. The index i here is for test cases.

• Instead of accuracy rate, we could also use error rate, which is
defined as the percentage of the times the wrong class is
predicted.



Predictive power

• Note that the outputs of logistic regression models are in fact
between 0 and 1, which are interpreted as probabilities.

• Therefore, we need to set an appropriate cutoff to obtain ŷ as
a binary prediction.

• In general, the cutoff depends on the loss function; that is,
the cost of predicting the class as 0, when the true class is 1,
and vice versa.

• In most practical problems, the costs of misclassifying 0 as 1
and 1 as 0 are not the same.

• For 0-1 loss function, we assign a test case to the class with
the highest probability; that is, we set the cutoff at 0.5.



Predictive power

• Instead of averaging over all predictions, it might be more
informative to separate the types of error.

• One common approach for doing this is to present the results
in a classification table (a.k.a, confusion matrix)

Predicted class
0 1

True class
0 True Negative False Positive
1 False Negative True Positive

• Based on this table, we have

Sensitivity = P(ŷ = 1|y = 1)

Specificity = P(ŷ = 0|y = 0)



ROC

• Receiver Operating Characteristic (ROC) curve allows for
simultaneous consideration of sensitivity and specificity
without setting an arbitrary cut-off.

• The curve plots sensitivity (true positive) as a function of
1-specificity (false positive).
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ROC

• Each point on the curve corresponds to a specific value of the
cutoff.

• A more accurate model will have an ROC curve further away
from the diagonal line (random model) with perfect prediction
corresponding to the (0, 1) point.

• The Area Under the ROC Curve (AUC) is used as a summary
statistic to compare models. For a perfect model, the AUC is
equal to 100%.



Predictive power

• Instead of setting a cutoff, we can also use average
log-probability (based on the estimated probability of the
correct class) as a measure of prediction accuracy.

∑nt
i=1 log[P(yi = ci |xi )]

n

where ci is the correct class for the future observation (xi , ci ),
or the observation in the test set.



Deciding on whether to use logistic model

• For simple cases with only few covariates, we might be able to
find out whether fitting a logistic model is a good idea.

• For example, we can plot the logit function vs. each covariate
to make sure the relationship is close to linear. The following
plot shows the logit function of death due to breast cancer vs.
the number of tumor nodes.
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• For continuous variables, we could first discretize the variable
so the proportions are not 0 or 1.



Deciding on whether to use logistic model

• If we look at logistic regression as a classifier, we realize the
decision boundary is a hyperplane since the boundary is where
P(y = 1|x , β) = P(y = 0|x , β).

• Therefore, at the boundary we have

log(
P(y = 1|x , β)

1− P(y = 1|x , β)
) = xβ = 0

• Where {x |xβ = 0} is a hyperplane.



Deciding on whether to use logistic model

• For two dimensional covariates, the above hyperplane is of
course a straight line.

• Therefore, logistic regression as a classifier use a hyperplane
(e.g., straight line in R2) to separate the two classes.

• We could plot the data to see whether a straight line
boundary is suitable.
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Deciding on whether to use logistic model

• If the decision boundary does not seem to be linear, logistic
regression might not do well.
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Deciding on whether to use logistic model

• Sometimes, we could fix this by using a mixture of logistic
regression models
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Diagnosis

• For diagnosis, we usually use deviance residuals

dri = sign(yi − ni θ̂i )
√

di

where

di = 2
∑
i

{yi log(
yi

ni θ̂
) + (ni − yi ) log(

ni − yi

ni − ni θ̂
)}

• Or we can use Pearson’s residuals

ei =
yi − ni θ̂i√
ni θ̂i (1− θ̂i )

• Or standardized Pearson’s residuals

ri =
ei√

1− hi



Noncanonical link- Probit

• The logit link we have been using so far is the inverse CDF of
logistic distribution (with mean µ = 0 and scale s = 1).

• Obviously, we could use the inverse CDF of any continuous
distribution to map real numbers (η in this case) to [0, 1]
interval.

• One possibility, which is the most popular after inverse CDF
of logistic distribution, is to use the inverse CDF of standard
normal distribution, Φ−1.

Φ−1(µi ) = ηi



Noncanonical link- Probit

• Recall that for non-canonical link, the score function is

u(βj) =
∑
i

(yi − µi )
var(yi )

xij
∂µi
∂ηi

• Therefore, for probit model

u(βj) =
∑
i

(yi − niθi )

niθi (1− θi )
xijφ(ηi )

where φ is the density function for the standard normal
distribution.

• Note that it is more common to use the logit link since the
estimates can be interpreted in terms of odds.



Noncanonical link- Complementary log-log link

• Both logit and probit models are symmetric around θ = 0.5;
g(θ) = −g(1− θ).

• Therefore, the underlying assumption for using these models is
that θ approaches 0 and 1 with the same rate.

• If this is not appropriate, we can use another link function
called complementary log-log, which is not symmetric

g(θi ) = log[− log(1− θi )] = ηi

• This function approaches 1 more sharply than it approaches 0.

• If we want the function approaches 0 faster, we can use the
log-log link, which is g(θ) = log(− log(θ)), or switch 0 and 1.

• For the log-log link, as x increases the the function is
monotone decreasing when β > 0, and monotone increasing
when β < 0.



Noncanonical link- Complementary log-log link

• In this model, for two possible values of xj , denoted as xj1 and
xj2, we have

[1− P(y = 1|xj2)] = [1− P(y = 1|xj1)]exp[(xj2−xj1)βj ]

• Therefore, the interpretation of βj for this model is: for one
unit increase in xj (everything else fixed), the complement
probability (1− θ) raises to the power exp(βj)


