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ABSTRACT

In this paper, we consider the problem of discovering GIS
data sources on the web. Source discovery queries for GIS
data are specified using keywords and a region of interest. A
source is considered relevant if it contains data that matches
the keywords in the specified region. Existing techniques
simply rely on textual metadata accompanying such datasets
to compute relevance to user-queries. Such approaches re-
sult in poor search results, often missing the most relevant
sources on the web. We address this problem by developing
more meaningful summaries of GIS datasets that preserve
the spatial distribution of keywords. We conduct experi-
ments showing the effectiveness of proposed summarization
techniques by significantly improving the quality of query
results over baseline approaches, while guaranteeing scala-
bility and high performance.
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1. INTRODUCTION

The past decade has witnessed significant growth in the
number of web sites that contain geographical information,
specifically the number of GIS datasets available over the
internet has grown exponentially. Such a growth in freely
available GIS datasets is a direct result of systematic initia-
tives within government agencies (e.g., geodata.gov, fgdc.gov,
etc.) and the private sector in response to the growing use
for GIS data [7, 8]. Organizations use the data made avail-
able for a variety of coordination and analysis tasks in a
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range of applications such as, emergency response, urban
planning, and transportation planning.

Proliferation of millions of high quality GIS data sources
has led to an important challenge of source discovery — that
of, “discovering most relevant GIS data sources given a par-
ticular task”. Today, such data sources are discovered over
the internet in one of the following two ways:

(i) Using Search Engines (e.g., Google, Yahoo, MSN, etc.):
Most GIS data sources are accompanied with metadata that
describe the data source. Such metadata may include infor-
mation on format, data types, schema, as well as some infor-
mation about the data content and the spatial footprint of
the data sources. Search engines index such metadata and
analysts can discover relevant sources using keyword queries.
(ii) Specialized Geographical Data Portals (e.g., Geodata.gov):
Similar to the first strategy, such portals also create an index
for the data sources based on metadata provided. However,
in addition to keyword queries, they also support search
based on geography specified as boundary in the metadata.

Both of the above approaches to discovering relevant geo-
graphical data sources exhibit significant limitations. To ap-
preciate the shortcomings let us consider a particular source
discovery problem: Imagine that an analyst doing shelter
planning for a city wants to:

“Find databases of public buildings containing informa-
tion about emergency shelters in Orange County”.

It is difficult to convert such a source discovery task into a
simple keyword query permitted by current search engines.
Since keywords do not capture spatial semantics, if data
is marked as that belonging to Irvine, California (instead
of Orange County) — a purely keyword based match will
consider the source irrelevant even though it is not. Cur-
rent portals overcome this problem by interpreting geogra-
phy explicitly using interactive maps. While this alleviates
the problem to a certain extent, there remains significant
opportunity to improve the quality of search. The prime
limitation of portals is that they contain only textual meta-
data summaries created by humans, that describe the data
at a very coarse level. Metadata lacks textual clues and do
not capture the geospatial characteristics [19]. This affects
the retrieval quality of sources significantly. Hence, instead
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Source discovery based on contents has been previously
studied for textual data [12, 16]. For each source, a summary



in the form of keyword frequencies is created by counting
the number of documents in which the keyword appears.
Data sources are deemed most relevant for a given query
based on their keyword frequencies. Such an approach needs
significant generalization in case of GIS data. The goal is
not frequency but rather frequency in the area of interest.
To see this, consider an user-query asking for “High schools
in Irvine”. A dataset that contains general information about
Irvine and also about schools will be deemed relevant to the
query, even if it has no information on schools within Irvine.
A simple keyword based approach is not able to capture this
spatial distribution of objects in significant detail.

In this paper, we consider such a solution that uses sum-
maries to retrieve sources based on frequency of resources
(keywords) in a region. Traditionally, summarization is done
using histograms, and many techniques have been developed
for approximating joint distribution of data. The histograms
are used to estimate the frequency count of keywords in the
region specified in a query. Accurate estimation of frequency
counts is the key component of most relevance-ranking met-
rics used in web-based searches. However, creating his-
tograms for keywords distributed in space throws up a new
challenge — that of summarizing the spatial distribution of
multiple keywords simultaneously. In this paper, we develop
a set of new algorithms to address this problem and provide
ample empirical proof of the practical advantages of our pro-
posed solutions. Our main contributions are the following:

1. We develop a suite of novel histogram-based algorithms
for summarizing GIS datasets. These summary struc-
tures preserve both spatial and textual information
present in the original datasets while achieving signif-
icant compression.

2. We propose techniques to implement source discovery
queries using the summaries.

3. Finally, we evaluate the effectiveness of our summa-
rization algorithms through experiments which show
significant performance in retrieving GIS datasets while
maintaining the high quality of results.

The remainder of the paper is organized as follows. In
Section 2, we introduce our GIS data, query model, and
relevance score model. In Section 3, we provide technical
background on histogram construction techniques and for-
mally define the problem. In Section 4, we describe in detail
our summarization techniques for GIS datasets. We report
experimental evaluation of our techniques in Section 5. We
discuss related work in Section 6 and conclude the paper
with suggestions for future work in Section 7.

2. GIS DATA AND QUERY MODEL

In this Section, we describe the GIS data model, and
formally define a spatio-keyword query and the relevance-
scoring model used for ranked retrieval of the search results
over GIS data sources.

GIS Data: A GIS dataset consists of information about
spatial objects from some geographic region of interest, where
a region may correspond to a country, state, county, city, or
other user-defined places. The information contained about
objects in a GIS dataset can be classified primarily into two

classes: spatial footprint and textual description. The spa-
tial footprint of an object is often represented by its “min-
imum bounding rectangle” (MBR) and the textual descrip-
tion is a set of keywords, chosen from a standard GIS dic-
tionary [30]. We ignore numerical attributes since our query
model do not ask for such information. Formally, a GIS
dataset and a spatial object can be defined as follows:

DEFINITION 2.1. (GIS Data Model) A GIS dataset G
contains a set of spatial objects S. The attribute set of G is
{R, T}, where R contains a set of rectangles {ri,7r2,...,mn}
and T contains a set of subset of GIS keywords {ki, ka, ..., kn}.
The cardinality of G is n. FEach spatial object in S is repre-
sented by a triplet (id,r, k), where id is the object identifier,
r € R is the MBR of the object’s spatial footprint and k € T
is a set of keyword descriptors associated with the object.

We denote a rectangle r by two components, its lower-left
and upper-right vertices, specified in Cartesian coordinates
as [(z1,91), (w2, y2)|x1 < 22,91 < wol, 1,91, 22,92 € N All
other representations (e.g., lat-long format) can be trans-
formed to Cartesian coordinates using suitable geographic
projections. If G contains line or polygon objects, their spa-
tial footprints are represented by their MBRs. However, for
point objects, the corresponding MBR is a degenerate rec-
tangle whose two corners are represented by the same point,
that is, z1 = z2 and y1 = y2. While the domain of T is
the set of all GIS terms, we will represent its active domain
by a finite set {t1,t2,ts,...,ta}, where d is the number of
distinct terms that appear in G.

Query Model: Given a collection C' = {G1,Ga, ...,Gn } of
m GIS datasets, a spatio-keyword (SK) query consists of a
set of keywords and a geographic region. For example, the
query “{rivers, streams} in orange county” is a spatio-keyword
query. The relevant datasets in C' are those which contain
spatial objects in the geographic region orange county and
have the associated keywords rivers and streams. If the query
region is specified as a set of keywords, we assume there ex-
ists a function that converts the set of keywords into a rec-
tangle using a geographic thesaurus [10]. Now, We formally
define a SK Query as follows:

DEFINITION 2.2. (SK-Query) A SK query Q is a pair
(¢r,q¢), where q, denotes a rectangle, and g is a set of key-
words.

Relevance Score: The goal of the search engine is to de-
termine the “relevant” datasets and present them to the user
in a ranked order. A dataset G; is relevant to a SK query
if it contains one or more spatial objects whose MBR inter-
sects with ¢, and contains the associated set of keywords in
qt- Given a SK query @, the ranking function F' assigns
a score F(G;, Q) to each dataset G; and returns the top-k
datasets for some user-defined positive integer k. There are
many relevance-scoring mechanisms proposed in literature,
such as vector space model, boolean model, and extended
boolean model [27]. A multi-keyword query might be eval-
uated as an “OR” or an “AND” query. Different measures
choose to incorporate the two semantics in their relevance-
scoring equation differently. We adapt the Extended Boolean
Model (which is a popular relevance-scoring technique used
in document retrieval systems [25]) for our application. This
model captures the two semantics succinctly as shown in the



following two formulae. Given, a positive real p, the p-norm
relevance score for a dataset GG; is computed as follows:

lq¢l
1/p kq;l w(kﬂlrﬂ') (1)
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where |g¢| is the number of terms in @ and w,q, ) is the
weight of term ¢, with respect to query region ¢, and dataset
G;. Tt is computed as follows:

t
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where tf(x q,.,4) is the frequency count of term t; appearing in
dataset G; and associated with objects within spatial region
qr- tfirgy is the maz; {tf(x,q.i)}. In short, the two for-
mulae score sources based on their relative importance with
respect to each query keyword in comparison to the most
authoritative source for that keyword. Here “most authori-
tative” refers to the source with the highest occurrence of the
keyword in the specified region. The above mentioned mea-
sure, and numerous others are all some form of frequency-
based measures. Hence computing ¢ f(x 4, ) is fundamental
for any relevance based model for the GIS source discovery
problem. However, accurately computing ¢ f(x 4, ) for each
data source is computationally expensive. Therefore, we re-
sort to summarization of data that allow quick estimation of
keyword frequencies in geographic regions. We refer to this
as selectivity estimation problem.

Next, we describe the histogram-based approach for sum-
marizing GIS data distributions and define the selectivity
estimation problem.

3. SELECTIVITY ESTIMATION

Data with multiple attributes is often modeled as a distri-
bution in a multidimensional space, where each dimension
corresponds to an attribute. Histograms are a popular tech-
nique for approximating joint distributions [15] and are used
in large data-processing systems. Algorithms for creating a
histogram partition the data space into a number of regions
called buckets such that all the data points are covered by
at least one bucket. The summary consists of the extents of
each bucket along with the total number of data objects en-
closed within the bucket. The density of points is assumed
to be uniform within each bucket. Therefore, given a query
region, its selectivity can be easily estimated by computing
the fractional overlap of this region with each bucket and ag-
gregating the count over all overlapping buckets. Typically,
histograms result in substantially compressed representation
of the distribution since the number of buckets used is much
smaller than the size of the dataset. Histograms maybe
single-dimensional, where the distribution of data along dif-
ferent dimensions is approximated separately and “attribute
independence” assumption is used to estimate the joint den-
sity in any region of this space. Alternatively, histograms
may take a multidimensional view of the dataset, and par-
tition the space into a given number of multidimensional
buckets. In either case, the objective is to ensure high es-

timation accuracy, while achieving substantial compression
in representation.

3.1 Histograms for GIS Datasets

Before we formally state the histogram creation problem
for GIS datasets, we need to describe the pre-processing
steps and features of the histogram construction process.

Pre-processing - Discretization of Spatial Domain:
Since the spatial domain is real-valued and continuous, it is
a common practice to discretize it into regular grid cells and
associate a frequency (i.e., number of objects) with each cell
[1]. The issue of associating correct frequencies arises for
spatial objects such as lines and polygons that may span
more than one cell. While there might be other ways to re-
solve the count issue, for simplicity, we will unambiguously
assign (only for counting purposes) each object to the cell
corresponding to its centroid'. Hereafter, the histograms
are constructed using these cells as the basic units (i.e.,
each cell is completely covered (contained) by a bucket or
not covered at all). For simplicity, we will assume a n x
n regular grid. Let {c; ;|1 < 4,5 < n} be the set of cells
formed after discretization, where ¢; ; refers to an individ-
ual cell and the indices i, j refer to the row and column of
ci,j. We denote by fi, i , the number of objects in cell
¢;,j that have the keyword ¢; associated with them. There-
fore, each c;,; is associated with a set of keyword-frequency
pairs, Fij = {(t1, fr1,i5), (t2, fta,i,5)s (83, fraig), -} After
the pre-processing stage, the spatial-keyword distribution of
a dataset G is represented by T'(G) = {(¢i,5, Fi,j)| 1 < 14,5 <
n}. Though T'(G) itself can be considered an approximation
of the distribution in GG, most of the time it may turn out to
be as large as @ itself, even for small values of n (since the
total number of cells is n2). As a result, compression is still
required for compact representation and efficient selectivity
estimation.

Bucket: In the discretized domain, a bucket is a rectangle
specified by its lower-left and upper-right corner cells. The
associated list of (keyword, frequency) pairs is formed by
merging the corresponding lists over all the cells comprising
the bucket.

Error Metrics: In order to estimate the accuracy of his-
togram, we use the standard Sum Squared Error (SSE) met-
ric, which is defined as follows:

Given any bucket b; with corner cells (i, 1,,, Cuy,u,) and
keyword t,

SSE(ty, by) avg(tr,i,5))°  (4)
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where

if the centroid lies on a boundary point, it is assigned to
one of the neighboring cells randomly.
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Space Constraint: For our algorithms, we simply spec-
ify the space budget (maximum storage) in KBs that the
histogram may use and leave the number of buckets un-
specified. In general, histogram creation algorithms specify
the maximum number of buckets to be used. This works
fine when it takes the same amount of memory to specify
each bucket but, in the case of multi-keyword distributions,
buckets might be heterogeneous, that is, contain multiple
keywords. As a result, different buckets may require sub-
stantially different amounts of space for representation.
Now, the summarization problem can be stated as follows:

DEFINITION 3.1. (Optimal Histograms) Given a dataset
G, its discretized representation T(G), and space budget M,
compute a histogram H(G), which minimizes the value of

ZZ:1 Z}i‘l error(ti, bi), where d denotes the number of key-
words and error(ty, b)) denotes the error measure of spatial
distribution of keyword ty in bucket by (as specified in equa-
tion 4) and |B| is the total number of buckets in H(G) with
the constraint that total space required for representing the
buckets is < M.

We are ready to describe our histogram construction tech-
niques (that attempt to solve the above mentioned optimiza-
tion problem) for GIS datasets in the next Section.

4. SUMMARIZING SPATIAL-KEYWORD
DISTRIBUTIONS

The problem for GIS datasets is significantly more chal-
lenging than plain, vanilla spatial datasets due to the pres-
ence of multiple keywords associated with each object. The
optimal histogram construction problem (as posed in the
problem 3.1) is NP-hard even for datasets with a single key-
word [23]. As a result, a number of heuristics have been
proposed in the literature that work well in practice. In this
Section, we present a novel set of algorithms which use one
such heuristic method (MinSkew [1]) as a building block.
First we describe the MinSkew algorithm and the standard
storage model for histograms.

MinSkew: The MinSkew histogram construction technique
is shown in Algorithm 1. The input consists of the dataset G
(actually T(G)) and the desired number of final buckets. It
takes a greedy Binary Space Partitioning approach to deter-
mine the best partitioning of the data space. The algorithm
starts with a single bucket which is the MBR of the whole
dataset. In each subsequent iteration, it systematically ex-
plores all possible vertical and horizontal splits (along the
rows and columns of cells) within each bucket, and deter-
mines the most beneficial split value (line 5), that is, the
one that results in maximal error-reduction (SSEycq). Af-
ter iterating over all the buckets, the algorithm picks the
bucket with maximal SSE;,.q (line 8) and splits it into two,
thus incrementing the number of buckets by 1. As a result,
the algorithm terminates in |B| — 1 iterations. The total
number of candidate splits to consider in each iteration is
O(n) (n — 1 horizontal and n — 1 vertical). Also, in each
iteration, the algorithm has to look at O(|B]) buckets at
most, therefore, the worst case complexity of the algorithm

Algorithm 1 MinSkew(Data G, NumBuckets |B|)

Init: b «— MBR(G), Buckets = {b}, CurNumBuckets = 1
while Cur NumBuckets < |B| do
for all b; € Buckets do
Compute SSE(b;)
{biy, biy } — Split (b;)
Compute SSE,.q = SSE(b;) — SSE(b;,) — SSE(b;,)
end for
Pick bucket by with maximal SSE,.q
Buckets = Buckets U {b; ,b; } \ {b}}
10:  CurNumBuckets + +
11: end while
12: return Buckets

is O(n|B|?). In practice the MinSkew algorithm runs very
fast and the time taken is almost linear in n and |B).

Summary Representation: Since the dataset consists of
both spatial and textual information, the choices for rep-
resenting the histograms can be broadly classified into two
groups: The first one stores a single representation of each
bucket with a pointer to a list of keyword-frequency (k-f)
pairs that appear within the bucket. In this representation,
a keyword may appear in multiple bucket-lists. The second
approach does the opposite, it stores a single representa-
tion for each keyword with a corresponding list of bucket-
frequency (b-f) pairs, where b is a pointer to a bucket and f
is the frequency of occurrence of the keyword in the bucket?.
Given a space budget M, we represent the storage require-
ments for the above two schemes as follows:

M = Cl~‘B|~Tavg (6)

where Tj.4 is the average number of k-f pairs corresponding
to buckets in B and ¢; is a constant.

M = C2-|T|~Bavg (7)

where Bgyg is the average number of b-f pairs in the list
corresponding to keywords in 7" and ¢ is a constant.

The performance of different estimation techniques varies
depending on which of the above two representation schemes
is used. We will discuss and illustrate these characteristics
below and in the next Section. Now, we describe the three
summarization techniques for GIS datasets.

4.1 Keyword Distribution as Separate Layers

In this technique, we view T(G) as a multi-layered data
distribution, where each layer corresponds to a distinct key-
word. The MinSkew algorithm can be applied to each layer’s
distribution separately. The union of the resulting buckets
computed for all the layers represents the final histogram.
Here, to represent the histogram as k-f pairs, we assign
Tavg = 1 in Equation 6 (since only single keyword appears
in each bucket) which results in M = ¢;.|B|. Without loss of
generality, let us assume ¢; = 1, so that M = |B|. However,
each layer needs to be allocated its share of buckets from
the total budget. The goal is to make this allocation in a
way that minimizes the overall error (across all layers). The
problem can be formalized as follows:

Let the original data distribution T(G) be decomposed
into a set of layers, {Lx}, where Ly represents the spatial

2Pairs with only non-zero frequencies are stored in both
cases.



Algorithm 2 LayeredMinSkew(Data G, NumBuckets
|B])
1: Init: Layers = {L1,La,.., Ly}, Buckets={}

: // pre-computation of buckets to layers

: for all L; € Layers do

: forj=1to|B|—d+1do

2
3
4
: Bktsli, j| < MinSkew(b;, j)

6: SSE[i,j] = SSE(Bkts[i, j])

7:  end for

8: end for

9: // DP to compute optimal buckets to each layer
10: for k =1 to d do

11:  for b=k to |B| do

12: SSE(k,b) =1<;<bk+1 {SSE(k—1,b—j)+ SSE[k,j|}
13: AllocBuckets(k,b) = argmin;

14:  end for

15: end for

16: // reconstruction of final buckets

17: n=|B|

18: for k =d to 1 do

19:  Buckets = Buckets U Bkts[k, AllocBuckets(k,n))
20:  n =n— AllocBuckets(k,n)

21: end for

22: return Buckets

distribution of keyword ¢. Let | B| denote the maximum to-
tal number of buckets allowed. Then, the problem of layered
histogram construction is the following;:

DEFINITION 4.1. (Layered Histogram) Given a dataset
with d distinct keywords and a budget of |B| buckets, find
a partition [ni, na, ...,ngq] of |B| (i.e., Zle n; = |BJ),
such that, when layer L; is assigned n; buckets, the error
measure ZZZI Sk SSE(tk, bi) is minimized, assuming the
MinSkew algorithm is used to summarize each layer.

Our bucket-allocation algorithm is based on the observa-
tion that “more uniform a distribution, smaller the number
of buckets required to achieve a given level of error”. For
example, a layer that has a perfectly uniform distribution of
points (i.e., same number of data points in each cell of the
grid), can achieve minimum value of SSFE using just a single
bucket (one that encloses all the n? cells).

Naive Solution: A naive solution to partitioning | B| buck-
ets to d layers explores all possible allocation of buckets to
each layer, such that Zle n; = |B| and pick the best parti-

tion that minimize the SSE. There are % ~ |B|*
such possibilities of allocating | B| buckets to d layers. Hence,

the naive solution is clearly impractical.

Optimal Solution using Dynamic Programming: We
propose a dynamic programming solution that allocates | B|
buckets to d layers (|B| > d) in an optimal manner as
shown in Algorithm 2. The algorithm starts with a pre-
computation step (lines 3-8) where each layer is allocated
a number of buckets ranging from 1 to |B|. The variable
SSE]i, j] captures the SSFE of allocating j buckets to layer 4.
The buckets formed are stored in Bkts[i, j]. The main idea
of dynamic programming is captured in lines 10-15. We de-
note SSE(k,b) (line 12) as total error incurred in allocating
b buckets to layers 1 through k. Now, fixing an order on the
set of keywords, the optimum solution to the problem can be
written recursively in terms of optimal solutions to smaller
sub-problems, where SSFE[k, j] denotes the error of the his-

togram created on the k" layer’s data distribution using a
total of j buckets. The variable AllocBuckets(k,b) captures
the value of j in the previous step for which SSE(k,b) was
minimal. Finally, the reconstruction of optimal buckets al-
located to each layer is done in lines 17-21 by looking up the
number of buckets allocated to each layer and retrieving the
actual buckets from the Bkts array.

Complexity Analysis: In lines 3-8, the algorithm needs
to pre-compute SSE[k,j] for all 1 < k < d and all j where
1< j <|B|—d+ 1. The range of j is decided by the fact
that, there are at least 1 and at most |B| — d + 1 buckets
allocated to each layer. Hence, the pre-computation cost is
O(n|B|*d). We need to compute SSE(k,b) forall 1 < k < d
and for all 1 < b < |B|. This requires O(d|B]) iterations.
For each iteration, we need to look up the SSE]i,j] array
O(|B|) times, which gives a total complexity of O(d|B|?).
Finally, in lines 17-21, the reconstruction of buckets takes
d steps. Hence, the overall complexity of our dynamic pro-
gramming approach is O(d|B|?> + n|B|*d + d) ~ O(n|B|*d).

Discussion: This technique is akin to the dynamic program
approach in [17]. They build separate histogram for multi-
ple attributes. The goal there is to optimally allocate given
number of buckets to each attribute so that overall error is
minimized. Our technique is suited for b-f pairs based rep-
resentation, since it groups together all buckets that belong
to a particular keyword. In contrast, we cannot group more
than one k-f pair in each bucket as the MBRs of buckets be-
longing to different keywords are not the same. As a result,
this summarization scheme is not efficient for k-f based rep-
resentation. We observe this effect in our experiments (see
Figures 1(a) and 1(b)). Our next technique favors the rep-
resentation of final summary as k-f pairs.

4.2 Multi-Keyword Space Partitioning

In this technique, all the keywords that appear in certain
spatial region share the same bucket. The new algorithm
called MultiKeyMinSkew is shown in Algorithm 3. It mod-
ifies the MinSkew algorithm in two important ways: First,
we introduce new aggregate error-metric SSE(b) which com-
bines the SSFE of all keywords present in the spatial foot-
print of bucket b (see Error Metrics in Section 3.1). Second,
instead of measuring the SSFE reduction per extra bucket,
we measure the reduction in the combined SSFE per unit ad-
ditional space (line 6). This modification is necessitated by
the fact that two heterogeneous buckets may require signifi-
cantly different amounts of space depending on the number
of keywords falling within their extents.

From Equation 6 or 7, we cannot compute the total space
M, by specifying |B|, as we do not know how many key-
words are going to be associated with a bucket. Hence, we
specify the space budget M itself in the input to the algo-
rithm. The algorithm starts by assigning all the data in G
to a single bucket as usual. It uses the function Space(b)
to compute the space requirement for a bucket b. In lines
4-11, the algorithm determines for each bucket, its maximal
SSE;eq/space (i-€., the reduction in SSE per unit increase in
storage) by exploring all possible binary space partitions of
the bucket. The best overall split is added and the space re-
quired for representing the new bucket is deducted from the
budget M. The algorithm terminates when no new bucket
can be accommodated within the remaining space budget.



Algorithm 3 MultiKeyMinSkew (Data G, Budget M)

Init: b «— MBR(G), Buckets = {b}, CurSpace = Space(b)
while CurSpace < M do
for all b; € Buckets do
Compute SSE(b;)
{biy, biy } < Split g{’;)( | SSB(by.)—SSE(bi)
E(b;)— E(b;, )— E(b;
SSET'Ed/SPaCE = Space(b;; )+Space(l§7‘,2)fspace2(bi)
end for

Pick bucket b; with maximal SSE,cq/space

Buckets = Buckets U {b;, ,b;, }

CurSpace = CurSpace — Space(b;) + Space(b;;) +
Space(bi, )

: end while

12: return Buckets

—_ =
= o

Complexity Analysis: In each step of the algorithm, at
most d keywords appear in a bucket. To compute the best
split requires O(n) steps for each keyword. Hence, the com-
plexity of this step is O(dn). Let I be the number of steps
the algorithm executes. The choice of the next bucket to
split requires a maximum of O([I) steps. Finally, the overall
complexity is O(I%dn). Tt is to be noted that we don’t have
prior knowledge of how many iterations the algorithm runs.
However, the lower and upper bounds on I can be easily de-
rived. In Equation 6, |B| denotes the number of iterations
I. Hence, the lower and upper bounds on |B| occurs when
Tavg = d and T,pg = 1, respectively.

Discussion: This technique naturally generates summaries
in the form of k-f pairs. This representation can be con-
verted into a set of b-f pairs by grouping all the buckets
together in which a keyword appears. However, a disadvan-
tage is, if the dataset has lots of keywords distributed across
the space, each keyword could potentially point to many b-f
pairs, thereby losing its storage compactness. We notice this
effect in the estimation quality of our experimental dataset.
Our next technique aims to alleviate the ill-effects of the first
two by producing summaries suitable for both the schemes.

4.3 Keyword Clustering

In the previous two algorithms, we explored two extreme
cases - in the first one, we isolated each keyword layer from
another, while, in the second approach, we considered all
layers together, viewing them as a single spatial distribu-
tion. From the discussion that followed, there is reason to
believe that a hybrid approach that combines similar lay-
ers together, while keeping layers with significantly differ-
ent spatial distributions separate, can produce better his-
tograms in the same amount of space, irrespective of the fi-
nal representation. Therefore, our third algorithm proposes
a clustering technique to determine “similarly distributed”
keywords that can be summarized together. Once the clus-
ters are determined, each group of keywords is allocated a
share of overall space budget. Then, within each group, we
create buckets using Algorithm 3 discussed in Section 4.2.

4.3.1 Clustering Keyword Distributions

We use one of the widely used clustering techniques, the
k-means algorithm for grouping the spatial distribution of
keywords into a pre-specified number of clusters [29]. k-
means algorithm groups items together that are similar in

nature by using an user-specified similarity (distance) mea-
sure. We propose the following measure based on the spatial
distribution of keywords to form the initial keyword clusters
using the k-means algorithm.

DEFINITION 4.2. (Distributional Distance): Let ft, 4,
be the frequency of keyword ty in cell c;; and the spatial fre-
quency distribution of ty be denoted Fy, = {ft, 15,1 <i,5 <
n}, then the distance between two keyword distributions Fy,
and Fy, is given by the following formula:

SN (frrig = frai9)? (3)

i=1 j=1

D’iSt(Ftl ) FtQ) =

Our clustering algorithm KeyClusters takes as input the
frequency distribution set of all keywords Fr, and the num-
ber, ¢, and outputs c-way partition of the keyword set. Clas-
sical k-means algorithm suffers from the problem of deter-
mining the right number of clusters. Recently, many tech-
niques are proposed that address this problem. We utilize
one such technique, the X-means [24] algorithm, that out-
puts the right number of clusters based on the optimization
of the Bayesian Information Criterion (BIC). X-means takes
as input a range of values for k. It then performs a locally op-
timal k-means clusterings within this range, evaluates them
using the BIC criterion, and returns the value of k that eval-
uates the best. We discuss next, our clustering based spatial
partitioning algorithm, KeyClusterMinSkew.

KeyClusterMinSkew: The input to the algorithm is a set
of k clusters, {c1, ¢z, ..., cx } and space budget M. Each clus-
ter, ¢; is initialized to bucket b;. Thereafter, the algorithm
works the same as MultiKeyMinSkew, where we modify
the initial variable Buckets to contain buckets formed from
each c¢; and variable CurSpace specifies the space occupied
by the current set of buckets.

Discussion: There are important differences that we note
between KeyClusterMinSkew and the first two algorithms.
Unlike LayeredMinSkew, this algorithm does not end up with
keywords pointing to single k-f pair, since a cluster contains
multiple keywords that can share the same bucket. Hence
it is suitable for representation as a set of k-f pairs. Un-
like MultiKeyMinSkew, the number of buckets pointing to
a keyword is minimized by the initial formation of clusters.
Hence, the final summary can also be represented as a set of
b-f pairs. We observe this effect in our experiments where
the performance of this technique (actually, a slightly mod-
ified version of it) is good for both representation schemes.

4.4 Rank-evaluation using Summaries

The goal of rank-evaluation is to identify relevant sources
in ranked order for a given user query. First summaries
are created using the histogram techniques for each of the
dataset present in our original collection C. Next, the sum-
maries are indexed using a suitable index structure. When
a user query arrives, we first traverse the index structure
to retrieve the summarized datasets that satisfy the query.
Next, the relevance of each of these datasets is estimated us-
ing the scoring functions in Equations 1 or 2 and presented
to user in a ranked order.



Creating Summaries: Given the summarization techniques,

our goal is to create summaries of datasets in C'. There
are various parameters such as storage constraints, quality
constraints, that affect the creation of final summaries. If
storage limit is specified, each dataset is allocated a storage
share so that the total storage stays within the limit. The
issue is how to decide storage share, given that each dataset
differs in size, number of keywords, and its data distribution.
One simple approach is to allocate storage proportional to a
dataset’s original size. This ensures that bigger dataset gets
enough buckets. However, for similar sized datasets, with
varying number of keywords, allocating same storage might
result in different summarization quality. This points to an-
other possible approach where quality becomes a criteria.
Our techniques measure the quality of summarization using
the SSE metric (see Section 3.1). Lower the SSE, better
the quality of summarization. We can place a threshold on
the quality of summarization required for each dataset by
specifying a target SSE reduction. Each dataset is sum-
marized until it reaches the threshold error rate. While
this approach ensures quality, it loses control on the stor-
age bound. Each dataset requires different storage to reach
the same error threshold. An ideal requirement would be to
place a limit on the storage and ensure maximum quality
within the storage limit. However, this will be a difficult
optimization problem particularly when size of C' becomes
large. While each of these issues are worth further investi-
gation, for our experimental purposes we use a target SSE
reduction for creating final summaries.

Indexing Summaries: Once summaries are created for all
datasets in C, the next step is to index the summaries for
query processing. Since the summaries contain both key-
words and MBRs, we use an index structure called Inverted
File-R*-tree that combines keyword and spatial indices to-
gether [31]. We briefly explain this structure as follows:
First an inverted index file [14] on the keywords is built.
Then, a R*-tree [26] is constructed to the set of objects’s
MBR pointed to by each keyword. When a query is issued,
the query keywords are first filtered using the inverted index.
Later, the R*-tree corresponding to each query keyword are
used to filter objects that satisfy spatial part of the query.
The final answer set is produced by intersecting the filtered
objects from each R*-tree.

There are other index structures discussed in the literature
[6, 31]. In our experiments, we go by the choice of Inverted
File-R*-tree for simplicity of index construction and perfor-
mance. We represent the summary for each dataset either as
k-f pairs or b-f pairs and then index it as follows: We create
R*-tree for each new keyword and insert the bucket’s MBR
corresponding to the keyword along with the frequency in-
formation and dataset id. Each keyword’s R*-tree indexes
a set of MBRs irrespective of the dataset id.

Query Processing: When a SK query arrives with a set
of keywords and spatial region, we first filter the keywords
using the index structure. Using each keyword’s R*-tree,
the spatial part of the query is executed that results in a set
of buckets. These buckets are grouped by dataset ids and
for each dataset, the frequency count in the query region is
estimated. Using the estimation count, the relevance score
and ranking for each dataset is computed and presented to
the user.

5. EXPERIMENTS

In this Section, we report experiments validating the effec-
tiveness of our summarization techniques. The experiments
are divided into two parts. In the first part, we compare
three histogram algorithms discussed in Section 4 using real
GIS datasets. In the second part, we apply the summariza-
tion techniques to a collection of some 475 real GIS datasets
and perform rank evaluation for synthetic query workloads.

5.1 Comparison of Histogram Algorithms

In order to compare the estimation quality of our his-
togram algorithms, we first downloaded real GIS datasets
from a website called www.mapdez.org. The experimental
dataset consisted of 116,000 data objects with 96 unique
keywords. We pre-processed the dataset by extracting only
spatial and keyword attributes. Then, we did a basic stop-
word removal and stemming on the keywords. We created
four different summaries using the algorithms in the previ-
ous Section®. We tested the quality of the summaries using
different query workloads which we describe next.

5.1.1 SK Queries

We generated two kinds of workload consisting of 10000
SK Queries each. The first workload, wgqatq, follows the
data distribution and is generated in the following manner:
(1) Randomly choose a keyword according to the keyword-
frequency distribution and (2) generate a rectangle from the
spatial distribution of the selected keyword. The keyword
and rectangle together form a SK query. The second work-
load, wyni, instead of following the data distribution, is gen-
erated from an uniform distribution as follows: (1) Ran-
domly select a keyword from the set of all keywords and (2)
randomly generate a rectangle whose extent lies with the
spatial domain of the dataset.

These are reasonable workloads in the absence of real
query traces which is difficult to obtain for our purposes.
We also created a variant workload, wy,,—r% based on top-
k% keywords, that is, we consider only most frequent set of
keywords whose frequencies add up to the top (100 — k)%
of the size of the dataset. For this part of the experiment,
we only used single-keyword queries. In the second set of
experiments, we also test the quality of ranking using two-
keyword queries.

5.1.2 Results

For each of the histogram construction algorithms, we al-
located space budget ranging from 10 to 200 KB. We evalu-
ated the three different query workloads on each summary,
as well as the actual dataset. Each summary was represented
using both storage schemes (as discussed in Section 4). We
measured the algorithm performance on a query workload
by computing the relative error ge,r for each query ¢ and
averaging them over all queries. gerr is computed as follows:

o na = el
T max(ng, 1)

where n, denotes the frequency of actual answer set and n.
is the frequency of estimated answer.

3Three of the histograms correspond to the three algorithms
in Section 4 and the fourth one corresponds to a modified
keyword clustering technique to be described in Section 5.1.2
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show the plots of space-budget vs. average estimation-error
in Figures 1(a), 1(b), 1(e), and 1(f) for the three algorithms.
Figure 1(a) shows the plot for representation scheme using k-
f pairs. MultiKeyMinSkew starts at an error-rate of 90% and
drops all the way down to less than 10% for 150 KB of stor-
age. The error-rate for LayeredHistogram is high through-
out and drops to only 35%. Counter-intuitively, the third
algorithm KeyClusterMinSkew, which is expected to per-
form well since it achieves the lowest SSFE for a given space
budget (Figures 1(d) and 1(h)), performs poorly and shows
hardly any improvement in estimation error with increasing
storage. We can explain this phenomenon as follows: Recall
that ClusterKeyMinSkew takes as input, k clusters. The
hope is that the distance measure used would partition the
keywords such that spatial distribution of keywords within
a cluster is similar. Typically, the clustering step groups
sparsely distributed keywords together into a single cluster.
Subsequently, this algorithm, in an effort to reduce the over-
all SSFE metric, allocates (almost) the whole space budget
to the dense clusters since this leads to the maximum SSFE
reduction and therefore, ignores sparse clusters altogether.
For instance, in this dataset the sparse cluster consisted of
79 out of 96 keywords. As a result, all the queries that con-
sisted of keywords from the sparse group performed poorly.
However, the queries from the dense group achieved low es-
timation error as shown in Figure 1(b). Here, we plot the
estimation error for a top-10% variant workload.

For the second representation scheme, that uses b-f pairs
(Figure 1(e)), we observe an exactly opposite phenomenon.
Here, the LayeredHistogram performs better than the other
two algorithms. However, the error rate almost drops the
same to less than 25% for 150 KB of storage for both the
algorithms. This drop is better for LayeredHistogram and
worse for MultiKeyMinSkew compared to their other rep-
resentation scheme. As for the performance of the Clus-
terKeyMinSkew algorithm, here too, the results obtained
were poor. We attribute the cause to the same reason (i.e.,
allocation of all space to dense buckets). However, Figure
1(f) shows better performance on top-10% workload.

performance of the ClusterKeyMinSkew algorithm for either
representation schemes can be attributed to its bias towards
dense clusters. This fact is validated by the performance
shown on the plots of top-10% variant query workloads, on
which the algorithm performs very well. Hence, we boosted
the performance of the vanilla ClusterKeyMinSkew tech-
nique by forcing a certain fraction of the total budget to be
used for the sparse cluster(s) exclusively. We made the frac-
tion of budget that is pre-allocated to a sparse cluster to be
proportional to the ratio of its initial SSE to the maximum
SSFE of any of the cluster. This improved the performance
of the algorithm significantly for all our test workloads. We
call this modified algorithm, the ClusterBoostMinSkew. It
performs well for both the representation schemes as seen in
Figures 1(a) and 1(e).

Performance on Uniformly Distributed Workload:
We tested our algorithms on a uniform query workload.
The results are shown in Figures 1(c) and 1(g). Multi-
KeyMinSkew performed consistently better for both the rep-
resentation schemes, while ClusterBoostMinSkew significantly
improved in performance compared to its previous version
ClusterKeyMinSkew. LayeredMinSkew suffered in its perfor-
mance with both the representation schemes. Recall, that
the uniform workload largely consists of sparsely distributed
keywords. The MultiKeyMinSkew again performs the best,
since it transparent allocation policy is much more likely to
distribute buckets more equitably amongst keywords, than
the other algorithms.

Discussion: Our experiments with other similar sized real
datasets more or less showed the same characteristics. Hence
we draw the following conclusions from the first set of ex-
periments: The b-f pair based representation is suitable
for summaries using LayeredHistogram, while the k-f pair
based representation is suitable for summaries using Multi-
KeyMinSkew. Both the representations are more or less suit-
able for summaries using ClusterBoostMinSkew. For Data
and Uniform distribution workloads, MultiKeyMinSkew per-



forms well. ClusterBoostMinSkew showed significant im-
provement over its counterpart ClusterKeyMinSkew. If the

workload consists of only top-k% keywords, ClusterKeyMinSkew

performs slightly better than the other two.

5.2 Rank-Evaluation of Search Results

Here, we describe the results from our second set of exper-
iments - for evaluating the ranking quality using our sum-
mary datasets. We downloaded 475 real GIS datasets from
www.mapdez.org. For each dataset, we executed the pre-
processing steps discussed in Section 5.1 and compressed
using all the three histogram algorithms except the vanilla
clustering-based algorithm, ClusterKeyMinSkew. We cre-
ated 5 different sets of summaries by using a cutoff value
for the SSE Reduction achieved. We used the following cut-
off values for as stopping criteria: 55%, 65%, 75%, 85%,
and 95%. The buckets that resulted from the summarized
datasets were inserted into an Inverted File-R*-Tree index
structure for quick retrieval. Our base-line comparison was
against the original dataset, i.e, answers to queries were

ranked by evaluating the query on the complete actual datasets.

We generated two uniform query workloads consisting of
10000 SK queries each. The first one consisted of “1-keyword”
queries and the second one consisted of “2-keyword” queries.
We used OR semantics in Equation 1 for computing the rel-
evance of “2-keyword” queries using p = 2. Extension to
queries with AND semantics is similar and therefore, we do
not include the results here. The workload was created from
a set of unique keywords collected from all the 475 datasets.
We used only keywords that had a dataset (document) fre-
quency of at least 10, to avoid generating zero hit queries.

We processed each query workload using the uncompressed
datasets first. This resulted in a ranked list of sources for
each query denoted by 7orig. We consider 7454 to be the
true ranking and evaluate the performance of the three al-
gorithms against this using a rank_match metric. We de-
fine rank_match as the fraction of data sources in another
ranked list, 741y (produced using a particular algorithm)
that matches in rank with r,,i4. For the purposes of this
experiment we consider only top-5 sources for computing
rank_match.

5.2.1 Results

In Figures 2(a) and 2(b), we show the plots of SSE Re-
duction vs. rank_match for all the three summarization algo-
rithms. The best performance was again shown by the Mul-
tiKeyMinSkew algorithm, where the rank_match went up to
78% for “1-keyword” queries and up to 75% for “2-keyword”
queries using summaries at the 95% SSE Reduction level.
The comparative performances among the three algorithms
almost agreed with the performances shown in the first part.
These results leads us to conclude that MultiKeyMinSkew
performs consistently better across all datasets for a uniform
query workload. In comparison, the rank_match achieved by
using simply metadata was only about 30% which was far
worse than the level of matching achieved using any of the
three techniques proposed in this paper.

In Table 1, we show the average execution time for each of
our algorithm. Columns 1 and 2 corresponds to I-keyword
and 2-keywords queries, respectively. Barring minute differ-
ences among them, all the three achieved at least 7z speed
up compared to their uncompressed counterpart which is
quite significant. In Column 3, we show the storage com-

Algorithm Time (ms) | Time (ms) | Storage (MB)
LayeredMinSkew 2 2.9 10-25
MultiKeyMinSkew 2.3 2.6 5-11

ClusterBoostMinSkew 2.1 2.2 4-12
Uncompressed 17 32 251

Table 1: Average Execution Time and Storage.
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Figure 2: Rank Evaluation.

pression for all the three algorithms that followed k-f pair
representation. All the three achieved quite a significant
amount of more than 90% compression ratio. However, the
compressions achieved by MultiKeyMinSkew and Cluster-
BoostMinSkew are slightly better.

Our experiments show tremendous improvement on the
performance of SK Queries as a result of the compression,
yet maintaining a high quality of search results. Given the
encouraging results, we plan to test different keyword clus-
tering and boosting mechanisms.

6. RELATED WORK

Data summarization using histograms is a well-researched
problem in the database community. A variety of histogram
based approaches have been proposed for both single dimen-
sional and multi-dimensional data. A comprehensive survey
of histogram creation techniques can be found in [15]. Adap-
tation of histograms to spatial datasets has been explored
in [1, 2, 28]. Traditionally, all these techniques consider
only the spatial attribute for approximation. However, GIS
datasets contain both spatial and textual attributes.

Searching GIS information on the web has recently re-
ceived a lot of attention. Researchers have addressed the
issue of extracting geographic contents implicitly and explic-
itly present in web pages and turning them into a searchable
GIS information catalog [3, 11, 18, 22]. The main focus here
is to extract keywords denoting names, resource/utility de-
scriptions and other geo-features present in web pages. In
the context of query processing, the main focus is to build
efficient indices over spatial and textual data [6, 13, 31]. In
[6], the authors propose index structures separately for tex-
tual and spatial data and suggest many optimization tech-
niques that speed up the retrieval of objects. The work in
[13, 31] discusses hybrid index structures that consider text
and space together.

Discovering textual information sources on the deep web
is closely related in spirit to our work [5, 12, 16]. The main
motivation of that work is to index billions of web pages
hidden in the web behind query interfaces. The only way
to index such hidden pages is to query the source through
its interface and retrieve the contents. However, retrieving
huge repository of textual information through queries is



time consuming. Hence such work concentrate on minimal
querying of sources to create summaries of textual informa-
tion [4, 21]. Later, these summaries are used to route user
queries to discover textual information sources.

There are many ranking models developed for Geographic
Information Retrieval systems based on the metadata. These
models compute spatial similarity measures based on the
overlap between query region and spatial description (MBR)
found in the metadata. They range from simple Boolean ap-
proach to recent probabilistic approaches [20].

7. CONCLUSIONS & FUTURE WORK

In this paper, we looked at the problem of GIS source
discovery for spatial-keyword queries. We provided a solu-
tion to this problem by creating summaries of GIS datasets
and using them for source discovery. We adapt existing
well-known histogram based techniques and present three
summarization algorithms for GIS data that take both tex-
tual and spatial information-content into consideration. To
the best of our knowledge there exists no histogram tech-
nique that focus on summarizing a collection of multiple
spatial distribution simultaneously. We conducted exper-
iments evaluating the performance of the proposed algo-
rithms. We characterized the effectiveness of each algo-
rithm under different query workloads and representation
schemes. We used a simple boosting technique to improve
ClusterKeyMinSkew’s performance. With the boost, the al-
gorithm showed promising results by consistently being close
with the best performing algorithms in many situations. Our
rank-evaluation experiments show that by using the sum-
maries we can answer user queries with faster response time
and high quality results.

There are many interesting possibilities for future research.
Since, ClusterKeyMinSkew combines the positive effects of
keyword clustering and spatial partitioning, we believe that
by exploring further tuning techniques, it’s performance can
be improved significantly. We plan to conduct more exper-
iments on real as well as synthetic datasets with varying
distribution and characteristics. We mainly focused on GIS
datasets that are downloadable, however, there are many
useful sources that can only be queried and not downloaded
in their entirety (e.g., GNIS [9]). It will be interesting to
explore probing techniques similar to the ones proposed for
textual sources that can create summaries of such databases.
We tested our algorithms for rank evaluation with few hun-
dred datasets, but we would like to explore challenges in
scaling it to hundreds of thousands of datasets. In particu-
lar, response time for top-k queries can be improved by stor-
ing extra information in the index structures and use them
to prune insignificant results ahead of time. Both these in-
teresting problems are part of our ongoing and future work.
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