A Graph Partitioning System For Natural Unbalanced Partitions

Sachin B. Patkar, Viraj Kumar, Bijit Hore, Hardeep Kaur
Department of Mathematics,
Indian Institute of Technology, Bombay,
Mumbai-400 076,
INDIA.
patkar@math.iitb.ac.in

Abstract: - We describe here a graph partitioning system that aims at producing naturally unbal-
anced multiway partitions of a large graph. This system makes use of ideas of 2-phase FM (coarsen-
ing partitioning,refinement), multilevel refinement and network flows. The system has been built up as a
loosely coupled system of independent modules, which may be replaced by equivalent modules, thus allowing
us to try out several different strategies at different levels. In our strategy, the input netlist is first coars-
ened into a smaller netlist and the core network flow based partitioner then proceeds to partition this small
coarsened netlist. This coarse partition is then lifted to a partition of the original netlist.

We also present the comparison of results of this approach applied to benchmark circuits with the well-
established algorithm pmetis of Metis [5] package (Metis based algorithms [5],[2] have reported success for
graph and netlist partitioning). The comparative study shows that this new approach indeed produces good
quality scaled-cost multiway partitions.

Our partitioning system may be considered as an adaption of the classical Fiduccia-Mattheyses paradigm
for producing unbalanced partitions. For efficiency and quality, we make use of the multilevel and 2-phase

variations of the Fiduccia-Mattheyses paradigm rather than plain classical one itself.

Key-Words: -

1 Introduction

Graph Partitioning finds applications in various fields
today. Scientific computing, circuit partitioning for
various stages of VLSI design and task scheduling
in multiprocessor systems are some of the important
areas for which the problem of graph partitioning is
a very central one.

The problem of partitioning a VLSI netlist into
blocks, each of which meets the resource constraints
of the FPGAs, is also of importance. The input to
such a partitioner comprises of the netlist, cost esti-
mates of the nodes in the netlist (ie. the resources
of each type in the FPGA required by each type of
the nodes of the netlist), and the resource constraints
of an FPGA (such as the number of flipflops, the
number of function generators, the number of CLBs
and the number of I/O pins). Since a large variety
of FPGA’s are available with differing resource con-
straints, the idea of partitioning the graph underlying
a netlist into natural (and possibly) unbalanced par-
titions has gained prominence. Several investigations
have been carried out in this regard. The prominent
approaches include MELO [3] based on spectral the-

ory and the ratio-cut partitioner by Wei and Cheng
[8] Recently the ideas from the theory of submodular
functions have also been used successfully for com-
puting partitions into 2 parts [7].

Most of the partitioning problems such as VLSI
netlist partitioning problem reduce to graph parti-
tioning. The data is represented by means of a graph
G = (V,E), where V is a set of vertices or nodes
and E is a set of edges. A k-way partitioning of the
graph is a division of the vertex set into k£ compo-
nents. A good partition of the graph is one in which
the number of edges that run across components is
small.

The graph partitioning problem falls in the class of
NP-hard problems. Solutions are typically based on
heuristics or approximation algorithms.

Spectral methods are a popular choice for natu-
rally unbalanced partitioning. The first key step in a
typical spectral partitioner is that of the matrix for-
mulation which is to be used for the spectral methods.
One formulation is based on the Laplacian of the ad-
jacency matrix of the graph. The next step of the
process is to obtain the spectrum of the graph. The
eigenvectors are used to find a geometric embedding

of the graph. Several intuitive ordering or cluster-
ing schemes use this embedding information to find
multiway partitions of a given graph.

We have built a core for a multiway graph parti-
tioning system that allows naturally unbalanced par-
titions to be found. It is a loosely coupled system con-
sisting of several modules. Different strategies and
approaches would be invoked by combining different
modules in an appropriate order. One of the typ-
ical modules is coarsener. The coarsener primarily
reduces the size of the problem, without destroying
relevant information as much as possible, and it re-
sults in a smaller netlist. This smaller netlist is then
processed by successive modules rather than the ac-
tual netlist which could be prohibitively large. This
results in a partition of the coarsened netlist.

The central module is one that creates several mul-
tiway naturally unbalanced partitions of the coars-
ened graph.

Each of these partitions of the small coarsened
graph is then projected back to the corresponding
partition of the original graph and the last module
of the system refines this partition to yield improved
cut. This refinement module may be based on the
multilevel refinement scheme that is a part of the
powerful Metis package. Several other choices are
possible and may be integrated in our loosely cou-
pled system.

2 Partitioning Objectives

In general, a VLSI netlist or circuit is modeled well by
a hypergraph. A hypergraph is a collection of vertices
and hyperedges, where each hyperedge is simply a
subset, of vertices. Thus each hyperedge can model
an electrical net joining a set of vertices.

A graph instance can be constructed from a given
hypergraph by modeling each hyperedge e by a clique
of weighted edges on the set of vertices of the given
hyperedge. Each edge in the clique has a weight
;)1(';”_(61)) 2552 where p is the number of vertices in the
hyperedge e and w(e) is its weight. (This model is
known as partitioning-specific model, cf. [6]).

Now the graph partitioning problem in general can

be stated as follows:
Given a graph G = (V, E), where V is the set of nodes
{v1,v2,...,v,} and E the set of edges, construct a k-
way partitioning Py which divides the nodes into a
set of k disjoint subsets P, = {C1,Cs,...,C} so as
to optimize some objective function f(Py).

A very common objective function is merely the
size of the cut. Minimum such cut however, may
divide the vertex set very unevenly and this is unde-
sirable.

There are, in literature, objective functions which
measure the size balancing effect of a partition. They
are described below.

e Ratio Cut: Given G = (V, E), partition V into
disjoint U and W such that cut(U, W) /(|U|-|W|)
is minimized.

e Modified Scaled Cost : For a k-way partition
Py, of a graph G, the cost function is defined as

k
E,
cost(Py) = -
)= 2 SR a = TG

h=1

where, Ep, is the number of cut edges that cross
the cluster Cj. The scaled cost is then defined

as mscost(Py) = m x cost(Py).

Note that this definition of the modified scaled
cost is at least as harsh as the widely used usual
notion of the scaled cost

1 Ep,
n(k—l)ZIChl

Indeed, if a partition P, = {C1,Cs,...,Cr} of
the vertex set of a graph G(V, E) has at least one
block, say C}, whose size is bigger than half the
size of V', then the modified scaled cost is higher
than the usual scaled cost. Otherwise the modi-
fied scaled cost is identical to the original notion
of the scaled cost. We shall use both these mea-
sures to evaluate the partitions produced by our
partitioner. Also note that these two notions of
costs are identical in case of the perfectly bal-
anced partitions such as the ones Metis tends to
produce.

scost(Py) =

It is important to note that we shall also be using
the new notion of the scaled cost which is harsher on
the unbalanced partitions in which one of the parts
is bigger than half the size of the vertex set V' of
the original graph. It will be shown with the help of
experiments on the benchmark that our partitioning
system shows improved results in the sense of both
the variations of the notion of scaled cost.

3 Partitioning Methods

Since graph partitioning is a hard problem, most so-
lution approaches are based on heuristics. There is
a wide variety of heuristics that have been suggested
and tried. Broadly, partitioning methods fall into
two categories. The first variety includes those that
work locally. The other set of methods are those that
look at the global connectivity information while par-
titioning.

The classical algorithms due to Kernighan-Lin and
Fiduccia-Mattheyses, which are now part of the stan-
dard texts (see [6]), were first effective methods for
2-way cuts, which could be classified as local search
strategies. The major drawback however happens to
be the arbitrary initial partitioning of the vertex set.
These methods are popular as postprocessing or re-
fining modules. After other methods arrive at a par-
tition, these move-based methods are employed in or-
der to take the partition to a local minimum. There
are several other combinatorial schemes that work lo-
cally.

Among global methods, the ones based on spectra
of associated matrices work quite well. As mentioned
earlier, they form an important part of our system.

3.1 Spectral Formulation

We briefly discuss a matrix formulation obtained
from the adjacency matrix of the graph.

3.1.1 The Laplacian formulation

Let A be the adjacency matrix of G(V,E). Let a
diagonal matrix D have entries d;; of this matrix de-
noting the degree of the node v; in the absence of edge
weights and the sum of the weights of all edges that
have v; as an endpoint otherwise. The Laplacian of
the graph is defined as Q = D — A.

A relationship between the optimal ratio cut cost
and the second eigenvalue A of Q = D — A has been
established by Hagen and Kahng (see for details [3]).
Their theorem is stated below without proof.

Theorem 1 Given a graph G = (V,E) with adja-
cency matriz A, diagonal degree matriz D, and | V |=
n, the second smallest eigenvalue X of Q = D — A
yields a lower bound on the cost ¢ of the optimal ra-
tio cut partition, with ¢ > (A/n).

Following such ideas, researchers use the lower end
of the spectrum of the Laplacian matrix. These eigen-
vectors of the Laplacian of the graph give an embed-
ding of the graph in Euclidean space. Spectral parti-
tioners then make use of a d-dimensional embedding
of the graph from the eigenvectors corresponding to
the d lowest eigenvalues of the Laplacian. The "
components of each of these d eigenvectors give the d
coordinates in R? for the i'" node of the graph. Af-
ter the embedding is obtained, various strategies are
used to obtain clusters in the graph.

4 The Multilevel Scheme

In our Partitioning System, we make use of a mul-
tilevel algorithm for graph partitioning. The central

idea is to first reduce the size of the graph repeatedly,
till its size gets down to a few hundred vertices, i.e.,
to coarsen it. This small graph is then partitioned
and the partitions are projected to the original graph
to obtain a partitioning of the actual input. This
last phase is the uncoarsening or refinement phase.
Karypis et al [5] investigate some strategies for each
of the three phases. We incorporate their multilevel
scheme in our partitioner. As we shall see, the coars-
ening strategy gives partitions faster without sacri-
ficing too much on the quality of the partition. The
basic flow of the partitioner is described in some de-
tail below.

Step 1. We first coarsen the original graph G =
(V,E) using a strategy for fusing pairs of nodes
repeatedly to form an intermediate graph G; =
(V1, Ey) with a smaller number of (super)nodes. One
such strategy is to find a maximal matching of the
graph and fuse vertices at the ends of the matching
edges. Note that in this process some of the supern-
odes may become extremely large whereas others may
consist of only a few nodes.

Step 2. Next, we coarsen the graph G; to Gy us-
ing a similar strategy, but this time we may discard
supernodes of small weight.

Step 3. Next, we use the relation between supern-
odes of G5 and nodes of G to obtain small cuts of
G1. We do this as follows : We construct a flow net-
work Gy = (Vy,Ef) where V; = Vi U {s,t} where
s and t are new (dummy) vertices, and Ey = E;
and the capacity function ¢ : Ef — R* is given by
ce = weight(e)Ve € Ey.

Now, for each pair of supernodes U,V in G2, we
add infinite capacity edges between s and each ver-
tex of GGy in U and similarly we add infinite capacity
edges between ¢t and each vertex of G; in V. We now
run the Mazflow-Mincut algorithm [4] on this flow
network to obtain a small cut (S,T) of Gy where S
and T are respectively the source-side and sink-side
vertices of the cut. Note that because of the infinite
capacity edges S and T contain atleast the vertices
in U and V respectively. This ensures that the cut
is non-trivial. We now remove the infinite capacity
edges and repeat the process for another pair of su-
pernodes of G2. This gives us a number of biparti-
tions of the node set of G1.

It may be remarked that in case the number of su-
pernodes of G5 is large, the above approach may in-
voke the network flow algorithm quadratic number of
times. To avoid this, in such situations, the network
flow algorithm is used to compute minimum cuts sep-
arating each supernode from all the others simultane-
ously. Indeed this approach results in a theoretically
2-optimal solution to the multiway partitioning prob-
lem.

Step 4. We now use these sets of blocks of nodes to
compute subpartitions of V3. We compute these in
the following manner : We create the Overlap Graph
of the set of blocks. This is an undirected, unweighted
graph each of whose node corresponds to a block
and two nodes are adjacent iff the intersection of the
blocks corresponding to them is non-empty. We enu-
merate all the mazimal independent sets of this over-
lap graph. These enumerated sets (whose elements
are blocks of elements), correspond to subpartitions
of the set V7.

The algorithm consists of growing branches of a

tree by adding one vertex at a time such that the set
always remains an independent set till it becomes a
maximal independent set. We start with the root as a
singleton set consisting of one vertex of the graph and
anode at depth 7 is a set of size i+1. We stop growing
a branch when we can’t find any more vertices to
add (i.e all remaining vertices have one or more edges
incident on this set of nodes). Each set is an ordered
set therefore avoiding generation of redundant sets
amongst the different branches of the tree. We grow
| V| such trees starting with each distinct vertex
of the graph as the root of the tree. Thus a tree
with root v generates all the maximal-independent
sets that contain v as the smallest labeled vertex.
Step 5. We now have a collection of subpartitions
of Gi. We extend these to full partitions of G; by
absorbing the extra vertices using a simple strategy,
and then map these back to blocks of vertices in the
original graph G.
Step 6. Finally, we use these blocks as the initial
partition and run the refinement module on this. We
make use of the multilevel refinement idea that has
been popularized by packages such as Metis. Indeed
we built one such system using the application pro-
grammers interface of MetisLib [5] to refine the above
obtained partitions of the given graph. Metis library
is extremely fast and thus our refinement works very
fast. Standard Fiduccia-Mattheyses heuristic may
also be used for the refinement purpose.

5 Detalils
Phase

of the Coarsening

During the coarsening phase, a sequence of smaller
graphs G; = (V;, E;), is constructed from the original
graph Gy = (Vo, Ep) such that |V;| < |V;_1]. A pair
of vertices of G; is combined to form a single vertex
of the next level coarser graph G;11. Let V' be the
set of vertices containing the pair of vertices of G;
combined to form a vertex v of G;11. We call v as
supernode. The weight of vertex v is equal to the
sum of weights of the vertices in V;”. Also in order to

preserve the connectivity information in the coarser
graph, the edges incident on v are the union of the
edges incident on the vertices in V;”. In case where
more than one vertex of V;¥ contain edges to the same
vertex u, the weight of the edge of v is equal to the
sum of the weights of these edges. This coarsening

method ensures the following properties.

e Every edge-cut of the coarser graph corresponds
to a unique of the edge-cut of the original graph.

e A good partition of the coarser graph leads to a
a good partition of the original graph.

The edge collapsing idea can be formally defined
in terms of matchings. A matching of a graph is
a set of edges, no two of which are incident on the
same vertex. Thus the next level coarser graph G;41
is constructed from G, by finding a matching of G;
and collapsing the vertices being matched into su-
pernodes. The unmatched vertices are simply copied
over to G;4+1. Since we are decreasing the size of the
graph GG;, the matching should contain large number
of edges. So, we use the maximal matching strat-
egy. A matching is maximal if it is not possible to
add any other edge to it without making two edges
become incident on the same vertex. Several differ-
ent heuristics for finding maximal matching are used
as the algorithm to find maximum matching would
not be practical in the sense of time complexity for
rather large graphs although O(|V']?) algorithms are
available for this purpose.

The following technique is used for computing a

maximal matching in our approach.
Sorted Heavy Quotient Edge Matching
(SHQEM) The edges are sorted according to the ra-
tio of their edge-weights to the product of the weights
of the two vertices joined by the edge. Those vertices
are visited first which hava an adjacent edge of max-
imum ratio. This tends to preserve the ratioCut as
observed empirically. We also ensure that no two ver-
tices in the original graph from different block of the
given bipartition are selected for merging.

At the end of the coarsening phase, we have a
coarsened graph of appropriate size, and we also have
a partition which corresponds to the given partition
of the original graph which was one of those com-
puted by running our network flow based cluster sep-
arator on the coarsened graph in conjunction with
the maximal independent subsets algorithm.

6 Experimental Results

We have tested our approach on benchmark circuits.
We used a subset of ACM/SIGDA benchmarks (avail-
able via World Wide Web at

http://ballade.cs.ucla.edu/cheese). These circuits
were transformed into graph form by modelling a net
using a random collection of edges connecting approx.
5 |e| pairs of nodes of the net e (here |e| denotes the
number of nodes on which the net e is incident). This
model has been suggested and employed in [2] as it
preserves sparse-ness of the netlist which the parti-
tioning specific model does not.

We conducted our experiments as follows: pmetis
is a deterministic multiwat partitioner that takes the
required number of blocks in a partition and the
graph as input and computes good balanced parti-
tions. We ran pmetis on each benchmark to obtain
2-way, 3-way and 4-way partitions. Our partitioner
takes in as an input the graph and the typical number
of blocks. It, however, produces in a single run, sev-
eral (possibly unbalanced) multiway partitions, each
with number of blocks less than the specified typical
number of blocks. It is important to mention that
we make only one run of our partitioning system on
each benchmark. Just like pmetis, it is a determinis-
tic partitioning system, too.

The following table lists a summary of the results of
our experiments. The column nparts gives the num-
ber of blocks of the partition. The column pmetis
gives the scaled cost computed by pmetis (of Metis
package). The columns mscost and scost describe
the modified scaled cost and the scaled cost of the
best partitions produced by our system (Due to space
limitation we are unable to give complete evidence
about several different better partitions that were
produced by our algorithm). Also recall that modi-
fied scaled cost is by definition harsher on the un-
balanced partitions than the measure of scaled cost.
More detailed results are available on request from
the authors.

Next we present a series of tables, one for
each benchmark circuits (primary01, test02, test03,
test04, test05, test06, bml), containing a few of the
partitions obtained by our partitioner that are better
(in the sense of scaled cost) than the corresponding
multiway partitions obtained by pmetis.

7 Conclusion

Our partitioning system has reported success in find-
ing natural unbalanced partitions, even when we em-
ploy the harsher meaure of modified scaled cost.
A large number of applications in data clustering,
graph drawing require identification of natural clus-
ters. Our system can be of use in such applications.

|| Name | nparts | pmetis | mscost | scost ||

primary01 2 0.101 0.067 | 0.036

primary01 3 0.100 0.058 | 0.048

primary01 4 0.125
test02 2 0.035 0.044 | 0.034
test02 3 0.043 0.032 | 0.029
test02 4 0.047 0.034 | 0.030
test03 2 0.036 0.022 | 0.014
test03 3 0.032 0.026 | 0.024
test03 4 0.044 0.030 | 0.030
test04 2 0.025 0.020 | 0.012
test04 3 0.028 0.017 | 0.017
test04 4 0.031 0.022 | 0.022
test0b 2 0.013 0.014 | 0.012
test05 3 0.018 0.016 | 0.016
test05 4 0.024
test06 2 0.076 0.053 | 0.028
test06 3 0.086 0.048 | 0.035
test06 4 0.090
bm1 2 0.098 0.154 | 0.084
bm1 3 0.109 0.048 | 0.035
bm1 4 0.103

Table 1: Comparison of pmetis and our partitioner in
the sense of modified scaled cost and the scaled cost

|| Name | mscost | scost | block-sizes |
primary01 | 0.067 | 0.036 69,763
primary01 | 0.065 0.037 126,706
primary01 | 0.067 | 0.048 259,573
primary01 | 0.058 0.049 | 182,575,75
primary01 | 0.077 | 0.077 | 374,389,69
primary01l | 0.082 | 0.082 | 346,418,68

Table 2: A few of the better partitions of primary01
obtained by our partitioners

|| Name | mscost | scost | block-sizes |

test02 | 0.044 | 0.034 592,1071
test02 | 0.036 | 0.028 186,1309,168
test02 | 0.032 | 0.029 146,1012,505
test02 | 0.042 | 0.033 261,167,1235
test02 | 0.034 | 0.030 | 142,256,1102,161

Table 3: A few of the better partitions of test02 ob-
tained by our partitioners

|| Name | mscost | scost | block-sizes |

test03 | 0.024 | 0.014 313,1293
test03 | 0.022 | 0.014 328,1278
test03 | 0.032 | 0.029 897,709
test03 | 0.026 | 0.024 310,396,900
test03 | 0.029 | 0.026 282,370,954
test03 | 0.030 | 0.030 | 289,248,423,646
test03 | 0.032 | 0.032 | 300,257,422,627

Table 4: A few of the better partitions of test03 ob-
tained by our partitioners

block-sizes

Name | mscost | scost |

test04 | 0.020 | 0.012 293,1221
testod | 0.021 | 0.013 286,1228
test04 | 0.022 | 0.018 592,022
test04d | 0.020 | 0.017 611,903
test04 | 0.017 | 0.017 | 290,686,538
test04 | 0.018 | 0.018 | 290,221,443,560
test04 | 0.022 | 0.022 | 294,322,333,555

Table 5: A few of the better partitions of test04 ob-

tained by our partitioners

|| Name | mscost | scost | block-sizes
test05 0.018 | 0.010 397,2197
test05 0.014 0.012 1118,1476
test05 0.016 | 0.016 | 1033,859,702
test05 0.016 | 0.016 | 882,894,818
test05 0.016 | 0.016 | 1059,886,649

Table 6: A few of the better partitions of test05 ob-

tained by our partitioners

|| Name | mscost | scost | block-sizes |
test06 | 0.053 | 0.028 100,1651
test06 | 0.061 0.033 130,1621
test06 | 0.048 | 0.035 | 129,145,1477

Table 7: A few of the better partitions of test06 ob-

tained by our partitioners

|| Name | mscost | scost | block-sizes |

bml 0.154 | 0.084 72,810
bml 0.170 | 0.103 157,725

Table 8: A few of the better partitions of bml ob-

tained by our partitioners

References

[1]

[6]

C.J. Alpert and A.B.Kahng, Recent Di-
rections in Netlist Partitioning: A Survey,
INTEGRATION, the VLSI Journal, Vol.
19, 1995, pp.1-81.

C. J. Alpert, L. Hagen and A. B.
Kahng, A Hybrid Multilevel/Genetic Ap-
proach for Circuit Partitioning, Proc.
ACM SIGDA Physical Design Workshop,
1996, pp. 100-105.

C.J. Alpert, A.B.Kahng and D.S. Yao,
Spectral Partitioning with Multiple
Eigenvectors, Discrete Applied Mathe-
matics, Vol. 90, 1999, pp. 3-26.

A.V. Goldberg and R.E. Tarjan, A new
approach to the maximum flow problem,
J. Assoc. Computing Mach., Vol. 35, 1988.

G. Karypis and V. Kumar, METIS: A
Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes,
and Computing Fill-Reducing Order-
ings of Sparse Matrices (version 4.0),
http://www.cs.umn.edu/ karypis, 1998.

T. Lengauer, Combinatorial Algorithms
for Integrated Clircuit Layout, Bryan
Press, New York, 1990.

S.B. Patkar and H. Narayanan, Improving
Graph Partitions using Submodular Func-
tions, to appear in Special Issue of Dis-
crete Applied Mathematics on Sub-
modular Functions and Applications

Y.-C Wei and C.-K Cheng, An improved
two-way partitioning algorithm with sta-
ble performance, IEEE Trans. Computer
Aided Design, Vol 10, No. 12, 1991, pp.
1502-1511.

