
Flexible Anonymization For Privacy Preserving

Data Publishing: A Systematic Search Based

Approach

Bijit Hore, Ravi Chandra Jammalamadaka, Sharad Mehrotra

April 5, 2007

Abstract

k-anonymity is a popular measure of privacy for data publishing: It
measures the risk of identity disclosure for individuals whose personal
information is released in some table along with other individuals (e.g.
census data). Higher values of k denote higher level of privacy (smaller
risk of disclosure). Existing techniques to achieve k-anonymity use a
variety of “generalization” and “suppression” of cell values for multi-
attribute data. But maximizing the privacy level is not the only goal,
the released data needs to be as “information-rich” as possible to max-
imize its utility. Information loss becomes an even greater concern as
more stringent privacy constraints are imposed on the released data
[4]. The resulting optimization problems have proven to be computa-
tionally intensive for data sets with large attribute-domains. In this
paper, we develop a systematic enumeration based search strategy that
explores a much richer space of solutions than any previous method in
literature. We also develop a flexible generic search strategy that accel-
erate the search process significantly. We provided sufficient empirical
evidence of the superiority of our approach over previous ones through
extensive experimentation.

1 Introduction

The problem of anonymizing multi-attribute personal data (microdata) for
public release, has generated a lot of interest in the research community over
the recent years. Privacy concerns arise due to danger of disclosure of confi-
dential information when individual specific data sets are released to public.
Since most data sets of interest contain one or more attributes which could
be considered confidential by the owner, e.g., medical condition, financial
information, ethnicity, level of education etc., if data sets are “insufficiently
anonymized”, they may be linked with other available information, thereby
disclosing identity of individuals and possibly their confidential information.
A simple approach to preventing information leakage is to k-anonymize the

1

released data set [8, 6]. A k-anonymized data set has the following prop-
erties: (i) All attributes that are explicitly identifying, example “Name”,
“Address”, “Social security number” etc. are removed from the released set.
(ii) A subset of the remaining attributes is determined (by an expert) to be
the set of “Quasi Identifiers” (potentially identifying set): these attribute
values taken together might form an unique combination and therefore could
be linked with external data to identify the record of an individual in the
published data. (iii) It contains one or more sensitive attributes, the associ-
ation of which with an individual could be considered confidential, e.g., type
of disease, financial details like credit worthiness etc. Now, assume there are
q attributes in the quasi identifier set, then the goal of k-anonymization is
to “minimally” modify the released data set, such that for each record, the
q-tuple of values of its quasi-identifier attribute set is indistinguishable from
at least k − 1 other records in the released set. This is referred to as the
anonymity set or equivalence class of the record.

The most commonly used technique for anonymization is that of gener-
alization. Generalization refers to the action of replacing the original value
by some more general value (e.g., replacing an exact numerical value by an
interval). Occasionally some of the records might to be suppressed (i.e.,
dropped from the published table). Generalizing a data set results in in-
formation loss which can be captured quantitatively by an associated cost
metric for each of these operations. Typically, the cost associated with
suppression is higher than generalization, since it leads to a greater loss of
information. A number of cost metrics have been proposed in literature
[13, 1, 2, 4] which capture various notions of information loss, ranging from
application specific measures to very generic ones.

Generalization techniques in anonymization can be classified into two
categories [3]:
Single dimensional techniques: They are also referred to as Attribute
generalization (AG) techniques. In such approaches, we fix one general-
ization for each attribute, e.g. for attributes with ordered domains this
corresponds to some division of the domain into disjoint intervals. Then,
recode the values of each data tuple according to the generalization fixed for
the corresponding attribute. Such a strategy can be viewed as partitioning
the multidimensional space of quasi-identifiers into a (possibly non-uniform)
grid (see figure 1 (a) below) where each partition boundary cuts across the
whole space. Generalization techniques are often mixed with suppression
(i.e., records are completely dropped from the table) when good generaliza-
tion is not possible. However, suppressions is not desirable due to the large
information loss it results in.
Multidimensional partitioning techniques: In this approach more flex-
ible generalization schemes of the data as compared to those allowed by
single dimensional or attribute generalization approaches. Here, the rec-
tangular partitions generated to generalize the data could belong to the

2

a b

d

c

(a)

a b

d

c

(b)

Figure 1: Solution space explored by (a) single dimensional (b) multidimensional
schemes

family of hierarchical partitionings (also called guillotine partitionings) or
arbitrary rectangular partitionings. Visualizing in a multidimensional space,
a hierarchical partitioning of the space is generated by splitting the original
(undivided) space into two disjoint rectangular subspaces using an available
split along some attribute value (i.e., along a chosen dimension) and then
recursively partitioning these two spaces, independent of each other. In such
a strategy a partition boundary might not cut across the entire space (see
figure 1 (b)). The class of arbitrary partitioning allows for any rectangular
partitioning of the space and is a superset of the class of single dimensional
and hierarchical partitions.
Our Approach: In this paper we will investigate the class of hierarchical
partitioning in great depth. As argued in [3] there are numerous advantages
of considering a generalization scheme such as the hierarchical partitioning
scheme. The most important advantage of such a multidimensional approach
is that it allows one to change the nature of partitioning in one region of
the space, i.e. locally without affecting the partitions in the other regions.
Another advantage of this localization property is that it helps avoid sup-
pression in many instances where single dimensional schemes would have
enforced suppression. For instance, consider the generalizations of the 9
data points in figure 1 (a) and (b). If the required anonymization level was
k = 3, the latter scheme allows a generalization where each class has size
exactly 3 and there is no suppression at all (5th scheme) whereas the former
is unable to do so1. These extra degrees of freedom in multidimensional
schemes substantially reduces the information loss in the final anonymized
data sets.

Specifically, we develop a enumeration based branch and bound approach
that enables us to explore the space of hierarchical partitionings of a mul-
tidimensional space. One of the key challenges is how to enumerate all
distinct partitionings without duplication. We devise a novel algorithm to
enumerate all hierarchical partitionings in the form of an enumeration tree.

1This is optimum with respect to the “discrimination metric” (DM) presented later

3

We are not aware of any prior work on systematic enumeration2 of this
class of partitionings. Further, based on our enumeration tree, we develop a
branch and bound method that exploits monotonicity of the cost functions
for lower bounding and pruning of un-promising sets of solutions from the
search space. We summarize the key contributions and advantages of our
proposed solution methodology below:

Versatility of search: Our search strategy is not tied to a specific op-
timization problem, but is applicable to a much larger class of problem set-
tings. For instance, recently privacy researchers have started addressing the
inadequacies of the basic k-anonymity criteria and its effectiveness as a pri-
vacy constraint. Authors in [4] have recently proposed more robust measures
like entropy l-diversity, (c,l)-recursive diversity etc. Even in the traditional
settings of the k-anonymization problem, an user may want to impose ad-
ditional privacy constraints, such as length restrictions of anonymity groups
along certain attribute dimensions. For instance, the following restriction
could be imposed “In the released data set, no individual’s salary should
be specified to an interval of length smaller than 10K” and/or “Age of any
individual should not be specified to an interval less than 5 years” etc. Our
solution approach can be seamlessly extended to these and many other new
problem settings where the cost functions and problem constraints satisfy
some generic monotonicity properties3(to be discussed in section 4). Indeed,
we will show the performance characteristics of our algorithm for a variety
of such problem settings.

Progressive improvement in solution quality: Our priority queue
based algorithm, at all time maintains a lower bound to the true optimum
(global minimum) cost. This feature allows one to stop the algorithm as
soon as a solution with cost within an user-specified approximation factor
is reached. As the search progresses, better approximations to the optimum
solution are generated as both, the solution costs are lowered and the lower
bound estimates are tightened. Of course, if let to run till completion,
the algorithm does a complete search of the solution space and guarantees
finding all solutions with optimum cost.

Incorporation of search heuristics: The priority based approach
has an added flexibility, it allows for variety of application driven search
strategies/heuristics to be incorporated into the algorithm to enable one to
find a good solution early. An early detection of a good solution benefits in
two ways, first, it helps establish a good lower bound for pruning purposes
and secondly it helps reach desired level of approximations quickly. We
introduce a few of these heuristics in section 5 and report our findings in
the experimental section.

2A scheme to enumerate each distinct partition exactly once.
3Most popular cost measures and constraints occurring in optimization problems re-

lated to anonymization satisfy these properties.

4

The overall techniques we develop provides for a powerful approach to
exploring the enormous space of hierarchical partitioning based solutions for
k-anonymization.

In the remainder of this paper, we first summarize some related work in
section 2. In section 3 we present our enumeration algorithm, followed by
description of the pruning based search strategy in section 4. In section 5
we describe how one can explore the large space of hierarchical partitions
efficiently using a priority queue. Then, in section 6 we discuss experimental
results and finally conclude in section 7.

2 Related Work

Here, we briefly summarize the related previous work and compare and
contrast it with ours.
Single dimensional (AG) schemes: Most of the previous work on k-
anonymization of microdata for public release falls in the category of single
dimensional techniques (defined earlier) [6, 8, 2, 1, 11, 10, 14]. While some of
these algorithms are designed to search for an optimal solution or some good
approximations to the optimal [8, 6], others settle for “acceptable” levels of
information loss (i.e. solutions whose cost is within some pre-specified up-
per bound) by using incomplete stochastic searches [1, 12]. These algorithms
have been demonstrated to work only on data with small set of attribute
values. Recently, more thorough search algorithms have been proposed for
carrying out the search for optimal k-anonymization [2, 11]. Authors in
[11] developed an algorithm to enumerate all possible k-anonymizations of
a data set using full-domain generalization. This algorithm requires one to
provide the domain-generalization hierarchies for each of its quasi identifier
attributes. Authors in [2] made a clever observation wherein they noted that
most attribute generalization techniques can be modelled as a set enumer-
ation problem. This fact is used by the authors to develop an enumeration
based branch and bound algorithm which uses cost-based pruning heuristics
to cut down the search space. The effectiveness of the approach was shown
empirically by finding actual optimal k-anonymization of a real life data set
that attained global minima for a couple of generic cost metrics. We would
like to point it out that, though both ours and the scheme proposed in [2]
belong to the generic class of branch and bound algorithms, there is little
that is common between the two approaches. While authors in [2] use a
standard set enumeration technique, such a technique cannot be used to
generate the solution space of hierarchical partitions. We instead develop a
new geometric approach to enumerate a completely different class of space
partitionings.
Multidimensional schemes: While in [2] the results empirically found
using the branch and bound method were essentially optimal for single di-
mensional schemes, authors in [3] demonstrated that it was possible to lower

5

the cost further (for a specific cost metric) by allowing a multidimensional
partitioning of the data (defined earlier). They use a greedy heuristic similar
to a kd-tree construction algorithm [5] to partition the data set and derive
the anonymity classes. But the work in [3] left a lot of questions un-answered
and had some serious limitations mainly due to all the avenues that were
left un-explored both via more extensive experimentation and theoretical
deduction. We mention a couple of these here: (i) The worst-case approx-
imation factor of the greedy algorithm does not provide a good clue as to
how the quality of the solution actually varies with various changing para-
meters like the anonymity level k, the data dimensionality d etc. (ii) The
performance of greedy approaches was not sufficiently explored (empirically
or otherwise) beyond the basic k-anonymization problem and essentially
one generic cost metric (i.e., DM metric). In general, in this paper we ad-
vance the state-of-the-art regarding the application of the multidimensional
approach to a much more diverse class of anonymization problems and char-
acterize its performance in a more comprehensive manner through extensive
experimentations.
Other definitions of privacy: The weakness of the k-anonymization cri-
teria is that the data set does not guarantee enough diversity in the sensi-
tive attributes within each equivalence set, thereby potentially exposing the
confidential attribute of all individuals in the set. To amend this problem,
a more robust definition of privacy was proposed recently in [4], which is
called the principle of l-diversity. The l-diversity criteria requires the data
anonymization to be such that each equivalence class has at least l “well
represented” distinct values of the sensitive attributes, thereby making it
more difficult for an adversary to determine the true value.

3 Enumerating Partitions

In this section we describe the enumeration algorithm for hierarchical par-
titions of the space. From here onwards, for notational convenience we will
use the term “partition” and “partitioning” interchangeably to refer to a
complete partitioning scheme of the space. To refer to an undivided block
of space within a partitioning scheme, we will use the term “partition block”
or simply the term “block”.

Let us consider a d-dimensional space where each dimension corresponds
to one attribute of the data set. For instance, the figure 2 shows a 2-
dimensional space where one dimension is Age and the other Salary with
domains [30yrs, 60yrs] and [50K, 200K] respectively. Let the split set com-
prise of the four splits: (1):Age=40, (2):Age = 50, (3):Salary = 100K and
(4):Salary = 150K. The figure 2 shows the finest level of partition (where all
splits are used and all of them cut across the whole space). A hierarchical
partition of a d-dimensional space consists of a set of disjoint d-dimensional
hyper-rectangles that cover the entire space. Such a partition can be gener-

6

Age

S
a
la

ry

100k

40

150k

50

200k

50k
30 60

(1) (2)

(4)

(3)

Figure 2: Finest partition of the space

(2)
(3)

(4)

(2)

(1)

(3)

(2)

(4)

(2)

(1)

[5][4]

[3][2]

[1]

rightmost leaf

Figure 3: A sequence of splits generating a partition

ated by recursively splitting the space (we will give formal definition a little
later). Such partitionings can be represented by binary trees, see figure 3
for example.

The objective of our enumeration algorithm is to generate the set of all
possible hierarchical partitions. The difficulty arises in trying to generate
it in duplicate free manner. To see the challenge of duplicates, consider
the figure 3 again. The binary tree in the figure could have been created
by the following sequence of splits: (3), (1), (4), (2) and (2), where the
integer within ‘(’ and ‘)’ is the split-id and the integer within ‘[’ and ‘]’ is
the timestamp at which the node was split. Here we follow the rule that
nodes earlier in DFS order should be split before those that come later (if
they are split at all that is). Now, notice that this is not the only way this
partition could have been generated, it could have also been generated by
the following sequence of splits: (4), (3), (1), (2) and (2). Though the final
partitions are identical, the binary trees resulting from these two sequences
are structurally very different.

There are many reasons to avoid duplicate generation, the two most
compelling ones are the following: (i) Our approach, as in any optimization
algorithm, will enumerate solutions and choose the best one based on cost.
If duplicates are generated, the number of elements generated explodes. For
instance take the simple case of one dimensional partitions with N split val-
ues. The true number of distinct partitions is 2N , whereas if we did a blind

7

enumeration along each branch of the enumeration tree, we will end up with
N ! total partitions, which is exponentially larger than 2N . Though it is
easy to eliminate duplicates by imposing a simple order on the splits it is
much more complex in the case of general hierarchical partitions in arbitrary
dimensional spaces. (ii) The second reason to avoid duplicates is also moti-
vated by the nature of branch and bound solution approach we take, whose
performance depends on the effectiveness of pruning. Duplicate generation
severely degrades the prunability of branches, therefore practically render-
ing such an approach useless since many (all) good solutions will appear in
all branches of the enumeration tree.

We now give some useful definitions before presenting our partition enu-
meration problem.

3.1 The Space of Hierarchical Partitions

Let us assume for ease of visualization that each attribute is numeric, i.e.,
coming from a totally ordered domain and has been appropriately dis-
cretized. (Extension of our methods to categorical attributes can be found
are discussed in the next subsection). Then the split set is defined as follows.

Definition 3.1 (Split set): The set of all (attribute, value) pairs at which
the space is allowed to be partitioned, is called the split set and is denoted
by S.

Definition 3.2 (Split ordering): We impose an absolute order on the ele-
ments of the split set defined above. Therefore each ordered pair: (attribute, value)
denotes an unique split from this set. A lower id of a split denotes a higher
priority4. All split values of an attribute belong to a single group labelled
by that attribute (i.e. groups S1, . . . , Sm are the set of splits belonging to
attributes A1, . . . , Am respectively, where S = S1 ∪ S2 ∪ . . . Sm). In a geo-
metric interpretation, splits in a group correspond to parallel planes in the
space (In figure 2 splits (1) and (2) belong to one group and splits (3) and
(4) belong to another group).

If a common split runs across some rectangular subspace, we say it is a
cut across that subspace. For example, in figure 3, split (3) is a cut across
the whole space and split (4) is the cut of the subspace denoted by the right
child of the root. A cut is formally defined as follows:

Definition 3.3 (Cut of a subspace): A split s is said to form a s-cut of
a subspace H if the union of s-cuts across one or more of its constituent
partition blocks also runs across the whole subspace (i.e. divides H into two
disjoint parts).

4For attributes with ordered domains, we assign ids to the splits sequentially, where
splits corresponding to a higher values of the attribute get higher ids. Though any random
sequence can be assigned as well.

8

Now, a hierarchical partition5 of the (multidimensional) domain space
of the data is defined as follows:

Definition 3.4 (Hierarchical Space Partition): Given a multidimen-
sional space H and a set of candidate splits S such that each s ∈ S is a
potential s-cut of H, then a hierarchical partition of the space is achieved by
either leaving H undivided or by choosing a cut s0 of H and then recursively
partitioning the two resultant subspaces H1 and H2 hierarchically using splits
from the set S − {s0}.

A hierarchical partition can be represented by a labelled binary tree
which we call the partition tree. We note that a partition tree belongs to
a class of trees called the kd-tree6 [5], which is a popular data structure
to represent multidimensional partitioning of a space. We represent each
partition in our solution space by a corresponding partition tree as defined
below.

Definition 3.5 (Partition tree): A partition tree is a labeled binary tree
that represents a hierarchical partition of the space. Each internal node
of the tree denotes a subspace that is further partitioned into two or more
subspaces. A leaf denotes an undivided subspace (or a partition block as we
call it). Each internal node is associated with a split-id denoting the split
that was used to cut this subspace into two. Left and right side for a split
s correspond to the side with lower split ids and higher split ids than s in
its group respectively. Therefore leftchild and righchild are well defined for
each node in a partition tree. Visualizing geometrically, the partition tree is
same as a kd-tree [5].

A new partition tree is generated from a parent tree by splitting one
of its leaf nodes (i.e. a partition block), which then becomes an internal
node with two newly generated leaves as it children. See figure 3 which
shows how addition of a new split to an existing partition is reflected in the
corresponding partition tree.
Generating partition trees: Our enumeration algorithm (to be described
shortly) generates partitions incrementally, starting with the undivided space
and splitting one partition block at a time. The starting state is denoted by
a partition tree which has single node, the root. At this point the partition
of space consists of just one block, to which all data belongs. Then, the
first split, say si is chosen at the root which divides the space into two new
blocks. The new partition is represented by a two level binary tree and the
two leaves denote the leftchild and rightchild of the root. A split applied
to a node n in the partition tree is denoted by the label “(si)” beside n in

5From here on we will omit using the qualifier “rectangular” for brevity
6There is an injective mapping (but not onto) from the set of our space partitions to

the set of KD-trees with node labels corresponding to the attribute split values

9

the tree. The remaining set of splits (S−{si}) get propagated to the newly
formed leaf nodes in the following manner: All the splits that are not in
the same group as si (i.e., do not belong to the same attribute as si) are
also available at each child. Out of the remaining splits in group(si), the
ones to the “left” of si go to the left child and the ones to its “right” go to
the right child. These propagated splits called the set of available split at
the corresponding nodes in the partition tree. For each internal node of the
partition tree, the split at the node is restricted to the subspace denoted by
the node. To generate a new partition from a given one, one of its leaves
(i.e. partition blocks) is divided into two new blocks using a split available
at that node and the remaining splits from this set get propagated as de-
scribed above. Starting with the single node partition tree which denotes
the undivided space and applying a sequence of one or more node splits to
this tree generates a new partition of the hierarchical space.
Timestamped Partition Trees: We associate a logical timestamp with
each internal node of the partition tree. The timestamp represents the
order in which the internal nodes were split. The tree shown in figure 3
is a timestamped partition tree, where the root has the timestamp of 1
(shown as a label in square brackets), the left child of the root node has a
timestamp 2, the right child has a timestamp of 3, and so on. This implies
that in creating the partition tree, the root was split first, followed by the
left child, then the right child, etc. As will become clear, the concept of
timestamp is important in preventing duplicate enumeration of the same
hierarchical partition. Henceforth, by partition tree, we will refer to trees in
which internal nodes are labelled by timestamp that represent the order in
which the node was split to create the tree.

Now we describe our algorithm for the systematic enumeration of the
hierarchical partitions that can be represented uniquely as the leaves of a
multi-way “partition enumeration tree”.

3.2 Partition Enumeration Tree (PET)

We first give the definition of a partition enumeration tree and then discuss
how to generate it.

Definition 3.6 (Partition Enumeration Tree): The partition enumer-
ation tree (PET) is the multi-way tree, in which each node (including the
root and leaves) denotes a distinct hierarchical partition of the space. Each
node n of PET corresponds to a unique timestamped partition tree denoted
P (n).

Our objective is to generate a PET such that any two distinct nodes
of the PET correspond to distinct space partitions. Nodes in PET are
generated recursively by splitting one of the subspaces of the partition tree,
P (n), associated with a node n of the PET using one of the split values

10

that are available to split the subspace. We can avoid generating duplicate
partition trees that are structurally similar to each other by exploiting the
timestamps associated with nodes of the partition tree. This is achieved by
imposing the following constraint on the partition trees associated with any
node in the PET.

Constraint 1 A partition tree associated with any node of a PET satisfies
the constraint that a pre-order traversal of its nodes (i.e. the partition
tree’s nodes) lists their timestamps in the increasing order.

The above constraint prevents PET from generating nodes whose asso-
ciated partition tree are structurally identical. However, as we observed in
the example in the beginning of the section, the same hierarchical partition-
ing could result from two partition trees that are not structurally identical.
Notice that the above simple constraint on timestamps would not prevent
generation of this duplicate partitioning. To prevent such duplicate genera-
tion of hierarchical partitioning, we need to define a concept of a in-sequence
splits in a partitioning tree:

Definition 3.7 (In-Sequence splits): Let P be a partition tree, n be a
node of the tree, and A be the set of ancestors of n in P . The split sn

associated with n is out of sequence if there exists an ancestor a ∈ A of
n such that: sn generates a sn-cut across the subspace rooted at a and the
split sa associated with a has a lower id than sn. If a split sn is not out of
sequence, it is deemed in-sequence for the partition tree.

Duplicate generation of hierarchical partitioning in the PET can be pre-
vented by imposing the following additional constraint on the partition tree
P (n) that correspond to the nodes of the PET.

Constraint 2 A partition tree associated with nodes of a PET satisfies the
constraint that the splits sk corresponding to any of its internal node k are
in-sequence.

Consider the example of figure 3 again. Notice that the partition tree
in the figure, seen without the node with timestamp [5] is legal. But, the
final split (2), made at timestamp [5] would have been out of sequence since
it results in a cut of the subspace rooted at its parent node (i.e., split(4))
while its id is smaller than the id of its parent.

Now, we describe our partition enumeration algorithm.

3.3 Enumeration Algorithm

In this section, we develop an algorithm to enumerate duplicate-free hier-
archical partitioning. The basic approach ensures that the partition tree
associated with the nodes of the PET satisfy Constraints 1 and 2. The al-
gorithm generates nodes in the PET recursively. Let n be the current node

11

Detect-legal-split(P(n), l, sl)
Input: P (n) is partition tree of node n ∈ PET

l is the leaf being split in P (n)
(i.e. l denotes an unsplit partition block)
sl is a candidate split at l

Output: True(False) if split sl is Legal(Illegal)

BEGIN
1. If l == root(P (n)) Then
2. Return TRUE
3. End if

4. If Pre-order listing of node time-stamps in
5. (P (n) ∪ sl) NOT in increasing order Then
6. Return FALSE
7. End if

8. a ← l
9. While a 6= root(P (n)) Do
10. a ← parent(a)
11. If Is-split-a-cut(P (n), a, sl) Then
12. If sl ≤ split(a) Then
13. Return FALSE
14. End if
15. Else /* sl is not a cut of subspace of a */
16. Return TRUE
17. End if
18. End While /* now a = root(P (n)) */
19. Return TRUE
END

Figure 4: Detecting a legal split

of the PET being explored and let P (n) be its corresponding partition tree.
The partition tree associated with the child node of n consists of P (n) aug-
mented with an additional split of one of the subspaces in P (n). Generating
such partition trees for child nodes to satisfy Constraint 1 (i.e., timestamp
ordering) is straightforward. The constraint can be verified at the time the
child node is created.

Checking if the partition tree associated with the child node satisfies
Constraint 2 is more involved. Since it requires “stitching” splits across
subspaces to detect out-of-sequence splits as described below.

When a candidate split s ∈ S is being considered at a leaf node in some
partition tree P (n), it is possible that a bunch of s-cuts across adjacent
subspaces of the current block (denoted by the leaf) when taken together,
form a s-cut of a larger subspace. The following two-part check is carried
out by the function Detect-legal-split (figure 4: The function first calls the
routine Is-split-a-cut(P (n), t, s) (figure 5) which detects if the candidate
split s is a cut across a subspace denoted by node t in partition tree P (n).
If the candidate split is indeed a cut of the subspace denoted by node t, its

12

Is-split-a-cut(P(n), t, s)
Input: P (n) is partition tree of node n ∈ PET

t is an internal node of P (n) (can be the root)
s is some splitting attribute value

Output: True if there is a s-cut across the
subspace denoted by t else False

/* Here we need a small test to determine
if some split s′ is in the same group as
split s (i.e., belongs to same attribute) */

BEGIN
1. If split(t) ∈ group(s) Then
2. If split(t) == s Then
3. Return TRUE
4. Else If split(t) < s Then
5. Return Is-split-a-cut(P (n), rightchild(t), s)
6. Else /* split(t) > s */
7. Return Is-split-a-cut(P (n), leftchild(t), s)
8. End if
9. Else /* split(t) /∈ group(s) */
10. If leftchild(t) is a leaf OR
11. rightchild(t) is a leaf Then
12. Return FALSE
13. Else
14. Return (Is-split-a-cut(P (n), leftchild(t), s)
15. & Is-split-a-cut(P (n), rightchild(t), s))
16. End if
17. End if
END

Figure 5: Detecting if a new split results in a cut across a larger enclosing
sub-space

id is compared to the current node split at t and a violation is returned if
s < split(t) (i.e., s is out-of-sequence with t) else the same check is iteratively
carried out at the parent of t and so on till either a violation is detected or
t has no parent, i.e. node t is the root of P (n). The following observation is
the key to an efficient implementation of this check which simply uses the
information in P (n) at a node n ∈ PET.

Observation 3.1 The partition tree P (a) at an ancestor a of node n in
PET is simply a tree generated by deleting a proper subtree of P (n). There-
fore P (n) encodes all the information of its ancestors (nodes along the root-
to-node n path) in PET.

The recursive enumeration algorithm Enumerate is given in figure 6.
The algorithm is given the parameters: data set D, the ordered set of splits
S, a node r of the PET and the partition tree P (r) at node r. When
Enumerate is invoked with r denoting the root of the PET, it generates
the complete enumeration tree.

13

Enumerate(D,S, r,P(r))
Output: The enumeration tree rooted at r,

consisting of all distinct partitions legally
generatable from the partition P (r)

/* Below, sl ranges over only the “available”
splits at the leaf l (i.e. only the splits relevant
to the partition-block denoted by l). */

BEGIN
1. For Each leaf l of P (r) /* in pre-order sequence */
2. For Each available split sl at l /* increasing order of id */
3. If Detect-legal-split(P (r), l, sl) Then
4. Generate new child node c
5. Generate partition-tree P (c) ← P (r) ∪ sl

6. Add pointers r → c ; c → r
7. Enumerate(D, S, c, P (c))
8. End if
9. End For
10. End For
END

Figure 6: Enumerating all partitions of space

An example of a (partial) partition enumeration tree (PET) is shown in
figure 7 for a data space with two attributes, one having 2 splits (1) and (2)
and the other having a single split (3).

We can now state the main theorem that proves the correctness of our
algorithm.

Theorem 3.1 Algorithm Enumerate(D,S) systematically enumerates all
distinct hierarchical partitions of the multidimensional space D generated
using splits from the given split set S.

Proof of the above theorem is given in appendix A.

3.4 Categorical Attributes

In the description of the enumeration algorithms above, we have implicitly
assumed that the attributes have an order defined on their domains. But
in reality many attributes of a table can be categorical with absolutely no
order defined on the values in its domain. Alternatively, there could be some
partial order defined in the form of a lattice structure. A popular way of
specifying a partial order over categorical attributes, is via a taxonomy tree.
An example of a taxonomy tree is shown in figure 8 for the attribute working
class in the “Adult” data set [9]. The set of node labels of the taxonomy
tree specifies the domain for the corresponding categorical attribute. For
instance, the working class attribute of a tuple can take values only from
the set of node labels in the taxonomy tree.

14

1
3

2

Figure 7: Partition enumeration tree

Our enumeration algorithm can handle categorical attributes easily with
a couple of slight modifications to the approach outlined for numeric at-
tributes. We categorize the categorical attributes into the following two
classes and specify the corresponding modifications that are required to split
along these dimensions of the space.

1. No order: In this case, no order is defined on the set of values
taken by the attribute. As a result, all possible groupings are pos-
sible. For example, say the attribute takes 3 distinct values a, b
and c, therefore blocks (anonymity groups) in a partition can clus-
ter together these values in any of the following 7 (= 23 − 1) ways:
{(a,b,c);(a,b);(a,c);(b,c);(a);(b);(c)}, where all values within ‘(’ and ‘)’
are indistinguishable. This case is equivalent to having three indepen-
dent binary attributes instead of one with three values.

2. Partial order: If the categorical attribute is denoted by C, in this
case we assume a taxonomy tree TC is defined for the values that C can
take. The following additional constraints need to be imposed while
splitting a set of data points along the attribute C (refer to figure 8):
(i) For a given generalization scheme, induced by some partition, all
tuples in a partition block (anonymity group) share the same values
of the quasi-identifier attributes. Therefore, attribute C for each tuple
in a block l should correspond exactly to one node tc of the taxon-
omy tree TC (say “Government”). Let the set of these tuples be Dl.
(ii) Subsequent splitting of the block l along attribute C should si-
multaneously specialize the C-attribute values of tuples in Dl to
the children of node tc in TC . For example, splitting Dl would re-
sult in groups Dl1, Dl2 and Dl3 with working class values as “Fed”,
“State” and “Local” respectively, where S = Dl1 ∪ Dl2 ∪ Dl3 and
Dli ∩Dlj = φ, ∀i 6= j.

Tackling categorical attributes without any order whatsoever is easy

15

since such an attribute can be replaced by a set of binary attributes. In
this paper, we assume each categorical attribute has a partial order defined
on them, in the form of a taxonomy tree. Recall that in the enumeration
algorithm, new partitions are generated from a given partition by splitting
some partition block of the parent partition into two blocks by introducing
exactly a single split along some chosen dimension. This allows us to repre-
sent each new partition also as a binary tree. But introducing the splitting
constraint ((ii) in item 2 above) can result in more than two blocks being
generated simultaneously when a partition block of the parent partition tree
is split along a categorical attribute. Say, if the node corresponding to the
current value of the categorical attribute C has m children in its taxonomy
tree TC , splitting along this attribute will result in m leaves simultaneously
in the new partition tree. Therefore to represent this new partition in the
standard format of our partition tree, we need to assign priorities to the m
children of the corresponding node in the taxonomy tree. Two considerations
need to be made while introducing these splits into the parent partition tree:
(i) The “child priority” constraint 1 and “Out-of-sequence split” constraint
2 ordering constraints are not violated in the resulting partition tree due
to introduction of these sibling splits (i.e. sibling nodes in TC . (ii) Future
splits in the newly generated blocks should not be wrongly discarded (i.e., for
violating either the time-stamp constraint or the split priority constraint).
These two requirements needs one to assign: (a) Consecutive split priorities
to each set of sibling splits. (b) Also, assuming the “left-to-right” listing
of the sibling nodes in TC correspond to the actual left to right ordering of
the splits in the space7, the assigned priority should be decreasing amongst
sibling splits going from right to left (as shown in figure 8); (c) The sibling
splits (in TC) need to be introduced simultaneously as noted above, but we
also need to retain the binary tree form of the partition tree. As a result the
sibling splits need to be introduced in their decreasing order of priority (i.e.,
high priority splits first). This results in creating a left deep binary sub-
tree under the leaf being split and therefore complies with the time-stamp
constraint. The example below illustrates the splitting technique.
Example: Assume we have a two dimensional data set with one dimension
as numeric attribute salary with four values (intervals) and the other, the
categorical attribute working class with a taxonomy (figure 8, part (b))
defined on it. Part (a) of figure 8 shows the space and all the available split
values with their priorities assigned according to the rules mentioned above.
Initially assume that the space is undivided therefore all data elements are
indistinguishable from each other. Now let the first split be introduced along
attribute working class which results in creation of the four blocks in one go
(figure 9, part (a)) thereby adding 3 nodes to the partition tree, in the left-

7remember that each attribute has a well defined notion of “left end” and “right end”
along the dimension corresponding to it in the data space

16

Inc Not Inc Fed State Local Pvt Without
Pay

Never
Worked

Self-Employed Govt Unemployed

150k

100k

50k

200k

S
al

ar
y

Work Class

(7) (3) (6) (5) (2) (1) (4)

(9)

(8)

(a)

Work-Class

Self-Employed Govt UnemployedPvt

Not Inc Fed State Local Never
Worked

Without
Pay

(1)(3)

(5)

(2)

(6) (4)(7)

(b)

Inc

Figure 8: (a) Split priorities for a categorical attribute; (b) Priorities for
taxonomy-tree nodes

deep manner (note this complies with the time-stamp ordering constraint as
well as the out-of-sequence split constraint). In part (b) of figure 9, say a
split along the salary attribute is chosen in the second block from left which
adds node “(9)[4]” (split (9) and time-stamp [4]). Then, splitting the lower
of the two newly generated blocks (shaded portion) along the categorical
attribute, results in three more blocks in one go, i.e. 2 new nodes in the
partition tree (time stamps [5] and [6]). ♦

4 Search for Optimal Partitioning Schemes

The anonymization problem can be viewed as a cost based optimization
problem. Without loss of generality we will assume that the optimization is
a constrained minimization problem. Abstractly, an optimization problem
is specified using two entities, Cost and Set of Constraints.

Definition 4.1 Cost : N → R, where N is the set of all nodes in PET, is
a real function that associates each partition with a non-negative cost.

Definition 4.2 Constraints: A set of properties which determines the set of
all feasible solutions. That is all potential solutions should minimally satisfy
these constraints. We will also refer to an element from the feasible set as
a legal solution.

Different instances of these two parameters define different optimization
problems. In context of the anonymization application, we define a few

17

PvtSelf
Employed

Govt Unemp

Fed State Local

(1)[1]

(2)[2]

(3)[3]

150k
(9)

(9)[4]

(3) (2) (1)

(5)[5]

(6)[6]

(1)[1]

(2)[2]

(3)[3]

(3) (2) (1)

(6) (5)

(a)

(b)

Figure 9: Splitting along categorical attributes can introduce multiple nodes
in partition tree in one step

variants of the optimization problem using the following cost functions and
constraints.
Cost functions: We consider the following cost functions:

• Discernibility metric (DM): Proposed in [2], it assigns a penalty
to each tuple based on how many tuples in the transformed data set
are indistinguishable from it. If a tuple belongs to an anonymity group
Si of size n (i.e. has n− 1 other tuples present in it), then that tuple
is assigned a penalty of n. If a tuple is suppressed a penalty equal to
the size of the data set | T | is assigned.

DM =
∑

∀i, |Si|≥k

| Si |2 +
∑

∀ Suppressed Tuples
| T |

• Classification metric (CM): Also proposed in [2, 1, 14], captures
the notion of information loss for classification based mining tasks.
Assume |T | = N , then the information loss is given by:

CM =
∑N

i=1 penalty(T (i)) where T (i) is the ith tuple and penalty(t) =
1 if class(t) is not the majority class in the anonymity group of tuple
t.

• Volume metric (VM): We propose a new metric to capture the
notion of “relative increase in uncertainty” associated with the repre-
sentation of a data point in the anonymized data set. For each tuple in
a given equivalence class, a penalty V/unit volume is charged, where
V is the “normalized volume” of the partition block to which the point
belongs and unit volume is the normalized volume of a basic unit cell
of the data space (as a results of the initial discretization along the

18

dimensions of the space).

V M =
∑N

i=1 V olume(block(T (i)))/unit volume where V olume is the
normalized volume function and block(t) denotes the partitions block
to which tuple t belongs.

Constraints: We experimented with three different constraint settings
which are relevant to privacy problem in data publishing.

• k-Anonymity: For every tuple t′ in the released table, there should
at least be l distinct indices (including its own) (i1, i2, . . . il), where
l ≥ k, such that ti1(Q) = ti2(Q) = . . . til(Q) = t′, where t(Q) denotes
the projection of tuple t on the quasi-identifier attribute set Q.

• Entropy l-diversity: Using the definition from [4], a table is said to
be entropy l-diverse if for every equivalence class (partition block) b,
the following holds.

−
∑

r∈R

p(b,r)log(p(b,r)) ≥ log(l)

where p(b,r) denotes the fraction of tuples in the block b with sensitive
attribute value equal to r, and R is the set of values (categorical)
for the (single) sensitive attribute. This constraint ensures that each
equivalence class has at least l well represented values of the sensitive
class.

• k-Anonymity with length restrictions: Here in addition to the k-
anonymity constraint we impose a minimum length constraint on the
edge length(s) of a partition block in the final anonymized data set.
Such constraints could reflect some security policy, wherein some of
the quasi-identifying attributes are not allowed to be specified beyond
a certain level of precision.

Definition 4.3 (Optimal Anonymization Problem): Given the above
set of cost functions and constraints, for any combination of the two, find
a hierarchical partition of the multidimensional data set such that the con-
straint is not violated for any partition block (equivalence class) and the cost
of the solution is minimized.

Now, we will describe how the above optimization problem can be posed
as a search problem and illustrate our branch and bound technique to find
an optimum solution.

4.1 Searching for the Optimum Solution

Given an instance of the optimization problem, we need to look for an opti-
mal solution. A simple solution would be simply call algorithm Enumerate

19

(figure 6) and return the least cost legal partition it generates8. The prob-
lem is that the search space for hierarchical partitions grows exponentially
with the number of dimensions and number of splits, thereby making such
a complete search impractical. More over not all enumerated partitions are
necessarily legal, therefore to make the search tractable we employ cost lower
bounding based node pruning. We also show how a nice structural property
exhibited by our PET can be exploited to derive tight lower bounds.

It is clear that efficiency of the search algorithm critically depends on
how much of the search space can be pruned away during enumeration. The
following condition must hold for pruning a node n (at its generation time)
in our PET:

Condition 4.1 (Condition for pruning) The subtree rooted at n in the
PET can be pruned if at least one of the following two conditions hold at
each node in the subtree: (1) The partition corresponding to the node is not
a feasible solution (violates one or more constraints); (2) The partition has
a cost larger than the current minimum cost in the algorithm.

The following monotonicity property of the constraints is essential for
effective pruning of nodes in an enumeration tree based branch and bound
approach.

Property 4.1 (Monotonicity of a Constraint) Given optimization prob-
lem P, a constraint C and enumeration tree ET such that nodes ∈ ET corre-
spond to elements of the solution space of P, then C is said to be monotonic
with respect to ET if whenever a node n ∈ ET violates C, all its descendants
in ET also violate C.

If a node n in the search tree cannot be pruned for constraint violation,
then we check for the second condition of prunability for the subtree rooted
at n. To carry out this check an efficient (i.e., one that does not traverse
the whole subtree) function LB is required to estimate a lower bound to the
minimum cost in the subtree. In our case, the function LB is defined as
follows.

Definition 4.4 LB : N → R, where N is the set of nodes in PET, is a real
function that estimates a lower bound to the minimum cost for a hierarchical
partition “derivable” from the partition at n (i.e. all partitions in the subtree
rooted at n in PET).

The LB computation for a node can greatly benefit if the cost func-
tions demonstrate the following monotonicity property with respect to the
enumeration tree.

8This requires an additional constraint satisfaction test during generating a new par-
tition in the Enumerate algorithm

20

Property 4.2 (Monotonicity of Cost) The value of the cost metric de-
creases monotonically down any path from the root to a leaf in the PET .

Notice, that the monotonicity property of cost functions is a desirable
property but not a necessity for computing lower bounds. For instance, in
[19] it is shown that in set mining problems, cost function like variance of
values associated with items in a set do not display such monotonic behavior.
The authors in [19] go on to show some efficient ways of find a lower bound
in such cases, but we will not consider such cost functions in this paper.
All the cost functions and constraints that we mention above in the data
publishing context, exhibit the monotonicity properties 4.2 and 4.1. The
measures DM and CM have been shown to follow monotonicity for single
dimensional partitions and the results can be easily extended to the multi-
dimensional case. The new volume metric that we propose also exhibits a
similar property due of the additive relation between the volume of a space
and that of its constituent subspaces. Similarly, the privacy constraints, i.e.,
k-anonymity and l-diversity have been previously shown to be monotonic in
[2] and [4] respectively. It is easy to see that this property extends to our
new constraint of “k-anonymity with length constraints” as well.

In the following subsection, we describe the lower bounding methodology
in the PET. We use the DM cost measure (defined earlier) for illustrating
the approach.

4.1.1 Cost based pruning in PET

In addition to the monotonicity of our PET has a nice structural property
that allows one to compute good lower bounds for all the cost functions
described above. This property is potentially beneficial for lower bounding
cost functions belonging to a rather well studied class of functions, which
happen to be some spatial aggregates over the data distribution across the
partition blocks [16]. We describe this property next.

Property 4.3 (Spatial locality property): Constraint 1 imposes re-
strictions on the set of subspaces that can be further partitioned at any de-
scendant of a node in the PET. Specifically, consider any ancestor-descendant
pair na and nd in the PET and their corresponding partition trees P (na) and
P (nd), then P (nd) can differ from P (na) only in the subtree rooted at the
rightmost, non-leaf node mr of P (na). That is, mr denotes the last internal
node in P (na) on the path starting at its root (inclusive) and containing only
right branches of nodes, till a leaf is reached.

We now illustrate the lower bound computation for DM metric (the
others can be computed similarly) using the example given below and present
the corresponding algorithm LBDM in figure 10.

21

LBDM (m)
Input: m is some node in a partition tree
Output: Lower bound to the cost of any

partition of the space denoted by m
BEGIN
1. If m is a leaf Then
2. Return MinCost(m)
3. End If

4. mr ← right-most internal node ∈ subtree(m)
5. L =

P
(Size(leaf))2, such that

leaf ∈ subtree(m) & leaf /∈ subtree(mr)
6. L += MinCost(mr.rightchild)
7. If mr.leftchild is a leaf
8. Return L + MinCost(mr.leftchild)
9. Else
10. Return L + LBDM (mr.leftchild)
11. End If
END

/* A node m in a partition tree P (n) denotes
a subspace. The subtree of P (n) rooted at m,
referred to as subtree(m), denotes the
restriction of the partition to this subspace.
Size(leaf) is the number data points belonging
to the partition block denoted by leaf */

Figure 10: Computing lower bound of DM

The lower bound of the cost metric for a leaf l of a partition tree is
computed by the function call MinCost(l) (illustrated below for the DM
metric). It first generates the finest partition of the subspace denoted by l
by using all the available splits at l (i.e. partitions the subspace into the
smallest blocks possible) and then computes the value as follows:

MinCost(l) =
∑

tuple∈subspace(l)

Penalty(tuple)

Penalty(t) =
{ | E(t) | where | E(t) |> k

k otherwise

Where | E(t) | represents the size of the partition block to which the data
point t belongs. That is, for each block having m ≥ k points, add m2. For
each block having m′ < k points, add km′. (Since the second set of blocks
have less than k elements, the anonymity criteria would have required one
to suppress these elements. This would lead to a much larger increase of
the DM value, but since we are computing lower bounds, we simply charge
each point a penalty of k, which is the minimum possible). We illustrate
the lower bound computation using the example below (refer to figure 11).

22

(4)

(1) (2)

(3)

[1]

[2] [3]

[4]

(1) (2) (3)

(4)

(5)

(6)

(1)

(2) (3)

(4)

(5)

(6)

(5)

(6)

[5]

[6]

(5)

(6)

[7]

[8]

(a)

(b)

(c)

Figure 11: Visualizing lower bound computation

Example: Consider the data space shown in the figure 11(a). Assume a
node n in PET corresponds to the partition shown in figure 11(b) without
the “dashed” splits in the shaded region. Its partition tree is shown in figure
11(c) (visualized by replacing the 2 subtrees in the shaded region by 2 leaves
instead). The splits used until this point are shown in bold, solid, black lines
both in (b) and (c). The only legal partitions that our algorithm generates
at any descendant of node n, will be by adding splits in the region shaded in
blue in order to comply with the time-stamp constraint. The DM value of
the partition P (n) is given by: DM(n) = 22+22+22+22+32+42 = 41 (leaves
traversed in depth-first order). Now, the lower bound at n is computed by
first after adding all the available splits (generates 5 new leaves as shown in
the shaded region) and summing the contribution from all the leaves of this
partition: LBDM (n) = 22 + 22 + 22 + 22 + 22 + 1 ∗ 2 + 1 ∗ 2 + 32 + 0 = 33. ♦

The lower bound computation for the other cost functions are similar to
that of the DM metric. Now, we describe a novel optimization for improving
the performance of our search algorithm.

5 Accelerating Search using Priorities

As it turns out, more often than not in spite of pruning, the search space
continues to remain extremely large. As a result, the depth-first traversal
order of nodes (as in the recursive algorithm) turns out to be an inefficient
way to explore the solution space for most objective functions of interest.
Here, by efficiency we mean “how soon the algorithm finds a solution close
to optimal”, say a partition whose cost is within a small factor α of the
minimum cost. To do away with these limitations of the recursive algo-
rithm, we propose a new, generic solution-space exploration scheme that is
both theoretically sound (i.e. guarantees completeness of search just as the
recursive enumeration algorithm) and at the same time, allows one to incor-
porate heuristics that accelerate the convergence to the optimum solution,

23

the side-effect being: good approximations to the optimal are generated
much quicker. Now, instead of traversing the PET in a fixed order which is
agnostic of the objective function, our new algorithm uses a flexible, priority
based search scheme to direct its search at each step.

• Priority : N → R, where N is the set of nodes in PET, is a real
function which assigns a numeric value that is used as the key to
insert n into the priority queue. We also refer to it as the priority of
node n.

Our algorithm admits the usage of arbitrary priority generating func-
tions. We experimented used the following functions to generate node pri-
orities (i.e., instances of the “Priority” function defined above).

1) LB (lower bound function): LB was the primary priority generating
function and was used in majority of the experimental runs. The rationale
being that, the branch of PET that has lowest lower bound is the most
promising one to explore.

2) Cost (cost function): Cost of the solution at a node n was used to
prioritize the search. The goal was to see how going down a path with the
minimum cost affects the quality of solutions generated.

3) LB/Cost (ratio of the lower bound and the cost): Similarly, the
rationale behind LB/Cost was to go down branches which had the highest
potential of cost improvement.

The experimental results for these functions are summarized in the next
section. Now, we describe the new search algorithm using the priority
queue which was the algorithm used in all our experimental runs. There
are two modes in which the priority algorithm can be run: (A) Geared
towards finding an optimum solution, where the lower bound LB(n) is
used to decide whether to prune node n or not. (B) Geared towards find-
ing a c-approximate solution to the optimum, where the ratio α(n) =
LB(n)/Cost(n) is used to prune node n from the search space. For in-
stance, if the user wants to find a 3-approximate solution, a node with α
value greater than 1/3 can be safely pruned since one would have already
seen a candidate solution if indeed the true minimum was same or higher
that the lower bound at the node (the current global minima being one such
candidate). Let us use the variable bound to denote either LB or α depend-
ing on the mode of the algorithm’s run, then the basic priority queue does
the following.
Priority-queue based search algorithm: The algorithm starts with the
root node of the PET as the singleton node in the queue and the value
in the variable current minimum cost set to Cost(root), which is the cost
when the whole data set is a single partition block. In each successive step,

24

Prioritized-Enumerate(D, root)
Input: D is the data set to be partitioned

r is the root node in PET
Output: Output the optimal partition and its cost
BEGIN
1. OPTtree ← P (root)
2. OPTvalue ← Cost(P (root))
3. If Optvalue < LB(root) Then
4. Return OPTvalue and OPTtree

5. End If

6. PQ ← insert(root, LB(root)
7. While PQ 6= φ Do
8. If |PQ| ≥ MAXSIZE Then
9. While |PQ| > MAXSIZE/2
10. Rp ← A good partition beneath min(PQ)
11. OPTvalue ← Cost(Rp) and OPTtree ← Rp

12. Delete all n′ in PQ with LB(n′) > OPTvalue

13. End While /* Now |PQ| ≤ MAXSIZE/2 */
14. End If

15. While |PQ| ≤ MAXSIZE & PQ 6= φ Do
16. x ← PQ.pop()
17. Xc ← x.children /* x + a single split */
18. insert into PQ, all y ∈ Xc s.t LB(y) < OPTvalue

19. If Miny∈x∪XcCost(y) < OPTvalue Then
20. update OPTvalue and OPTtree

21. End If
22. End While
23. End While
24. Return OPTvalue and OPTtree

END

Figure 12: The prioritized search algorithm

the top element of the queue9 is popped and all its children are generated.
Some of these newly generated nodes using their priorities. For each new
node, if the cost is found to be lower than the value in the variable cur-
rent minimum cost, this value is replaced by the new minimum and the new
optimal partition is recorded. Also, for each new node n bound(n) depending
on the mode in which it is being executed. If the bound(n) is higher than the
current global minima, this node is discarded10. The algorithm terminates
when the priority queue is empty and the partition corresponding to the
current minima is the optimal solution. The pseudo-code for the priorities
based algorithm is given in figure 12.
Practical issues in using a priority queue: The downside of using
a priority queue based approach is that the queue can grow very large in

9We use a MIN-priority queue, where the root node always has the lowest value of the
key amongst all nodes

10It is quite possible that the partition corresponding to a discarded node might be the
best solution seen so far

25

size on certain occasions. In such circumstances, the following probe-based
algorithm is used.
Probe-based algorithm: When max-allowed size is reached, this algo-
rithm does a “probe” which temporarily puts on hold further enumeration
and instead invests time to find a node in the PET that has a cost smaller
than the lower bound of a large number of nodes in the priority queue.
Then, these nodes become useless and can be pruned from the queue. In
the event such a good partition cannot be found by probing, the alternative
is to forcefully drop a certain number of entries that are the least promising,
thereby forfeiting the promise of optimality of the final solutions. Nonethe-
less, due to the inherent nature of the prioritized algorithm, a bound on
the approximation ratio achieved by any candidate solution can always be
derived. Note that the efficiency of the above algorithm depends upon the
choice of parameter MAXSIZE and we will present some of our experimental
findings regarding the performance with respect to MAXSIZE in the next
section.

In the next section, we discuss the various experiments that we carried
out.

6 Experiments

Experimental setup: All the experiments were run on a Pentium 4, 3.00
GHZ processor machine with 4 GB RAM. The machine was running windows
XP operating system and our enumeration algorithm was implemented using
the VC++ development environment.

Data sets: There were three different datasets that were used in the
experiments. Two of the datasets are from the Irvine machine learning
repository [9]. The first real data set used in the experiments is the Adult
data set, which has in some ways become the benchmark for comparing
anonymization algorithms. This gives us the opportunity to compare the
quality of our solutions against other algorithms/techniques previously pro-
posed. This data has 9 attributes (Age, Geography, Gender, Race, Working
Class, Occupation, Education, Class, Marriage) and reports the actual cen-
sus data. The data set has 30,162 tuples.

The second real data set used in our experiments is the Coil 2000 data
set from the Irvine machine learning repository. This data set contains
information on customers of an insurance company. We have taken the
first five dimensions of the coil data set namely customer subtype, number
of houses, average size of household, average age and customer main type.
This data set has 9882 tuples.

The other dataset used in our experiments was synthetically generated,
which we will refer to as SimpleNormal. This dataset has two integer dimen-
sions with values ranging from 0 to 100. The values follow a two dimensional

26

normal distribution.
Purpose of the experiments: The purpose of our experiments is to

measure: a) scalability of our enumeration algorithm; and b) comparison of
enumeration algorithm with other approaches in the literature. Primarily,
we compare ourself with the greedy algorithm proposed in [3], as the this
approach outperforms other previously suggested techniques.

Scalability: We empirically test the performance of our enumeration
algorithm, specifically the time it takes to find the optimal (in most cases,
we report how close it approximately gets the to the theoretical best-possible
solution when it cannot find the optimal solution in a given maximum length
of the run). Here, we will only give a summary of our findings due to space
restrictions. We direct the interested reader to [20] for more comprehensive
analysis of the scalability of the algorithm. The most critical parameter for
the enumeration algorithm is the number of splits. The number of splits
dictate the solution space. We have found that the enumeration algorithm
finds optimal solution under 30 minutes when the number of distinct splits
used are less than equal to 10. When the number of splits were increased,
we needed to drop some solutions as they could not fit in the memory and
hence could not guarantee the optimality of the final solution. When the
splits were more than 10, the algorithm finds solutions within a factor of
3.5 of the theoretical lower bound to the cost. Lower bound is calculated by
assigning the lowest penalty possible to every tuple. For instance, for the
DM metric, the lower bound is n ∗ k, where n is the number of tuples and k
is the anonymity factor. Whereas our enumeration algorithm can determine
the optimal solution or those within a specified factor of the lower-bound to
the theoretical best given sufficient space and time, the greedy algorithms
proposed thus far typically return a locally optimal solution.

Comparison with greedy algorithms: Comparison to the greedy is
done for 3 different metrics (DM, VM, CM) and three different constraints
(K-anonymity, L-diversity and K-anonymity with minimum length restric-
tions). Each of these constraints have a parameter that is varied, k for
anonymity, l for diversity and length for the minimum allowed size of the
range of attribute-values in anonymity classes. We applied a total of 4 dif-
ferent sets of constraints to each combination of dataset and cost metric.
In total we carried out 3(different metrics) * 4(constraints) * # Datasets
experiments. For lack of space, we will only report experiments that are
done for the DM metric in this paper. For experiments on CM and VM
metric please refer to the full version of the paper [20]. We use the follow-
ing notation “(D, M, S)” to denote the instance experiment on a Dataset
D, satisfying Metric M and satisfying Constraint set S. For all the follow-
ing experiments the enumeration algorithm was run for maximum of 5 hours.

Experiment 1:-(SimpleNormal, DM, <k - anonymity>):

27

Relative Comparision for DM metric
on SimpleNormal Dataset

-1

1

3

5

7

9

11

13

5 10 25 50 100 250 500 1000

K-anonymity Factor

R
el

at
iv

e
fa

ct
or

Greedy/EnumMulti, splits=10

Greedy/EnumMulti, splits=40

Figure 13: DM, SimpleNormal dataset

We used two different sets of splits (5×5 and 20×20) to partition the two
dimensional space and ran both, our enumeration algorithm and the greedy
algorithm for the DM metric. The subsequent split-widths were were cho-
sen to be equidistant along both dimensions. Fig 13 shows the result. We
plotted the ratio of the greedy value found to value of the solution found
by the enumeration algorithm(represented as “EnumMulti” in the graphs).
For a total of 10 splitsv(5×5), EnumMulti picked optimal solutions which
were on a average 8.2 times better than the solutions found by the greedy
algorithm. All the optimal solutions were found under 30 mins. For the
splits=40 (20×20) case, the solutions found by the enumeration algorithm
was only 4 times better. As the number of splits increase, the difference
between the enumeration algorithm and the greedy algorithm decreases.

Experiment 2 :- (Uniform, DM, <k-anonymity>):

For this experiment we have split the uniform dataset using two different
sets of splits 1) 14 splits (i.e. 7 * 7) 2) 20 splits (i.e. 10 * 10). We have found
optimal solutions for DM metric on the uniform dataset for 14 splits. All
the optimal solutions were found under 20 mins. On a average, the enumer-
ation algorithm does twice better than the greedy algorithm. Fig 14 shows
the result. When the splits used were 20, we did not get optimal solutions,
since we were forced to drop some solutions. Fig 15 shows the result of
the experiment. For this run, the difference between the two approaches is
converging, although still there is considerable gap. The greedy algorithm
is doing better when the number of splits are increasing, as observed in the
above experiment.

Experiment 3:- (Adult,DM,<k-anonymity>):

28

DM Comparision for Synthetic Data Set :Splits 14

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500

K-anonymity Factor

A
p

p
ro

xi
m

at
io

n
 F

ac
to

r

Optimal

Greedy

Figure 14: DM, Uniform

DM Comparision for Synthetic Dataset: 20 splits

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500

K-anonymity Factor

A
p

p
ro

xi
m

at
io

n
 F

ac
to

r
fo

r
D

M

EnumMulti

Greedy

Figure 15: DM, Uniform

29

Relative Comparision of appropriate factors for DM metric:
Adult dataset

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 25 50 100 250 500 1000

K-anonymity factor

A
pp

ro
xi

m
at

e
fa

ct
or GreedyDM/LowerBound

EnumMulti/LowerBound

Figure 16: DM, Adult dataset

We used 101 splits to partition the adult dataset. Our enumeration tech-
nique outperforms the greedy approach at higher values of k(greater than
100) and does marginally better at lower values of k. To capture how close
we are getting to the optimum solution, we calculated the approximation
factor which is the ratio of the best solution found to the lowest lower bound
of a partition tree enumerated by our algorithm11. Similarly, we have cal-
culated the approximation factor for the greedy approach and fig 16 shows
the comparison of the approximate factors for the two approaches. We have
got as close as 1.35 times the lowerbound (for K=1000).

The most important result to come out of this experiment is the fact that
greedy algorithm comes up with close to optimal solutions when the dataset
is partitioned using a large number of splits. This confirms the intuition
that we have gained from the previous experiment, where greedy algorithm
was getting closer to the optimal solutions, when the number of splits in-
crease. The greedy algorithm at every stage tries to find the best split to
break a partition into two pieces. If there are a large number of splits at its
disposal, even at lower levels the greedy algorithm will find a good candi-
date split. Since the DM metric is monotonically decreasing, as long as the
greedy algorithm finds a split, the value of the DM metric value will decrease.

Experiment 4:- (Coil,DM,<k-anonymity>):

To confirm the above result we ran our enumeration algorithm for the
DM metric on the Coil dataset. We are doing better in comparison with the
greedy approach in the Coil dataset than the adult dataset. Fig 17 shows
the comparison of the approximate factors of the two approaches and clearly
there is considerable gap between the two data series. But even here the

11This is also lower bound of the optimal solution

30

Relative Comparision of approximation factor
for DM metric: Coil Dataset

0

0.5

1

1.5

2

2.5

3

5 10 25 50 100 250 500 1000
K-anonymity factor

A
pp

ro
xi

m
at

io
n

fa
ct

or Greedy/LowerBound EnumMulti/LowerBound

Figure 17: DM, Coil dataset

Relative Comparision for DM metric with restrictions:
SimpleNormal dataset

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

5 10 25 50 100 250 500 1000

K-anonymity factor

D
M

 m
et

ric
 v

al
ue Greedy EnumMulti

Figure 18: DM,SimpleNormal, with length constraints

greedy approach gets closer to the enumeration algorithm for lower values
for k.

Experiment 5:-(SimpleNormal, DM,<k-anonymity,Length>):

For this experiment the SimpleNormal dataset was partitioned using
50×50 splits. We also imposed length restrictions of size 10 units along each
dimension (i.e., “no partition-block should have an edge-length of less than
10 units”). Fig 18 shows the result. The enumeration algorithm outper-
forms the greedy algorithm for all values of k by a significant margin. This
illustrates how the greedy is more likely to get caught in local-minima as
the set of constraints get more diverse.

When constraints apply, the greedy algorithm does not have many splits
at its disposal at each stage due to the restrictions imposed by minimum
length requirement. This is specially true at the lower levels of the partition

31

Relative Comparision for DM metric on Adult Dataset
when length restrictions apply

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

5 10 25 50 100

K-anonymity factor

D
M

 v
al

ue

Greedy EnumMulti

Figure 19: DM, Adult dataset, with length constraints

tree where the effect of the length restrictions is the greatest. The length
restrictions reduce the solution space at each subsequent stage and since
the greedy approaches don’t use any back-tracking, they get caught in some
local minima most of the time. In comparison EnumMulti systematically
enumerates this reduced solution space, and is more likely to do much better
than the greedy.

Experiment 6:-(Adult, DM, <k-anonymity,Length>):

Here we compared the cost of solutions using EnumMulti and greedy on
the Adult dataset by imposing minimum length restrictions. In seven out
of the nine attributes (Age, Geography, Race, Working class, Occupation,
Education, Marriage) we imposed a minimum length requirement equal to
twice the inter-split distance. The other two dimensions were left out since
twice the inter-split distance along these dimensions would amount to the
total range of the dimension. Fig 19 shows the results. Even for this dataset,
the enumeration algorithm does well for all values of k against the greedy
approach, therefore confirming our intuition from the previous experiment.

Experiment 7:-(Coil, DM, <k-anonymity,Length>):

In this experiment a minimum length equal to twice the inter-split dis-
tance(minimum possible) was imposed on all the five dimensions of the Coil
dataset. Fig 20 shows the result.

Experiment 8:-(Adult,DM, <k-anonymity,l-diversity>):

We compared both the approaches when L-diversity restriction, together
with the k-anonymity is applied on adult dataset. We have taken occupation

32

Relative Comparision for DM metric on coil
dataset with length restrictions

0

1000000

2000000

3000000

4000000

5000000

6000000

5 10 25 50 100 250

K-anonymity factor

D
M

 v
al

ue

Greedy
EnumMulti

Figure 20: DM, Coil dataset

Relative Comparision for DM metric with both L-diversity and
K-anonymity constraints

0

20000000

40000000

60000000

80000000

100000000

120000000

2 4 6 8

L-diversity Values

D
M

 m
et

ric

Greedy,k=50
EnumMulti,k=50
Greedy,k=25
EnumMulti,k=25

Figure 21: L-diversity, Adult dataset

33

Relative Comparision for VM
metric on Adult Dataset

0

2E+11

4E+11

6E+11

8E+11

1E+12

1.2E+12

5 10 25 50 100 250 500 1000

K-anonymity Factor

V
M

 m
et

ri
c

va
lu

e EnumMulti
Greedy

Figure 22: VM, Adult dataset

dimension as the sensitive attribute which has 14 different values, similar to
[4]. For this experiment we have kept the anonymity constraint k constant
and varied the l-diversity. This was done for two values of k (i.e. 25 and
50). Fig 21 shows the result. Our enumeration algorithm outperforms the
greedy approach when L-diversity desired is more than 4 for both values of
k. Diversity of 4 is easier to achieve in this dataset.

Experiment 9:- (Adult,VM, <k-anonymity>):

For this experiment we have used 101 splits, similar to the run where the
DM metric is optimized. The enumeration algorithm mimics the result of
the DM metric for the VM metric. The enumeration algorithm does better
than greedy for higher values of k, but the greedy algorithm comes close to
the enumeration algorithm for lower values of k. Fig 22 shows the result of
the experiment.

Experiment 10:- (Adult, CM, <k-anonymity>):

For this experiment we have used 101 splits, similar to the run where the
DM metric is optimized. The enumeration algorithm mimics the result of
the DM metric for the CM metric. The enumeration algorithm does better
than greedy for higher values of k, but the greedy algorithm comes close to
the enumeration algorithm for lower values of k. Fig 23 shows the result of
the experiment.

Miscellenaous experiments:
Another interesting measurable factor was the priority function(key) of

the priority queue. Changing the key of the priority queue leads to interest-
ing search patterns on the partition enumeration tree and could potentially

34

Relative Comparision for CM
metric: Adult Dataset

0

1000

2000

3000

4000

5000

6000

7000

1000 500 250 100 50 25 10 5
K-anonymity Factor

C
M

 V
al

ue
Greedy EnumMulti SingleDimensional Optimum

Figure 23: CM, Adult dataset

Relative Comparision of different measures for
calculating PQ key: Adult dataset

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

5 10 25 50 100 250 500 1000

K-anonymity factor

D
M

 m
et

ric

LB Cost LB/Cost

Figure 24: Biasing Priority queue

Performance of Enumeration
Algorithm on Adult dataset

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

5 10 25 50 100 250 500 1000

K-anonymity Factor

D
M

 v
al

ue

Best solution after 1 hour

Best Solution after 5 hours

Figure 25: Performance, Adult Dataset

35

increases the chances of finding good solutions quickly. Previously, we intro-
duced the following three different priority functions a) LowerBound (LB)
b) Cost of the metric (Cost) and c) LB/Cost and stated their rationale. Fig
24 shows the result for a run on the adult dataset optimizing the DM metric
using all the three priority functions(keys) under consideration. LB priority
function performs the best. A good solution at the highest level of the PET
does not necessarily lead to a good solution at the lower levels. Therefore,
Cost priority function does not do as well the LB priority function. In the
case of LB/Cost priority function, the Cost of the metric (Cost) dominates
the value and the priority function follows nearly the same search pattern
as the Cost priority function.

One interesting fact about the enumeration algorithm is that it does not
need to run for a long time to get good solutions. In Fig 25 we have plotted
the best solution found after 1 hour and after 5 hours for a run on the adult
dataset optimizing the DM metric. It is quite clear from Fig 25 that the
metric value of the solution found after 1 hour is very close to the metric
value of the solution found 5 hours. This characteristic is found in almost
all of our experiments.

In summary, the following are the significant results of our experiments;

• The enumeration algorithm has found optimal solutions for up to 14
splits under 30 mins.

• The enumeration algorithm performs better than greedy in all experi-
ments and performs significantly better than greedy for higher values
of k (usually more than 100), when constraints are not applied.

• For lower values of k (less than 100), greedy comes close to solutions
found by the enumeration algorithm, when constraints are not applied.

• When constraints are applied, enumeration algorithm outperforms the
greedy techniques for all values of k.

• The enumeration algorithm picks close to optimal solutions under an
hour.

7 Summary & Conclusion

In this paper, we explored the problem of computing optimal k-anonymization
of multidimensional data using hierarchical partitioning of the space. The
approach we took was one of a complete search using systematic enumera-
tion of the solution space. We have also developed a neat adaptation of the
algorithm for categorical attributes, though we could not describe it in this
paper due to space constraints and the interested reader can refer to [20]. To

36

our knowledge, there is no work that proposes a technique to systematically
enumerate all the hierarchical partitioning of a multidimensional space.

In order to make the search for the optimal solution feasible in this huge
space of solutions, we employed pruning heuristics to reduce the search space
to a manageable size. Our enumeration tree exhibits a nice spatial locality
property that allows us to make tight lower bound estimates efficiently by
considering local distribution of the data in any region of interest.

Subsequently, we propose a flexible priority queue based algorithm that
implements a prioritized search to get to good solutions quickly. In fact, this
algorithm can execute in two modes, where one is directed towards finding
an optimum solution while the other mode optimizes for finding solutions
within a target approximation ratio.

We did extensive experimentation using a variety of combinations of the
cost metrics and constraints motivated by some popular measures of privacy
and information loss in privacy-preserving data mining applications. In
our experiments besides characterizing the performance of our enumeration
algorithm, we also carry out exhaustive comparison with some basic greedy
heuristics and in the process discover some interesting trends that deviate
significantly from what was predicted previously. In the this paper, we
report results using the popular DM metric as the cost and k-anonymity,
l-diversity and length restrictions as constraints. We also give performance
results by varying the priority queue parameters like the priority generating
functions and maximum allowed size of the queue.
Other related work & future directions: Finally, we note that while
this paper is centrally motivated by the need for privacy preservation for
data publishing, the problem of generalization based data anonymization
is in many ways similar to the problem of optimal histogram construction
and other related data partitioning problems. A wide variety of similar
optimization problems have been studied earlier in different contexts e.g.,
query optimization, image compression, parallel computing etc., where sim-
ilar families of partitionings have been considered [15, 16, 17, 18]. All these
applications could also benefit from the current work. In fact, the turn many
approximation algorithms proposed in them could perhaps be adapted for
the class of anonymization problems we mentioned here. Although we did
not pursue these issues in the current work, these remain as some attractive
avenues to explore in the future.

References

[1] Vijay S. Iyengar. Transforming Data to Satisfy Privacy Constraints. In the proceeding of
SIGKDD’02 Edmonton, Alberta, Canada.

[2] Roberto J.Bayardo, Rakesh Agrawal. Data Privacy Through Optimal K-anonymization. In
the Proceedings of ICDE 2005.

37

[3] Kristen LeFevre, David DeWitt, Raghu Ramakrishnan. Mondrian Multidimensional K-
Anonymity. ICDE 2006

[4] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, Muthuramakrishnan Venkitasub-
ramaniam. L-Diversity: Privacy Beyond K-Anonymity. ICDE 2006

[5] Bentley, J., L. Multidimensional binary search trees using associative searching. Communi-
cation of the ACM, 18(9):509-517, Sept. 1975.

[6] L.Sweeney. Achieving K-anonymity privacy protecting using generalization and Protection.
International Journal on Uncertainity, Fuzziness and Knowledge-Base Systems, 2002.

[7] P.Samarati. Protecting respondents identities in microdata release. IEEE Transactions on
Knowledege and Data Engineering, 2001.

[8] Pierangela Samarati, Latanya Sweeney. Protecting Privacy When Disclosing Information: K-
anonymity and its Enforcement through Generalization and Suppression.International Jour-
nal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 10, No. 5 (2002) 571-588

[9] UCI Machine Learning Repository. http:\\kdd.ics.uci.edu

[10] Benjamin C. M. Fung, Ke Wang, and Philip S. Yu. ”Top-Down Specialization for Information
and Privacy Preservation”, ICDE 2005, Tokyo, Japan, April 5-8, 2005

[11] LeFevre, K., DeWitt, D., Ramakrishnan, R. ”Incognito: Efficient Full-Domain K-
Anonymity”, In Proc. of ACM-SIGMOD 2005, Baltimore, MD, USA.

[12] Winkler, W., E. ”Using Simulated Annealing for k-anonymity”, Research Report Series (Sta-
tistics #2002-7), U.S Census Bureau 2002.

[13] Willenborg, L., Waal, T., D. ”Elements of Statistical Disclosure Control”, Lecture Notes in
Statistics, 155, Springer-Verlag, New York.

[14] Aggarwal, C., Yu, P. ”A Condensation Approach for Privacy Preserving Data Mining”,
EDBT 2004, Heraklion, Crete, Greece.

[15] Anily, S., Federgruen, A. ”Structured Partitioning Problems”, Operations Research Vol. 39,
Issue 1, 1991, pp. 130 - 149.

[16] Muthakrishnan, S., Poosala, V., Suel, T. ”On Rectangular Partitionings in Two Dimensions:
Algorithms, Complexity and Applications”, In Proc. of the 7th International Conference on
Database Theory, 1997.

[17] Berman, P., Dasgupta, B., Muthukrishnan, S. ”Exact Size of Binary Space Partitionings
and Improved Rectangle Tiling Algorithms”, In SIAM J. Discrete Math, Vol. 15., No. 2, pp.
252-267.

[18] Muthukrishnan, S., Suel, T. ”Approximation Algorithms for Array Partitioning Problems”,
Journal of Algorithms 54, 2005, pp. 85-104.

[19] Kifer, D., Gehrke, J., Bucila, C, Walkher, W., “How to Quickly Find a Witness”, PODS
2003, pp 272-283.

[20] Hore., B., Jammalamadaka, R., C., Mehrotra, S. ”Systematic Search for Optimal k-
Anonymization”, UCI-ICS 2006, tech-report .

38

A Proof of Correctness of Algorithm “Enumer-
ate”

Here, we present the proof of theorem A.1 of section 3.2.

Theorem A.1 Algorithm Enumerate(D,S) systematically enumerates all
distinct hierarchical partitions of the multidimensional space D generated
using splits from the given split set S.

Specifically, we prove the following two properties of the enumeration
algorithm: (i) Completeness: It correctly generates all the distinct hierar-
chical partitions of the multi-dimensional space using the given set of splits.
(ii) Uniqueness: It does so without duplication, i.e. there is a one-to-one
correspondence between the nodes in partition enumeration tree (PET) and
the set of hierarchical partitions of the space. The proof outline is given
below.

1. First, we look at a simplified version of the algorithm Enumerate (fig-
ure 6) wherein the constraint checking is step (line 3) is simplified to
only check compliance with Constraint 1. We call this the MultiEnu-
merate algorithm (figure 26). That is, it generates a multi-way tree
of all timestamped KD-trees constructible using the given set of splits
which comply with Constraint 1 (i.e. left subspace of a KD-tree node
has been partitioned before the right subspace). Recall that a single
hierarchical partition may be denoted by several different KD-trees.
Since the simplified algorithm generates all KD-trees representing the
same partition, we call it the MultiEnumerate algorithm. There-
fore, the set of hierarchical partitions induce an equivalence relation
over this set of KD-trees, where each equivalence class represents a
distinct hierarchical partition of the space. We will use the method of
induction to prove the following claim:

Claim A.1 Algorithm MultiEnumerate enumerates all members of
each equivalence class, therefore ensuring completeness.

2. Second, we look the effect of introducing the check for compliance with
Constraint 2 into algorithm MultiEnumerate. The “Detect-Legal-
Split” (DLS) routine in algorithm Enumerate (figure 6) first checks
for Constraint 1 which is already implemented by MultiEnumerate.
Therefore we only concentrate on the effect of enforcing compliance
with Constraint 2 by the DLS routine. We explain in detail, how
avoiding “out-of-sequence splits” removes all duplicates and retains
exactly one “copy” of each hierarchical partition. Specifically we will
prove the following claim.

39

Claim A.2 DLS returns TRUE for exactly one member from each
equivalence class induced by the set of hierarchical partitions. This
unique KD-tree is the only “legal” representative of the hierarchical
partition corresponding to the class (this KD-tree is called the “parti-
tion tree” for that partition).

3. Lastly, we make the following observation.

Observation A.1 Algorithm Enumerate generates new partitions
by adding a single split at a time to an existing partition. As a result,
legal KD-trees (corresponding to child nodes) can only be derived from
a parent KD-tree that is legal (i.e. complies with Constrain 1 and 2).

From the above observation, we are guaranteed completeness by simply
retaining legal KD-trees at any stage in the enumeration process. This
allows us to safely drop all trees derived from a legal KD-tree that do
not meet the DLS criteria.

Combining the three arguments made above, it follows that algorithm
Enumerate (in figure 6) generates all distinct hierarchical partitions of the
space using the set of splits and does so without any duplication. We now
prove the claims in item 1 and 2 above, the claim in item 3 is clear from the
arguments provided there.

A.1 Proof of Claim 1

The MultiEnumerate algorithm is given below in figure 26. We use in-
duction on n, cardinality of the set Seq[n] of splits and prove that Mul-
tiEnumerate generates the complete set of KD-trees denoting the set of
hierarchical partitions.
Note that we only need to prove the correctness for those instances of Multi-
Enumerate where the input parameter T (r) denotes a degenerate KD-tree,
i.e. T (r) denotes an undivided subspace. We will denote such a tree by Tφ.
Making the hypothesis for the more general case where T (r) can be any
KD-tree unnecessarily complicates the proof procedure, hence we make the
simpler hypothesis which suffices. The proof by induction is given below.

For n = 1, the algorithm generates the enumeration tree containing
two nodes, one denoting the undivided space and the other denoting the
partition having just one split that dividing the space into two subspaces.
Now we make the induction hypothesis for all values of n from 1 to k:
Induction hypothesis: For all values of n = 1, . . . , k Algorithm Multi-
Enumerate (D,Seq[n], r, Tφ) generates the enumeration tree rooted at r,
consisting of all distinct timestamped KD-trees that are constructible on

40

the domain space of data set D, using zero or more splits from the set
Seq[n]. Additionally each tree generated complies with Constraint 1.

MultiEnumerate(D,Seq, r,T(r))
Output: Construct the enumeration tree

(rooted at r) of all KD-trees
extending T (r) and comply with
Constraint 1

BEGIN
1) For Each leaf l ∈ T (r) s.t. l |= Constraint 1
2) For Each available split sl ∈ Seq at l
3) Generate new child node c
4) Generate KD-tree T (c) ← T (r) ∪ sl

5) Add pointers r → c ; c → r
6) MultiEnumerate(D, Seq, c, T (c))
7) End For
8) End For
9) Return r
END

Figure 26: Generating the complete set of KD-trees using n splits

Induction step: To prove that MultiEnumerate generates the complete
set of timestamped KD-trees when called with any split set of size k + 1.

Proof of induction step: Consider the following instance of the algo-
rithm: MultiEnumerate (D, Seq[k+1], r, Tφ). Any such instance of the
MultiEnumerate algorithm can be re-written in a non-constructive but
equivalent form as the new algorithm InductiveEnumerate shown in fig-
ure 27. Note that the two algorithms are completely equivalent for the
class of instances of MultiEnumerate that we are interested in (i.e. where
T (r) = Tφ always). Note that equivalent algorithm does not require the
inputs r and T (r) and outputs the complete set of KD-trees instead of an
enumeration tree (hence we call it non-constructive). The key observation
is that the split that is chosen first cuts across the whole space, therefore
it cannot be used again and hence can be dropped from the set of available
splits in both the recursive calls to the function. The algorithm introduces
the first split and calls itself recursively on the space to the left and right of
the first split with a split set of size one less than the one in its input. There-
fore the proof follows from our inductive hypothesis and the equivalence of
the two algorithms MultiEnumerate and InductiveEnumerate.

A.2 Proof of Claim 2

From here onwards, we will assume that all KD-trees comply with Con-
straint 1 unless otherwise stated. The first part of the DLS routine checks

41

InductiveEnumerate(D,Seq[k+1])
Output: The set TREES of all KD-trees
BEGIN
1) TREES ← {Tφ}
2) For Each split si ∈ Seq[k+1]

3) Tleft ← InductiveEnumerate
(Dleft(si)

, Seq[k+1] − {si})
4) Tright ← InductiveEnumerate

(Dright(si)
, Seq[k+1] − {si})

5) For Each T l ∈ Tleft

6) Add 1 to the timestamp of each node in T l

7) For Each T r ∈ Tright

8) Add MAX {timestamp(node ∈ T l)} to
timestamp of each node in T r

9) Generate Tnew ← Tφ

10) Tnew.root.split ← (si)
11) Tnew.root.timestamp ← [1]
12) Tnew.root.leftchild ← T l

13) Tnew.root.rightchild ← T r

14) TREES ← TREES ∪ {Tnew}
15) End For
16) End For
17) End For
18) Return TREES
END

Figure 27: Re-writing MultiEnumerate for inductive proof

compliance with Constraint 1 and since that is assumed to be taken care
of, the phrase “DLS returns true” will be used to imply compliance with
Constraint 2 (i.e. splits at nodes are in-sequence or not).

Nature of DLS routine and the enumeration process: Observe
that the DLS routine, invoked at any node t of a KD-tree T checks whether
split s(t) at t is out-of-sequence with the split s(a) at any ancestor a of t. T
is considered legal (i.e. T is a partition tree) if and only if the DLS routine
returns true for each node in T . Since algorithm Enumerate generates
new trees by extending existing partition trees by splitting a single partition
block at a time, it is only necessary to invoke DLS once for every new
partition generated from the parent node in the enumeration tree. This
also implies that there can be no partition tree (i.e. legal KD-tree) that is
derived from an “illegal” parent KD-tree and therefore only legal KD-trees
need be generated and retained during the entire enumeration process.
Parent-child switching of splits: We now introduce an operation called
“parent-child switch” which can be performed between a node and its chil-
dren (or a child, it will become clear soon) in a KD-tree under certain
conditions. The important property of such an operation is that, they gen-
erate a new KD-tree that denotes the same partition, but simply changes
the sequence in which the cutting splits are introduced in some subspace.

42

P (s1)

Cright (s2)Cleft (s2)

TL
1 TR

2TL
2 TR

1

P (s2)

Cright (s1)Cleft (s1)

TL
1 TR

2TL
2TR

1

Figure 28: Parent-child switch for orthogonal splits (case 1)

P (s1)

Cright (s2)

TL

TR
2TR

1

P (s2)

TR
2

TL

Cleft (s1)

TR
1

Figure 29: Parent-child switch for parallel splits (case 2)

We give the definition below and provide an example to illustrate the switch
operation.

Definition A.1 Parent-child switch: There are two distinct cases in
which a switch can be made:

Case 1) In a KD-tree T , a node p and its two children cleft and cright

have node splits such that s(cleft) = s(cright) = s2 6= s(p) = s1, then a
parent-child switch (or simply a switch) refers to the atomic operation that
switches the positions of splits s1 with s2, followed by switching the positions
of the right subtree of cleft with the left subtree of cright. Note that visualizing
geometrically, this case holds when the two splits are orthogonal to each other
(i.e. along two different dimensions (attributes)). This case is illustrated in
figure 28.

Definition A.2 Case 2) This corresponds to splits s1 and s2 that are par-
allel in space. Say s(p) = s1 6= s(cright) = s2 (when s2 is a split to the right
of s1 in the space), then a switch refers to the atomic operation that “left
rotates” the nodes p and cright. That is, cright becomes the parent with split
s2, p becomes the left child of cright and positions of the left subtree of cright

is switched with that of the right subtree of p. The “right rotate” operations
is symmetric. This case is illustrated in figure 29.

Two part proof: We give a constructive proof and show that each equiv-
alence class of KD-trees always has exactly one tree that satisfies the DLS
routine at all of its nodes. The proof has two part: 1) We show that for any
KD-tree with an out-of-sequence pair of splits, say < (s), (s′) > such that

43

(s) is the split introduced earlier, we can always derive a new tree using a
sequence of parent-child switch operations such that it represents the same
hierarchical partition and has (s′) as the earlier of the two splits. Specifically
we will show using straight forward induction that all conflicts (i.e. pairs
of out-of-sequence splits) can be resolved for any given KD-tree, thereby
generating a conflict-free KD-tree. 2) We show there can be at most one
such tree for every equivalence class.

Proof of the first part: The proof is based on the following three obser-
vations, first of which we have already stated above.

Observation A.2 Any parent-child switch operation is “partition preserv-
ing”. That is, the KD-tree before and after a switch is made, represents the
same hierarchical partition.

Observation A.3 A parent-child switch operation between the node p and
its child node(s) never generates a new conflict with any ancestor of p, i.e.
never generates new out-of-sequence pairs with split at an ancestor12 of p.

Observation A.4 If s∗ is the split at a KD-tree node n that forms a cut
of the subspace denoted by some ancestor a of n, then s∗ is also a cut across
the subspace denoted by each node on the path a Ã n.

Now look at the MultiEnumerate algorithm, in each iteration it starts
with a legal KD-tree (i.e. conflict free) in the enumeration tree, call it the
parent tree and generates a new candidate tree by adding a single split to
some leaf of the parent tree. One only needs to check if there is a conflict
between this split added at the newly formed node and the split at each of
its ancestor nodes. We use induction as mentioned above to show that a
conflict free tree exists for the given partition.

It is easy to see that when the parent tree has one node (i.e. one root
node and two leaves), a conflicting split at a newly split node can be resolved
using a switch operations with the root. Let us assume that all conflicts can
be resolved for a KD-tree with up to k nodes. Therefore we can always
have a legal KD-tree with k nodes. Now say a new node nnew is generated
thereby making it a tree with k + 1 nodes. Now if the highest ancestor
a of this node, with which it conflicts is a node other than the root (i.e.
a 6= root), by induction hypothesis we can always resolve the conflict in the
subtree rooted at a since it is a tree with strictly ≤ k nodes. From observa-
tion A.3, the conflict can be resolved without introducing any new conflicts
with any ancestor of a. Therefore there exists a legal KD-tree representing
the new partition. Else if, the new node conflicts with the root of the tree,

12A switch operation may generate new conflicting pairs in either or both of the subtrees
rooted at p.

44

T T ’

root(T1*) root(T2*)

n1* (s1*) n2* (s2*)

path1 path2

Figure 30: Uniqueness of the conflict-free KD-tree

using observations A.2, A.3 and A.4, we can always resolve the conflict with
the root node, which will leave us with at most two “conflict-prone” subtrees
(left and right subtree of root node), which can again be made conflict free
using our induction hypothesis. Hence the first part is proved.

Proof of the second part: Assume we are given two randomly chosen
KD-trees T1 and T2 belonging to the same equivalence class. Now, using
parent-child switch operations let T1 and T2 be transformed into the conflict-
free trees T ∗1 and T ∗2 respectively. Now, since these trees represent the same
hierarchical partitions, they will have the same number of leaves and in fact
there is a 1-to-1 correspondence of the set of leaves in T ∗1 to those in T ∗2 .
Let us assume that these two final trees are distinct, then we can find at
least one pair of leaves (corresponding to the same partition block in each
tree) such that the sequence of splits along the root-to-leaf path in one tree
is different from the other (see figure 30). Let us call these paths path1 and
path2. Since these two are not the same, let n∗1 and n∗2 be the first nodes
in each path, where the splits do not match, say denoted by (s∗1) and (s∗2).
But both n∗1 and n∗2 denote the same subspace and the splits chosen at these
nodes are cuts of this subspace. And now, since one of the two splits (s∗1)
or (s∗2) has a higher priority than the other, only the path with a node-split
of a higher priority could be a valid path in a conflict-free tree. Thereby
contradicting our initial assumption that T ∗1 and T ∗2 are distinct. Hence we
prove that at most one conflict free tree is there for each equivalence class.

Now the proof of Claim 2 is complete.

45

