Flexible Anonymization For Privacy Preserving Data Publishing: A Systematic
Search Based Approach

Bijit Hore, Ravi Chandra Jammalamadaka, Sharad Mehrotra
{bhore, rjammala, sharad }@Qics.uci.edu

Abstract

k-anonymity is a popular measure of privacy for data
publishing: It measures the risk of identity-disclosure of
individuals whose personal information are released in
the form of published data for statistical analysis and
data mining purposes(e.g. census data). Higher values
of k denote higher level of privacy (smaller risk of dis-
closure). Existing techniques to achieve k-anonymity
use a variety of “generalization” and “suppression” of
cell values for multi-attribute data. At the same time,
the released data needs to be as “information-rich” as
possible to maximize its utility. Information loss be-
comes an even greater concern as more stringent privacy
constraints are imposed [4]. The resulting optimization
problems have proven to be computationally intensive
for data sets with large attribute-domains. In this pa-
per, we develop a systematic enumeration based branch-
and-bound technique that explores a much richer space
of solutions than any previous method in literature.
We further enhance the basic algorithm to incorporate
heuristics that potentially accelerate the search process
significantly.

1 Introduction

The problem of anonymizing multi-attribute personal
data (microdata) for public release, has generated a lot
of interest in the research community over the recent
years. Privacy concerns arise due to danger of disclosure
of confidential information when individual-specific data
sets are released to public. Since most data sets of inter-
est contain one or more attributes which could be con-
sidered confidential by the owner, e.g., medical condi-
tion, financial information, ethnicity, level of education
etc., if data sets are “insufficiently anonymized”, they
may be linked with other available information, thereby
disclosing identity of individuals and possibly their con-
fidential information. A simple approach to preventing
information leakage is to k-anonymize the released data
set [7, 5]. A k-anonymized data set has the following
properties: (i) All attributes that are explicitly iden-
tifying, example “Name”, “Address”, “Social security
number” etc. are removed from the released set. (ii) A
subset of the remaining attributes is determined (by an
expert) to be the set of “Quasi Identifiers” (potentially

identifying set): these attribute values taken together
might form an unique combination and therefore could
be linked with external data to identify the record of an
individual in the published data. (iii) It contains one or
more sensitive attributes, the association of which with
an individual could be considered confidential, e.g., type
of disease, financial details like credit worthiness etc.
Now, assume there are q attributes in the quasi identifier
set, then the goal of k-anonymization is to “minimally”
modify the released data set, such that for each record,
the g-tuple of values of its quasi-identifier attribute set
is indistinguishable from at least k — 1 other records in
the released set. This is referred to as the anonymity
set or equivalence class of the record.

The most commonly used technique for anonymiza-
tion is that of generalization. Generalization refers to
the action of replacing the original value by some more
general value (e.g., replacing an exact numerical value
by an interval). Occasionally some of the records might
need to be suppressed (i.e., dropped from the published
table). Generalizing a data set results in information
loss which can be captured quantitatively by an associ-
ated cost metric for each of these operations. Typically,
the cost associated with suppression is higher than gen-
eralization, since it leads to a greater loss of informa-
tion. A number of cost metrics have been proposed in
literature [9, 1, 2, 4] which capture various notions of
information loss, ranging from application specific mea-
sures to very generic ones.

Generalization techniques in anonymization can be
classified into two categories [3]:

Single dimensional techniques: Also referred to
as Attribute generalization (AG) techniques, such trans-
formations can be viewed as partitioning the multidi-
mensional space of quasi-identifiers into a (possibly non-
uniform) grid (see fig. 1(a) below) where each parti-
tion boundary cuts across the whole space. Generaliza-
tion techniques are often mixed with suppression (i.e.,
records are completely dropped from the table) when
good generalization is not possible. However, suppres-
sions is not desirable due to the large information loss
it results in.

Multidimensional partitioning techniques:
These techniques lead to more flexible generalization

®)
)
.

Figure 1: (a) 1-dimensional (b) Multidimensional schemes

schemes of the data as compared to those allowed by
single dimensional approaches mentioned above. The
rectangular partitions generated could belong to the
family of hierarchical partitionings (also called guillotine
partitionings) or arbitrary rectangular partitionings. In
such schemes, a partition boundary need not cut across
the entire space. Example of a hierarchical partitioning
scheme is given in fig. 1(b). The class of arbitrary par-
titionings allows for any rectangular partitioning of the
space and is therefore a superset of the class of single
dimensional as well as hierarchical partitions.

A more detailed section on the related works can be
found in the extended version of this paper [14].

Our Approach: In this paper we will investigate
the class of hierarchical partitioning schemes. The
key property of multidimensional approaches is that it
allows one to change the nature of partitioning in one
region of the data space (locally) without affecting the
partitions in the other regions. The advantage is that
it helps avoid suppression in many data distributions
where single dimensional schemes would have enforced
suppression. For instance, consider the generalizations
of the 9 data points in figures 1 (a) and (b). If the
required anonymization level was k = 3, the latter
scheme allows a generalization where each class has size
exactly 3 data points and there is no suppression at
all (5! scheme) whereas the former is unable to do
so. These extra degrees of freedom in multidimensional
schemes substantially reduces the information loss in
the final anonymized data sets.

Specifically, we develop an enumeration based
branch-and-bound approach that enables one to explore
the space of hierarchical partitionings of a multidimen-
sional space. One of the key challenges is how to enu-
merate all distinct partitionings without duplication.
We devise a novel algorithm to enumerate all hierar-
chical partitionings in the form of an enumeration tree.
We are not aware of any prior work on systematic enu-
meration® for this class of partitionings. Further, based
on our enumeration tree, we develop a fast lower-bound
computation scheme that exploits monotonicity of the
cost functions for lower bounding and pruning of un-
promising solutions from the search space. We summa-

TA scheme to enumerate each distinct partition exactly once.

rize the key contributions and advantages of our pro-
posed solution methodology below:

Versatility of search: Our techniques can be used
with a large class of information-loss metrics and privacy
constraints like k-anonymity, entropy I-diversity, (c,l)-
recursive diversity etc.

Progressive improvement in solution quality:
At all times our algorithm maintains a lower bound to
the true optimum (global minimum) cost and as a result
one can stop the algorithm as soon as a solution with
the required approximation bound is reached.

Incorporation of search heuristics: We enhance
the basic enumeration-based search algorithm to allow
a variety of application-driven heuristics to be incorpo-
rated in order to accelerate the search. We introduce a
few of these heuristics in section 4.

Next, we describe our enumeration algorithm.

2 Enumerating Partitions

In this section we describe the enumeration algorithm
for hierarchical partitions of the space. From here on
we will use the term “partition” and “partitioning”
interchangeably to refer to a complete partitioning
scheme of the space.

Let us consider a d-dimensional space where each
dimension corresponds to one attribute of the data
set. Fig. 2 shows a 2-dimensional space where one
dimension is Age and the other Salary with domains
[30yrs, 60yrs] and [50K, 200K] respectively. Let the
split set comprise of the four splits: (1):Age=40, (2):Age
= 50, (3):Salary = 100K and (4):Salary = 150K. The
figure shows the finest level of partition (i.e., where all
splits are used and all of them cut across the whole
space). A hierarchical partition of a d-dimensional
space consists of a set of disjoint d-dimensional hyper-
rectangles that cover the entire space and can be
generated by recursively splitting the space. Such
partitionings can be represented by binary trees, see
fig. 3 for example.

The objective of our enumeration algorithm is to
generate the set of all possible hierarchical partitions of
a rectangular space using a given set of splits. The diffi-
culty arises in trying to enumerate them in a duplicate-
free manner. To see the challenge of duplicates, consider
the partitioning scheme and its binary tree representa-
tion in fig. 3: The tree could have been created by the
choosing the following sequence of splits: (3), (1), (4),
(2) and (2), where the integer within ‘(’ and ‘)’ is the
split-id and the integer within ‘[’ and ‘|’ is the timestamp
at which the node was split. We follow the rule that
nodes that occur earlier in DFS order in the binary tree
are split before those that appear later (if they are split
at all that is). Now, notice that this is not the only way
this partition could have been generated, it could have
also been generated by the following sequence of splits:

200k

150k (4)

Salary

100k @)

50k

30 40 50 60
Age

Figurc 2: Finest partition of the space
@©) 1

(1) [2] (4) 3]

rightmost leaf

(3)

(2) [4]

2

Figure 3: A sequence of splits generating a partition

(4), (3), (1), (2) and (2). Though the final partitions
are identical, the binary trees resulting from these two
sequences are structurally very different.

The enumeration algorithm that generates the par-
tition enumeration tree (PET) is described in the ex-
tended version [14]. Fig. 4 shows a partial PET of all
possible hierarchical partitioning schemes of a two di-
mensional space using 3 splits (2 vertical and 1 horizon-
tal).

Next, we describe the setup of the optimization
problem: objective function, constraints and pruning
techniques employed to find an optimal partitioning
scheme.

3 Search for Optimal Partitioning

Our optimization problem is a constrained minimiza-
tion problem where the Cost denotes the information-
loss due to the generalized representation of the data
set. It is denoted by a non-negative real-valued function
Cost : N — R, where N is the set of all nodes in PET
(ie., set of all partitioning schemes). Constraint denotes
the privacy criteria (e.g., k-anonymity, l-diversity etc.)
which determines the set of all admissible partitioning
schemes. Different combinations of these two parame-
ters define different classes of optimization problems. In
this paper we consider one cost function and 3 different
privacy-constraints.

Cost function: Discernibility metric (DM):
Proposed in [2], it assigns a penalty to each tuple based
on how many tuples in the transformed data set are
indistinguishable from it. If a tuple belongs to an
anonymity group S; of size n (i.e. has n— 1 other tuples
present in it), then that tuple is assigned a penalty of
n. If a tuple is suppressed a penalty equal to the size of
the data set | T' | is assigned.

>

Vi, |Si|>k

DM = | S; |” + | T |

>

v Suppressed Tuples

Figure 4: Partition enumeration tree

Constraints: The 3 classes of constraints we used
in our experiments are the following:
(1) k-Anonymity: For every tuple ' in the released
table, there should at least be [distinct indices (in-
cluding its own) (i1,42,...%;), where [> k, such that
ti, (Q) = t:,(Q) = ...1;,(Q) = ¢/, where t(Q) denotes
the projection of ¢t on the quasi-identifier attribute set
Q.
(2) Entropy l-diversity: Using the definition from
[4], a table is entropy I-diverse if for every equivalence
class (partition block) b, the following holds.

=Y pemlogpe.r) = log(l)
reR

where p) denotes the fraction of tuples in the block b
with sensitive attribute value equal to r, and R denotes
the set of all values (categorical) for the sensitive
attribute. This constraint ensures that each equivalence
class has at least | “well represented” values of the
sensitive class.
(3) k-Anonymity with length restrictions: Here
in addition to the k-anonymity constraint we impose
a minimum length constraint on the edge length(s) of
a partition block in the anonymized data set, e.g., “In
the released data set, no individual’s salary should be
specified to an interval of length smaller than 10K”
and/or “Age of any individual should not be specified
to an interval less than 5 years” etc.

Now the optimization problem can be formally
defined as follows.

DEFINITION 3.1. (Optimal Anonymization Prob-
lem): Given a cost function Cost and a constraint, find
a hierarchical partitioning of the multidimensional data
set such that the constraint is not violated and the cost
of the solution is minimized.

3.1 Searching for the Optimum Solution The
efficiency of the search algorithm critically depends on
how much of the search space can be pruned away
during enumeration. The following condition must hold
for pruning a node n (at its generation time) in our
PET:

ConDITION 3.1. (Condition for pruning) The sub-
tree rooted at n in the PET can be pruned if at least

one of the following two conditions hold at each node
in the subtree: (1) The partition corresponding to the
node is not an admissible solution (violates the privacy
constraint) (2) All partitions in the subtree rooted at n
have a cost larger than the current_minimume_cost in the
algorithm.

If a node n (and the subtree rooted at n) in the
PET cannot be pruned for the first condition, then we
check for the second condition. To carry out this check
efficiently (i.e., one that does not traverse the subtree
rooted at n), one needs to define a function LB that
estimates a lower bound to the minimum cost achievable
in the subtree. We discuss properties of our enumeration
tree and provide examples in the extended paper.

Next, we describe a priority-queue based optimiza-
tion for speeding up the basic search algorithm.

4 Accelerating Search using Priorities

As it turns out, more often than not in spite of pruning,
the search space continues to remain extremely large.
As a result, the depth-first traversal order of nodes (as
in the basic recursive algorithm presented in [14]) turns
out to be an inefficient way to explore the solution
space for most objective functions of interest. Here,
by efficiency we mean “how soon does the algorithm
finds a solution close to optimal”. To do away with
these limitations of the recursive algorithm, we propose
a new solution-space exploration scheme that is both
theoretically sound (i.e. guarantees completeness of
search) and at the same time, allows one to incorporate
heuristics to accelerate convergence to the optimum
solution. The side-effect being: good approximations to
the optimal are generated much earlier in the sequence.
Now, instead of traversing the PET in a fixed order
which is agnostic of the objective function, our new
algorithm uses a priority function to direct its search
at each step.

The non-negative real-valued function
Priority : N — R, where N is the set of nodes in
PET, assigns a numeric value that is used as the key to
insert n into the priority queue. Our algorithm admits
the usage of arbitrary priority generating functions. We
experimented with the following functions to generate
node priorities.

1) LB (lower bound function): The intuition being, the
node of PET that has lowest lower bound is the most
promising one to explore (i.e., expand further below).
2) Cost (cost function): Cost of the solution at a node
n was used to prioritize the search.

3) LB/Cost (ratio of the lower bound and the cost):
Similarly, the rationale behind LB/Cost was to go
down branches which had the highest potential of cost
improvement.

There are two modes in which the priority-based
algorithm can be executed: (A) Geared towards finding

an optimum solution, where the lower bound LB(n)
is used to decide whether to prune node n or not. (B)
Geared towards finding a c-approximate solution to
the optimum, where the ratio a(n) = LB(n)/Cost(n)
is used to prune node m from the search space. For
instance, if the user wants to find a 3-approximate
solution, a node with « value greater than 1/3 can be
safely dropped from the priority queue.

More details of the priority-queue based algorithm
is given in [14]. Next, we present some of our experi-
mental results.

5 Experiments

Experimental setup: All the experiments were run
on a Pentium 4, 3.00 GHZ processor machine with 4
GB RAM. The machine was running windows XP op-
erating system and our enumeration algorithm was im-
plemented using the VC++ development environment.

Data sets: There were three different datasets
that were used in the experiments. The first real
data set used in the experiments is the Adult data set
from the Irvine machine learning repository [8], which
has in some ways become the benchmark of measuring
the k-anonymization algorithms. This data set has 9
attributes (Age, Geography, Gender, Race, Working
Class, Occupation, Education, Class, Marriage) and
reports the actual census data. The data set has 30,162
tuples.

The second real data set is the Coil 2000 data
set, also from the same repository. The data contains
information on customers of an insurance company. We
have taken the first five dimensions of the Coil data set,
namely, customer subtype, number of houses, average
size of a household, average age and customer main
type. This data set has 9882 tuples.

The third dataset used in our experiments was syn-
thetically generated, which we will refer to as Sim-
pleNormal. This data set has two integer dimensions
with values ranging from 0 to 100. The values follow a
two dimensional normal distribution.

Purpose of the experiments: The purpose of
our experiments was to measure: a) The scalability
of our enumeration algorithm and b) To compare the
solutions of the enumeration algorithm with those of the
greedy algorithm proposed in [3]. Since the authors in
[3] show that their greedy approach outperforms other
previously suggested techniques, as comparison with
their results illustrates the advantages of our approach
over all others till date.

Scalability of our approach: We note the time
the algorithms takes to find the optimal solution (in
most cases we report how close it approximately gets to
the theoretical best). Here, we will only give a summary
of our findings due to space restrictions and we direct
the interested reader to [14] for a more comprehensive

Relative Comparision for DM metric
on SimpleNormal Dataset

Relative Comparision of appropriate factors for DM metric:
Adult dataset

Relative Comparision of approximation factor
for DM metric: Coil Dataset

B Greedy/EnumMulti, splits=10
OGreedy/EnumMulti, splits=40

Relative factor
Approximate factor

5 10 2 50 100 250 500 1000 s 10 2 50
K-anonymity Factor

B GreedyDM/LowerBound

O EnumMulti/LowerBound

K-anonymity factor

B Greedy/LowerBound 0 EnumMulti/LowerBound

Approximation factor

250 500 1000 s 10 500 1000

s s w0 20
K-anonymity factor

Figure 5: DM, SimpleNormal

Figure 6: DM, Adult

Figure 7: DM, Coil

Relative Comparision for DM metric with restrictions:
SimpleNormal dataset

Relative Comparision for DM metric on Adult Dataset
when length restrictions apply

Relative Comparision for DM metric on coil
dataset with length restrictions

O EnumMulti

B Greedy

DM value

s 10 2 s 10 20 500 1000 s
K-anonymity factor

i EGreed
B Greedy 0 EnumMulti EnumMuli

10
K-anonymity factor

r

50 100 s 250

10 s w0 100
K-anonymity factor

Figure 8: DM, SimpleNormal, Length

experimental analysis. The most critical parameter for
the enumeration algorithm is the number of splits as it
dictates the size of the solution space. The algorithm
finds optimal solution when the number of distinct splits
used are less than equal to 10, in under 30 minutes.
When the number of splits were increased, we needed
to drop some solutions as they cannot fit in the memory
and thereby lost the guarantee of optimality of the
final solution. When the splits were more than 10,
our algorithm found solutions within a factor of 3.5 of
the theoretical lower bound of the optimal solutions.
Whereas our enumeration algorithm can determine the
optimal solution or those within a specified factor of the
lower bound (to the optimal) given sufficient space and
time, the greedy algorithms proposed thus far typically
return a locally optimal solution.

Comparison to the greedy algorithms: Here
we present results for simply one metric (DM) and
three different constraints (k-anonymity, l-diversity and
minimum length restrictions). Results on other metrics
can be found in [14]. Each of these constraints have a
parameter that is varied, k for anonymity, [for diversity
and lenght for the minimum allowed size of the range of
attribute-value in anonymity classes. We applied a total
of 4 different sets of constraints to each combination
of the dataset and cost metric. We use the following
notation “(D, M, S)” to denote an experiment on a
dataset D with metric M with additional constraint S
(besides the normal k-anonymity constraint). For all the
following experiments the enumeration algorithm was
run for maximum of 5 hours.

Experiment 1:-(SimpleNormal, DM, <K- anonymity>):
We used two sets of splits (5*5 and 20*20) and ran both
our enumeration algorithm and the greedy algorithm.
Fig. 5 plots the ratio of greedy value found to value of
the solution found by our enumeration algorithm (repre-
sented as “EnumMulti” in the graphs). For a total of 10
splits (5x5), EnumMulti picked optimal solutions which

Figure 9: DM, Adult, Length

Figure 10: DM, Coil, Length

were on a average 8.2 times better than the greedy so-
lutions. All the optimal solutions were found under 30
mins. For the 40 splits case (i.e. 20x20), EnumMulti
was only 4 times better than the greedy. As the num-
ber of splits increase, the quality of results generated by
the enumeration algorithms and the greedy algorithms
converge.

Experiment 2:- (Adult, DM,< K-anonymity>): We used a
total of 101 splits to partition the Adult dataset. Enum-
Multi outperforms the greedy approach by a significant
margin at higher values of k (greater than 100). Fig. 6
shows the ratio of the best solution found so far to the
lowest lower bound (of the cost) of any partition tree
currently in the priority queue. We achieved an ap-
proximation ratio of 1.35 times the lower bound for k =
1000.

Experiment 3:- (Coil, DM,< K-anonymity>): Similar com-
parisons were carried out using the Coil dataset. Here
the advantage of EnumMulti over greedy is significantly
more than it was for the Adult dataset as can be seen
in fig. 7. But, the similar trend is seen, wherein the
greedy solution approaches the EnumMulti’s solution
at smaller values for k.

Ezxperiment 4:-(SimpleNormal, DM, K-anonymity, Length):
Here we used 50x50 (a total of 100) splits. We also
imposed a minimum-length restriction of 10 units along
each dimension (i.e., “no partition-block should have
an edge-length of less than 10 units”). Fig. 8 shows
the result. The enumeration algorithm outperforms
the greedy algorithm for all values of k by a significant
margin.

When constraints apply, the greedy algorithm does
not have many splits at its disposal at each stage and
it gets caught in some local minima with a high prob-
ability. In comparison, EnumMulti systematically enu-
merates this reduced solution space, and therefore more
likely to do much better than greedy when constraints

apply.

Relative Comparision for DM metric with both L-diversity and
K-anonymity constraints

120000000

@ Greedy, k=50
OEnumMulti,k=50 (wima
Greedy, k=25 /

2
Zi
W EnumMulti k=25 i} !Im %

4

100000000

80000000

60000000

DM metric

40000000

20000000

L-diversity Values

Figure 11: DM, Adult, L-diversity

Experiment 5:-(Adult, DM, < K-anonymity, Length>): This
run was same as the previous one, but using the Adult
data set. In seven out of the nine of the dimensions
(Age, Geography, Race, Working class, Occupation,
Education, Marriage) we imposed a minimum length
requirement equal to twice the inter-split distance.
Fig. 9 shows the results. Here as well the enumeration
algorithm does well for all values of k as compared to
the greedy approach, therefore confirming our intuition
from the previous experiment.

Experiment 6:-(Coil, DM,<K-anonymity,Length>): In
this experiment a minimum length equal to twice the
inter-split distance(minimum possible) was imposed on
all the five dimensions of the Coil dataset. Fig. 10 shows
the result.

Experiment 7:-(Adult, DM, <K-anonymity,L-diversity>):
We compared both the approaches when [-diversity re-
striction together with the k-anonymity is applied on
the Adult dataset. We have taken occupation dimen-
sion as the sensitive attribute which has 14 different
values, similar to [4]. For this experiment we have kept
the anonymity constraint k& constant and varied the 1-
diversity. This was done for two values of k (25 and 50).
Fig. 11 shows the result. EnumMulti outperforms the
greedy approach when [-diversity desired is more than
4 for both values of k.

In summary, the following are the significant results
of our experiments: 1) The enumeration algorithm
performs better than greedy in all experiments and
performs significantly better than greedy for higher
values of k (usually more than 100), when constraints
are not applied. 2) For lower values of k (less than
100) and when constraints apply, greedy comes close to
solutions found by EnumMulti. 3) When constraints
are applied, EnumMulti significantly outperforms the
greedy algorithm for all values of k. 4) EnumMulti
picks close to optimal solutions under an hour for most
datasets and constraints.

More experimental results characterizing the per-
formance of priority functions and running times of our
algorithm can be found in the extended version of our
paper [14].

6 Conclusion

In this paper, we explored the problem of computing
optimal generalizations of multidimensional data under
a variety of privacy constraints. We developed an enu-
meration based search algorithm for the class of hier-
archical rectangular partitioning schemes to that can
be employed to generalize the data. In order to make
the search for the optimal partitioning feasible we de-
duced pruning criteria to reduce the search space to a
manageable size. Subsequently, we proposed a flexible
priority queue based algorithm to incorporate a variety
of search heuristics. We did extensive experimentation
using a variety of combinations of the cost metrics and
constraints motivated by some popular measures of pri-
vacy and information-loss from data mining literature.

Finally, we note that while this paper is centrally
motivated by privacy-preservation for data publishing,
the problem is in many ways similar to that of optimal
histogram construction and several other data partition-
ing problems occurring in query optimization, image
compression, parallel computing etc, where similar par-
titioning schemes have been considered [10, 11, 12, 13].
All these applications could also benefit from the cur-
rent work.

References

[1] Vijay S. Iyengar. “Transforming Data to Satisfy Privacy Con-
straints”, SIGKDD’02 Edmonton, Alberta, Canada.

[2] Roberto J.Bayardo, Rakesh Agrawal. “Data Privacy Through
Optimal K-anonymization”, ICDE 2005.

[3] Kristen LeFevre, David DeWitt, Raghu Ramakrishnan. “Mon-
drian Multidimensional K-Anonymity”, ICDE 2006

[4] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke,
Muthuramakrishnan Venkitasubramaniam. “L-Diversity: Pri-
vacy Beyond K-Anonymity”, ICDE 2006

[5] L.Sweeney. “Achieving K-anonymity privacy protecting using
generalization and Protection”, International Journal on Un-
certainity, Fuzziness and Knowledge-Base Systems, 2002.

[6] P.Samarati. “Protecting respondents identities in microdata re-
lease”, IEEE Transactions on Knowledege and Data Engineer-
ing, 2001.

[7] Pierangela Samarati, Latanya Sweeney. “Protecting Privacy
When Disclosing Information: K-anonymity and its Enforce-
ment through Generalization and Suppression”, International
Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, Vol. 10, No. 5 (2002) 571-588

[8] UCI Machine Learning Repository, http:\\kdd.ics.uci.edu

[9] Willenborg, L., Waal, T., D. “Elements of Statistical Disclosure

Control”, Lecture Notes in Statistics, 155, Springer-Verlag, New

York.

Anily, S., Federgruen, A. “Structured Partitioning Problems”,

Operations Research Vol. 39, Issue 1, 1991, pp. 130 - 149.

Muthakrishnan, S., Poosala, V., Suel, T. “On Rectangular

Partitionings in Two Dimensions: Algorithms, Complexity and

Applications”, International Conference on Database Theory,

1997.

Berman, P., Dasgupta, B., Muthukrishnan, S. “Exact Size

of Binary Space Partitionings and Improved Rectangle Tiling

Algorithms”, STAM J. Discrete Math, Vol. 15., No. 2, pp. 252-

267.

Muthukrishnan, S., Suel, T. “Approximation Algorithms for

Array Partitioning Problems”, Journal of Algorithms 54, 2005,

pp. 85-104.

Hore., B., Jammalamadaka, R., C., Mehrotra, S. “Systematic

Search for Optimal k-Anonymization”, UCI-ICS 2006, tech-

report. http://www.ics.uci.edu/~bhore/publication.html

[10]

(11]

(12]

(13]

(14]

