
Exploiting Semantics for Sensor Re-Calibration in Event
Detection Systems[long]

Ronen Vaisenberg, Shengyue Ji, Bijit Hore, Sharad Mehrotra and Nalini Venkatasubramanian

School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3425, USA

{ronen, shengyuj, bhore, sharad, nalini}@ics.uci.edu

ABSTRACT

Event detection from a video stream is becoming an important and challenging task in surveillance and sentient
systems. While computer vision has been extensively studied to solve different kinds of detection problems over
time, it is still a hard problem and even in a controlled environment only simple events can be detected with a
high degree of accuracy. Instead of struggling to improve event detection using image processing only, we bring
in semantics to direct traditional image processing. Semantics are the underlying facts that hide beneath video
frames, which can not be “seen” directly by image processing. In this work we demonstrate that time sequence
semantics can be exploited to guide unsupervised re-calibration of the event detection system. We present an
instantiation of our ideas by using an appliance as an example - Coffee Pot level detection based on video data -
to show that semantics can guide the re-calibration of the detection model.

This work exploits time sequence semantics to detect when re-calibration is required to automatically re-
learn a new detection model for the newly-evolved system state and to resume monitoring with a higher rate of
accuracy.

Keywords: Semantics, Event Detection, Accuracy of Detection, Self-Calibration

1. INTRODUCTION

With increased awareness among public, private and government sectors for need of greater security, surveillance
technologies (especially video surveillance) have recently received a lot of attention. Video surveillance systems
are being used in a variety of public spaces such as metro stations, airports, shipping docks, etc. The challenge
of achieving high Accuracy of Detection (AoD) from large numbers of cameras increases as more cameras go up
in more places.

Aside from the numbers of sensors currently being used, some applications require the deployment of sensors in
distant and isolated locations. According to Liljegren el. al,1 the U. S. Department of Energy (DOE) Atmospheric
Radiation Measurement (ARM) Program has deployed dual-channel microwave radio-meters in rural Oklahoma
and Kansas, the north slope of Alaska, and on islands in the tropical Pacific Ocean. These radio-meters provide
continuous measurements of integrated water vapor (IWV) and integrated liquid water (ILW) amounts. Due to
the remote nature of these locations, several weeks or months may elapse between maintenance visits by operations
personnel. Even then, subtle problems that can adversely affect the instrument calibrations may go undetected.
Achieving high accuracy of data generated from sensors of this nature is a real challenge.

In this paper, we propose a general approach to ensure AoD for systems modeled as Finite State Machines
(FSM). The challenge lies in designing a robust detection system for specific use when manual intervention is
impractical due to the distributed nature of the sensors or their remote locations. We have designed a novel
approach to ensure AoD by using semantics of the tracked system for the purpose of automatic re-calibration of
the detection algorithms used by the sensors.

For the sensor to ensure AoD, it must accurately interpret the captured feature space to application specific
information. Usually, this process involves setting several parameters. For example, OpenCV needs a CASCADE∗

∗OpenCV2 uses a statistical approach for object detection, an approach originally developed by Viollan and Johns3

where features extracted from training sets of data are compressed into a statistical model stored as an XML document.



Figure 1. The 4 different states in our example. The black/white cells represent dark/bright average pixel color.

as a parameter to perform face detection and a video camera needs a background model as a parameter. The
detection algorithm in the ARM microwave radio-meter has to adjust to changes in the physical location of its
mirrors that tend to slip as much as 1 degree on their stepper motor shafts due to continuous use.

Because they are deployed in uncontrolled environments the sensors must overcome problems in order to
achieve better AoD. For example, in the case of computer vision, cameras might be replaced, lighting conditions
may change and camera views might be altered. Physical changes could also occur due to continuous usage, e.g.,
the ARM microwave radio-meter example. In order to overcome these difficulties the sensor follows a pre-defined
parameterized prediction model (we will clarify this in sec. 3). This model is used to perform the detection
based on the sensed feature space but it is inherently imperfect. Specifically, changes due to the nature of the
uncontrolled environment in which the sensor operates or due to imperfect matches between the learned model
and the actual observed system will result in reduced AoD for that sensor. The parameters are set to reduce the
uncertainty of the uncontrolled environment.

Although these parameters enable better state detection by the sensor when set correctly, when they don’t
match the current situation in the sensed environment they become a problem. Re-calibrating these parameters
is necessary to ensure that the detection process meets AoD requirements. We propose a novel approach to re-set
the detection algorithm to the new environment by searching the space of parameters to maximize detection
consistency with a semantic model.

To the best of our knowledge, the proposed approach is first of its kind that allows parametrization in real
time of a given imperfect model based on known system semantics to achieve better AoD. This approach was
implemented and evaluated in a real setting and was found to be able to parameterize a model within a very
large parameter space.

The paper is structured as follows: In Sec. 2 we give a mathematical definition for the observed system and
collected semantics. sec. 3 describes the architecture and outlines the role of semantics in the overall framework.
Sec. 4 presents the algorithm for exploiting semantics for sensor re-calibration and improved AoD. Sec. 5 shows
the instantiation of our semantic based detection model applied to an appliance: coffee pot level detection based
on video data. Sec. 6 presents the results of applying the algorithm on our example application. Sec. 7 discusses
related work. Future work and conclusions are presented in sec. 8.

2. SYSTEM MODELING

Many systems of interest and observed environments can be modeled as Finite State Machines. For example, the
level of pressure (“Critical”,“High”, “Medium”, “Low”) on the foundations of a bridge are of crucial importance
to maintenance authorities. Real time GPS navigation systems might consult the traffic sensors for average speed
of vehicles (“30mph”,“40mph”,“50mph”,“60mph”) to determine alternative routes to various destinations.

Four states of interest were specified for the coffee machine in our office kitchen: “Empty”, “Half-Full”, “Full”,
“Coffee-Pot Off”. Fig. 1 shows the four different states of our system. Our initial goal was to detect the state of
the coffee machine at all times and notify the subscribers when there was fresh coffee in the pot. Our final goal is
to design a robust system by making it resilient to physical perturbations, for example, slight changes in the field
of view of the camera, physical displacement of the coffee machine or replacement of camera used for monitoring
using semantics. The reminder of this section defines a system as a finite state machine (FSM) and the semantic
model as the transition times of that FSM.



Sensing Module

Video Sensors

(Cameras)

Other Sensors
(Microwave, Acoustic, 

Chem, RFID,…)

Parameterized

Prediction Module

A-priori 

Prediction

Model

Output Module

Time Series Stream

of System StatesP1 P2 Pn

Auxiliary Services

Signal Processing

Creates a feature

Space from the

Sensed data

Semantic Module

System Specific

Semantics

(Behavioral Statistics,

Constraints, Rules, …)
Buffered Features

Figure 2. Main Modules Involved in the Detection Process.

2.1 System Model

The system is modeled as a finite state machine (FSM) of n possible states. Observing a system as a finite
state machine implies several assumptions that must be taken into consideration. First, many systems are of
a continuous nature and a discreteized representation will lose information. Also, setting strict limits between
states, might cause the detection to fluctuate between two states when the actual system state stabilizes around
the boundary point of the two states. This will result in an incorrect representation of the system’s behavior.
Second, choosing the incorrect number of states will reduce the reliability of the detection process. For example,
discarding Coffee-Pot off, will potentially result in reduced accuracy of detection since there is a possibility that
when the system reaches this state it will be classified incorrectly as one of the other three. Third, in uncontrolled
environments, even if the number of states selected expresses the complete set of possible system states, outlier
states are possible. Outlier states† will cause more ”noise” to be added to the detection process.

2.2 The Semantic Model

A semantic model for the system is derived by observing its state transition characteristics over time. For example,
the average transition time for: Half-Full→Full is 8 minutes and 6 seconds according to the statistics we collected.

2.2.1 Different Time Classes of the Model

Time is broken down into classes. The classes represent varying behavior patterns of the system over several time
intervals. For example, the number of people in a conference room, is highly dependant upon the day of week
(work day or weekend) and the time of day. (working hours vs non-working hours).

2.2.2 Average and Standard Deviation of Transition Times

For each class C and for each state Si, we calculate the average and standard deviation time it takes to make
the transition Si → Si+1 where Si 6= Si+1 and the transition time is in C. The average transition times are used
to approximate the probability of a given transition detected to be consistent with the system regular transition
times. We expect most transitions to fall in the x̄ − 2σ and x̄ + 2σ range. For example, the deviation from
the average transition time for the transition: Half-Full→Full is relatively small since it depends on the time it
takes the machine to make the coffee which is relatively predictable. We will refer to this statistical model as the
semantic model of the system from this point on.

3. SYSTEM ARCHITECTURE

Fig 2 depicts a high-level outline of the main modules that are involved in the detection process.

• Sensing Module: Processes data from incoming sensors. The sensing module is in-charge of the translation
of the physical signal sensed by the sensor to the digital signal processed by the processor.

†We refer to outlier states as states that are not part of the normal operation of the system. These states are reached
as a result of an unexpected event in the detection processes or system behavior. For example, temporary obscurity in
video camera will most probably result in an outlier set of features being captured from the camera.



Perform State 

Detection

User Specified 

Prediction 

Parameters

Sliding Window 

of Images

Time Series State 

Data

Real Time

Image Input

Create Semantic 

Module
System 

Evolution 

Occured

Perform System 

Evolution 

Detection

Output

No

Parameter 

Recalibration

Yes

Auto Generated

Parameters

Sensing

Semantic

Auxiliary Services

Extract Features

Parameterized 

Prediction

Figure 3. A flowchart of the execution of the algorithm. The modules involved are the same modules described in sec. 3
as well as the processes that execute the algorithm.

• Auxiliary Services: A service library containing modules that provide auxiliary services necessary to
create the feature space from the digital signal made by the sensing module. The auxiliary services transform
the data created by the sensor to form a higher level representation of the system that can be processed by
the prediction module. For example, a service that translates the Jpeg image to the corresponding RGB
color histogram is considered an auxiliary service.

• Parameterized Prediction Module: An a-priori model used for output generation by the sensor. For
the sensor to satisfy AoD requirements the prediction module is consulted for prediction based on the
features created by the auxiliary services. Since the prediction model performs differently under varying
conditions, the model uses the notion of parametrization of the prediction. The added parameters, enable
the prediction model to exploit some of the special characteristics of the specific conditions under which it
is required to operate.

• Semantic Module:

A model that describes the normal behavior of the system under surveillance, i.e., system semantics. This
module is used to monitor the detection process and decide when it deviates from a normal operation
expected from the system.

This module is used for two main tasks: First, it detects the changes in the conditions that causes the
system to stop detecting states correctly. Second, it finds new parameters for the new conditions. Once the
new parameters are set the detection becomes once again consistent with the semantic model.

• Output Module: The output module generates a time series where each entry represents the time instant
at which a state transition takes place. This module is also responsible for populating a buffer of sensor
readings which is used for re-calibration when the conditions in the sensed environment change.

The flow of execution is presented in Fig. 3. The following are the five main steps of execution:

1. First, a monitored phase of detection is deployed. The user, specifies the prediction parameters and verifies



the output of the detection algorithm. Output: a time series data of system states that was verified for
accuracy.

2. Generate the semantic model. Output: a reference model used for system evolution detection and re-
calibration.

3. Based on a parameterized prediction model the system executes and detects state as long as the series of
states detected complies with the semantic model. Output: a time series data of system states verified
against the semantic model.

4. When the states that were detected are no longer consistent with the semantic model, it is assumed that
the system had evolved. This means, that the detection can no longer be performed based on the current
parameterized prediction model. Output: a notice that the system had evolved and triggering the re-
calibration phase.

5. The system tries to build a new reference model based on the semantic model (re-calibration phase). Output:
success iff a new model was created that was verified for accuracy against the semantic model.

Step 5, is the key step in the algorithm where the previous model was detected as invalid and a new model
is constructed. A successful outcome of this step enables the re-calibration of the detection model based on the
semantics of the system. The next section, discusses this step in details.

4. SEMANTIC BASED SYSTEM EVOLUTION DETECTION AND
RE-CALIBRATION

Definition 1. Systemevolution refers to the change in the configuration of the system.

Definition 2. timeevolution is the time instant at which the system changes completely from the old state to a
new, evolved state.

For example, changes in the physical location of the ARM microwave radio meter’s mirrors will fall under our
definition of system evolution. Changes in the view of the camera is also an instance of system evolution. We
assume that system evolution occurs rarely but instantaneously. Studying the re-calibration of systems that do
not follow these two assumptions is out of the scope of this paper‡.

The following algorithm, scores a sequence of perviously detected time series stream of system states: ψ. The
fraction of transition times that take more then two standard deviation units from the average time is returned
as the score for ψ.

procedure evaluation(ψ) returns score
FaultCount ← 0
for s[i] ∈ ψ = 〈s[1], s[2], ..〉 do

trns ← t[i]− t[i− 1]
class ← class[i]
x̄ ← GET AV G FROM MODEL(s[i], s[i− 1], class)
σ ← GET STDDEV FROM MODEL(s[i], s[i− 1], class)
range[A,B] ← [x̄− 2σ, x̄ + 2σ]
if trns /∈ range[A,B] then

FaultCount ← FaultCount + 1
end if

end for
return FaultCount

|ψ|
end procedure

Definition 3. ThresholdConsistent is a constant, defined by the user. This threshold defines the boundary
between fault level that is consistent with the model, to the inconsistent fault level.

‡Systems that change patters of behavior for prolonged periods may cause the algorithm to start a re-calibration phase.
That can be accounted using a larger stream ψ or by checking for outlier behavior before re-calibration as described by
Scott(2000).4



System at New State System at New State

Actual System

Evolution Time

System at Old State

Sliding   Window

Time of Evolution Detection

Sliding   Window

Figure 4. The time gap between the actual system evolution time and the evolution detection time. Before the re-calibration
phase begins the algorithm ensures that the sliding window contains only observations that relate to the new system state.

4.1 System Evolution Detection

System evolution is declared iff evaluation(ψ) > ThresholdConsistent. The length of the stream |ψ| will be referred
to as WindowBuffer.

Definition 4. WindowBuffer is a first-in-first-out queue (sliding window) of features and series of system states
(ψ).

Definition 5. BufferTransitions is the number of actual state transitions of the system, captured by the features
collected in the window buffer.

Choosing the correct value for ThresholdConsistent and the number of state transition in the window buffer
(BufferTransitions) is discussed in sec. 4.3.

4.2 Model Re-Calibration (Search for a New Set of Prediction Parameters)

The re-calibration process is essentially a search for a new set of parameters that optimizes the consistency of the
stream generated by the parameterized prediction model with the system semantic model:

procedure Recalibrate prediction model(Prediction model, WindowBuffer)
returns Parameters p1, p2, .., pn for the evolved state.
min score ← 1.0
\ \ P1, P2, .., Pn are the domains for p1, p2, .., pn
for p1, p2, .., pn ∈ P1, P2, .., Pn do

score ← evaluation(generateStream§(Prediction model(p1, p2, .., pn),WindowBuffer))
if score < min score then

min score ← score
best parameters ← p1, p2, .., pn

end if
end for
return best parameters
end procedure

The above algorithm assumes that WindowBuffer only contains features that are of the evolved state, oth-
erwise any single set of parameters will fit only a part of the WindowBuffer. However, although the evolution
occurs in a time instance¶ this does not mean that the buffer includes only features of the evolved state. Fig. 4
illustrates the problem that arises when the exact evolution time cannot be determined. After a system evolu-
tion is declared at timedetected, we know evolution happened before timedetected. The problem is we don’t know
exactly when. Since we want to search for new parameters only for the evolved state, we propose waiting until
WindowBuffer contains only features that were recorded after timedetected before engaging in the re-calibration
phase. The features received after timeevolved and before timedetected will be assigned states based on the previous
model, and thus the detection in that case will be inaccurate. Achieving correct state detection for this time
period is outside the scope of this paper. The next section shows how we applied the ideas presented in this
section to our Coffee-Level detection example to achieve re-calibration when the view or zoom changed or the
camera was replaced.

§generateStream generates the stream ψ using Prediction model(p1,p2,..,pn)
¶see sec. 4



0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.05
0.06

0.07
0.08

0.09
0.1

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of transitions within the sliding window (S)Probability Threshlod value (C)
0 500 1000 1500 2000

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of state Transitions within the sliding window

P
ro

ba
bi

lit
y 

to
 m

ee
t t

he
 th

re
sh

ol
d 

C
, o

bs
er

vi
ng

 th
e 

sy
st

em C=5%
C=6%
C=7%
C=8%
C=9%
C=10%

Figure 5. Probability of the observations collected in the WindowBuffer to have less than C=ThresholdConsistent percent
of deviations (p = 4.4%).

4.3 Choosing the Consistency Threshold and Buffer Size

Let p be the probability of a given transition to be inconsistent with the statistical model (thus, falling outside the
range of two standard deviation units from the average). Let us further define InConsistent(ψ) as the number
of transitions that are inconsistent with the system semantic model that belong to ψ.

The probability that the algorithm does not incorrectly go into the re-calibration phase when the correct
parameters are being used is the probability that evaluation(ψ) returns a score smaller than ThresholdConsistent.
The following formula is the probability of observing up to ThresholdConsistent∗BufferTransitions inconsistencies‖

in independent trials, where the probability of inconsistency in any given trial is p:
∑floor(ThresholdConsistent∗BufferT ransitions)

j=0

(
BufferT ransitions

j

)
pj(1− p)BufferT ransitions−j

Fig. 5 plots this probability for the two parameters: BufferTransitions and ThresholdConsistent. p was set to
4.4% which is the percentage of data that will be outside this range for a normal distribution. For example, in
the case of our coffee-machine we found that p = 4.59% for our test data. Choosing a high ThresholdConsistent

value will also increase the probability for false-positives when performing re-calibration (see sec. 4.2).

For a given BufferTransitions, say Bt, the length of time for which the system needs to be observed (i.e., to
collect Bt distinct state transitions with a high probability) is decided based on the following two criteria:

1. A minimum of k instances of each state to retrain the prediction model.

2. Buffertransitions number of states needed to reliably re-calibrate the model, see fig. 5.

Therefore, the observation time interval can be computed as follows:

Definition 6. BufferTimeLength = MAX(Time period for k occurrences of the most infrequent state,Time
period for Buffertransitions occurrences of the most frequent state).

5. APPLYING THE SEMANTIC BASED STATE DETECTION MODEL TO OUR
COFFEE-LEVEL DETECTION EXAMPLE

We applied the model proposed to utilize coffee level detection based on simple set of color layout features that
were extracted from a camera that had the coffee pot in view. In this section, we will show how our model was
instantiated to a real application. This application should, however, be regarded as a proof of concept only. 6
presents the evaluation results of our appliance system after following the instantiation described in this section.

‖ InConsistent(ψ)
BufferT ransitions

< ThresholdConsistent → InConsistent(ψ) < ThresholdConsistent ∗BufferTransitions



5.1 Sensing Module

For the experiments we collected a set of images from 10am on June 2007 until 10am June 13th 2007 from two
cameras that were focused on the coffee pot (BufferTimeLength=3 days). The images were intended to simulate
the buffer of images that would have been created by the proposed algorithm in real time.

If images would have been saved every time unit (1sec in our case) the storage needed would have exceeded
14G∗∗. We therefore followed a more compact approach and saved an image every time a change in the color
layout was detected††. This resulted in a set of 1174 images = WindowBuffer saved and less then 60Mb of storage
used. Later the found that the number of transitions within this buffer was BufferTransitions=203.

5.2 Feature Extraction Using Auxiliary Services

In sec. 2.1 we defined the set of possible states of our appliance example as Coffee-Pot off, Empty, Half Full and
Full. The auxiliary services used for detection of these states was Java Advanced Imaging (JAI5) library for color
layout feature extraction. The image was transformed into a matrix M(x, y) where each cell contains the average
color of pixels included in the bounding rectangle (upperleftX = x ∗C, upperleftY = y ∗C, width = C, height =
C) (C defines the number of grid cells extracted from the image). The grid of cells using black and white as the
average colors is illustrated in Fig. 1.

5.3 Building the Parameterized Prediction Model

Once the features were extracted, we were able to perform prediction for the actual state represented by each
image.

The prediction module we chose was based on color layout similarity. We clustered the images into four
different groups based on their color layout. Specifically, we defined a distance function that computed the
euclidian distance between the two matrix representations of two images. Based on this distance the images were
clustered into n = 4 groups (one for each state). A centroid for each group was calculated and manually labeled
according to the state it represented. Each image in the WindowBuffer was assigned a state based on the label
of the nearest centroid found to that image.

Two parameters were required for our prediction model. First, since the data was noisy, in that there were
many changes that occur in the background scene, the prediction would have performed better had a background
subtraction module being used. A bounding rectangle representation for selecting the system from the background
was the first parameter. The second was the actual labeling of the groups of images that were clustered together.

Thus, assuming that the parameters selected expressed most of the possible changes in the uncontrolled
environment, when the system evolved, it is a matter of finding the correct new set of parameters to resume
detection to meets the AoD requirements.

5.4 Building the Semantic Model

We performed state detection on the set on images collected based on a prediction module where the two param-
eters were manually seleted. The time series system state stream that was generated was loaded on to a PosGres
Database using the following schema:

Time Class CurrectState PreviousState TransitionT ime
τ WeekendWorkTime E F 4
τ + ∆ WeekendWorkTime F E 4
τ + 2∆ WeekendWorkTime E F 39
τ + 3∆ WeekendWorkTime H E 177
. . . . .
. . . . .

∗∗14G = 3days ∗ 24hours ∗ 60minutes ∗ 60seconds ∗ 60kjpegSize.
††The change detection process itself is very important to the performance of the detection algorithm. All system states

need to be captured while only changes that reflect ”outliers” should be discarded (see sec. 2.1 for details). We saved
images based on the change percentage CP in the color layout features extracted. The CP value was chosen s.t. all
possible state transitions will result in a change in the color layout features that is larger then CP



5.5 Performing Re-Calibration
The algorithms below, perform the search for the bounding rectangle and correct labeling. Further details about
the two parameters are presented in sections 5.5.1 and 5.5.2 respectively.

procedure evaluate rectangle(rectangle) returns score
clusters ← clustering(rectangle)
min score ← 1.0
min labeled clusters ← null
for permutation ∈ all k! labeling possibilities do

labled clusters ← labeling(clusters, permutation)
score ← evaluation(time series(labeled clusters))
if score < min score then

min score ← score
min labeled clusters ← labeled clusters

end if
end for
return min score
end procedure
rectangle ← old rectangle
while search continues do

min score ← evaluate rectangle(rectangle)
if min score < ThresholdConsistent then

return rectangle
end if
min score ← 1.0
min rectangle ← null
for rectangle ∈ all possible rectangle movement do

score ← evaluate rectangle(rectangle)
if score < min score then

min score ← score
min rectangle ← rectangle

end if
end for
rectangle ← min rectangle

end while

5.5.1 Parameter1: Bounding Rectangle

Features associated with current bounding rectangle will be extracted to form a set of feature vectors, one for
each images from the learning window buffer. A grid divides the rectangle into m by n cells with the same size
for each image. Average color is calculated for all pixels inside each cell for every image.

We used classic k-Means6 algorithm with euclidian distance function for clustering the feature vectors. One
thing we did that was different from a standard set-up is that we did not choose the initial k seeds of clusters
randomly, rather we used a greedy algorithm which picks initial seeds in a way that none of them is too close to
the other. The algorithm is proceeds as follows: choose the pair of points with maximum distance from all pairs
of points as the first two seeds s0 and s1; si(i > 1) is picked from all points such that the minimum distance from
sj , (0 ≤ j < i) is maximized. We found that in our setting this greedy algorithm performed better. The reason
is that choosing seeds which are distant from each other will increase the probability of each seed representing
a different state. Having many observations of one state (in our case, coffee pot empty) caused the centroids
generated from a standard set-up to drift towards the random seeds, that were too of the frequently occurring
state.

5.5.2 Labeling

Let there be k unlabeled clusters c0, c1, ...ck−1 and k different labels l0, l1, ...lk − 1 which represent k different
states. The labeling procedure is to find the most likely mapping from ci to li. Time series data generated for all



Figure 6. The initial and the resulting bounding rectangle for the two cameras.

0 10 20 30 40 50 60 70
−1

0

1

2

3

4

Hour

after calibration
before calibration
correct stream

Empty

Half−Full

   Full

Coffee−Pot
Off

Figure 7. The state at with the system was at for the longest time, for each hour according to the different streams.

different k! labeling possibilities, each labeling instance is evaluated separately. The labeling that generates the
lowest score will be considered the most likely labeling. The next section presents the results we achieved when
we performed a greedy search in the space of parameters after the system had evolved. The results presented in
the next section show, that re-calibration based on a trained model can actually improve AoD.

6. EVALUATION AND RESULTS

We simulated three different situations that might occur: change in the location of the coffee-pot, change in the
size of the coffee-pot (zoom in) and change in the camera being used. Fig. 6 shows how, in both our test cases,
the starting rectangle was realigned to a position that enabled better detection. The second parameter, labels of
the different clusters, was also selected correctly for all groups.

In our experiment we assumed that the new bounding box will be in proximity to the old one. Following this
assumption we began our search for a new bounding box from the previous one and expended it iteratively in
one of four possible directions: South, North, East and West, according to the greedy algorithm described in sec.
4. Our search thus counted only for the situations where the new bounding box contained the old.

We found that the percentage of transition times that fall outside the range [avg−2∗ stddev, avg +2∗ stddev]
for our test data was 4.59%. This value was calculated based on the stream generated in a controlled environment
where both the bounding box and the labeling were manually specified. The ThresholdConsistent value we used
was 0.089 and, along with the 203 state transitions within our buffer, we understood that the probability of the
algorithm that meet the threshold was:

∑floor(0.089∗203)
j=0

(
203
j

)
0.0459j(1− 0.0459)203−j ∼= 0.9972

Not only were the parameters correctly selected, but also the detection itself also improved. Fig. 7 compares
the streams generated before and after the re-calibration took place.



7. RELATED WORK

In the past, time series analysis has been used frequently to study models for system and human behavior.
Although we were not able to find work that utilized semantics for re-calibration of prediction models, much work
has been done on closely related applications.

In the context of tracking patterns of human activity the proposed models were mainly utilized for abnormal
event detection, assuming that the underlying sensing infrastructures work correctly. Our results can be used
as an underlying model for better detection on which the abnormal event detection can be detected more accu-
rately. Sweeney et al7 created a ”historical database” for each camera in a set of publicity placed cameras that
approximated the number of people present in the camera’s view at regular time intervals. The application of
the database proposed by the authors was to detect abnormal number of people present (or absent) in a scene.
Stauffer et al8 proposed a probabilistic method for reliable background subtraction. This was used to build a
visual monitoring system that observes moving objects on a site and “learns” patters of activity from these ob-
servations. These patterns are later clustered and used for the detection of an abnormal pattern of movement of
the monitored scene.

Modeling people activity was studied by Ihler et al.9 It was found that the MMPP provide a robust and
accurate model for human behavior such as people and car counting and showed that normal behavior can be
separated from unusual event behavior.

In the context of intrusion detection Scott(2000)4 proposed a Markov modulated nonhomogeneous Poisson
process model for telephone fraud detection. Scott used only event time data, but detectors based on Scott’s
model can be combined with other intrusion detection algorithms to gather evidence of intrusion across continuous
time.

In the context of sensor networks, Yu et al10 and Han et al11 described a prediction based approach utilizing
battery consumption in sensor networks. Only when the observed value deviates from the expected value based on
the prediction model, by a pre-defined error bound, did the sensor transmit the observed value to the server. The
error bound was defined by the application according to different quality requirements across sensors. Lazaridis
et al12 proposed an online algorithm for creating approximation of a real valued time series generated by wireless
sensors, that guarantees that the compressed representation satisfies a bound on the L∞ distance. The compressed
representation was used to reduce the communication between the sensor and the server in a sensor network.

In the context of networking, Fu et al13 exploited time series analysis to model network traffic. They proposed
a two-phase information collection process: The first phase was to set a range so that the deviation between the
predicted and observed values remained in the range of a given level confidence. Based on the size of the range and
the level of confidence, a bound on the sampling rate is determine. In the second phase, the information collection
process dynamically adjusted the range as well as the sampling rate based on the briskness of the incoming traffic.
The ARMA model was used by Sang et al14 for network traffic prediction to show how multiplexing can be used
to improve traffic prediction. Grossglauser et al15 studies the impact of the sliding window size of sampling
measurements required to minimize the probability that actual arrivals exceed the estimated arrivals in systems
following MBAC (measurement-based admission control).

8. FUTURE WORK

Due to the abstract nature of the ideas presented in this paper, many applications can benefit from their use,
despite the fact that the application of these ideas was executed in only one domain.

The work should be extended in the following five ways: we showed the applicability of our ideas for our
Coffee appliance level detection example only. However, evaluating these ideas on other domains could be studied.
Second, we followed a strait forward statistical approach towards the semantics generation. Other models (e.g.,
Hidden Markov Models (HMM) and rule based model, ..) should be studied in different domains. Third, we
only used semantics to validate a given instantiation of parameters, basically performing a greedy search in the
parameter space. Optimizing the search using a semantics based heuristic or semantic based search is required.
Fourth, the case where the detection is performed using multiple sensors needs to be addressed. Fifth, the
semantics collected could be used for prediction as well. We only used the semantics for re-calibration purposes.



It is our belief that building a general-case model for a general system using a general purpose semantic model
following a general search strategy is, at the very least, a difficult task. The actual instantiation of these three
modules will continue to vary from application to application.

We have presented a new approach for utilizing semantics to achieve better AoD and have proposed the
parameterized model concept to improve performance of general case prediction algorithms.

We believe that this approach opens new windows of opportunity in the age of pervasive computing and
will prove to be an important building block in a world of unconstrained environments and imperfect prediction
models.

ACKNOWLEDGMENTS

Support of this research by the National Science Foundation under Award numbers 0331707 and 0331690 is
gratefully acknowledged. We would like to thank the members of RESCUE for their helpful suggestions and
assistance in testing the infrastructure.

REFERENCES
1. L. J. C., “Automatic self-calibration of the arm microwave radiometers,” 2000.
2. V. P. G Bradski, A Kaehler, “Learning-based computer vision with intels open source computer vision

library,” 2005.
3. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” cvpr 01, p. 511,

2001.
4. S. Scott, “Detecting network intrusion using the markov modulated nonhomogeneous poisson process,”
5. Sun, “Java advanced imaging,” http://java.sun.com/javase/technologies/desktop/media/jai/ .
6. J. McQueen, “Some methodes for classification and analysis of multivariate observations,” in Proceedings

of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297, University of
California Press, (Berkeley, CA, USA), 1967.

7. L. Sweeney and R. Gross., “Mining images in publicly-available cameras for homeland security,” 2005.
8. C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time tracking,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 22(8), pp. 747–757, 2000.
9. A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event detection with time-varying poisson processes,” in

KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 207–216, ACM Press, (New York, NY, USA), 2006.

10. X. Yu, K. Niyogi, S. Mehrotra, and N. Venkatasubramanian, “Adaptive target tracking in sensor net-
works,” The 2004 Communication Networks and Distributed Systems Modeling and Simulation Conference
(CNDS’04), San Diego .

11. Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Energy efficient data collection in distributed sensor
environments,” Distributed Computing Systems, 2004. Proceedings. 24th International Conference on 39,
pp. 590–597, 2004.

12. I. Lazaridis and S. Mehrotra, “Capturing sensor-generated time series with quality guarantees,” 2003.
13. Z. Fu and N. Venkatasubramanian, “Adaptive parameter collection in dynamic distributed environments,”

icdcs 00, p. 0469, 2001.
14. A. Sang and S. qi Li, “A predictability analisys of network traffic,” Computer Networks 39, pp. 329–345,

2002.
15. M. Grossglauser and D. Tse, “A framework for robust measurement-based admission control,” SIGCOMM

Comput. Commun. Rev. 27(4), pp. 237–248, 1997.


