
Processing Spatial-Keyword (SK) Queries in Geographic Information Retrieval
(GIR) Systems

Ramaswamy Hariharan, Bijit Hore, Chen Li, Sharad Mehrotra
Donald Bren School of Information and Computer Sciences

University of California, Irvine
{rharihar, bhore, chenli, sharad}@ics.uci.edu

Abstract

Location-based information contained in publicly available
GIS databases is invaluable for many applications such as
disaster response, national infrastructure protection, crime
analysis, and numerous others. The information entities
of such databases have both spatial and textual descrip-
tions. Likewise, queries issued to the databases also contain
spatial and textual components, for example, “Find shel-
ters with emergency medical facilities in Orange County,”
or “Find earthquake-prone zones in Southern California.”
We refer to such queries as spatial-keyword queries or SK
queries for short. In recent times, a lot of interest has been
generated in efficient processing of SK queries for a variety
of applications from Web-search to GIS decision support
systems. We refer to systems built for enabling such ap-
plications as Geographic Information Retrieval (GIR) Sys-
tems. An example GIR system that we address in this paper
is a search engine built on top of hundreds of thousands
of publicly available GIS databases. Building a search en-
gine over such large repositories is a challenge. One of the
key aspects of such a search engine is the performance. In
this paper, we propose a framework for GIR systems and
focus on indexing strategies that can process SK queries ef-
ficiently. We show through experiments that our indexing
strategies lead to significant improvement in efficiency of
answering SK queries over existing techniques.

1. Introduction

Publicly available GIS databases contain vital location-
based information and play an important role in many ap-
plications such as disaster management, national infras-
tructure protection, crime analysis, etc. Such information
has played a significant role during national disasters like
9/11 or more recent Hurricane Katrina, in saving lives, re-
sources and properties. Federal and state government at-

tempts (e.g., www.geodata.gov, www.fgdc.gov) [7] to make
GIS databases accessible at one place underline the urgent
need to make such location-based information readily avail-
able to a large number of organizations who deal with such
data on a day-to-day basis. Consider the following example
queries:

• Find shelters with emergency medical facilities in Or-
ange County.

• Find earthquake-prone zones in Southern California.

The information that above queries seek is critical for
decision makers and first-responders during emergency op-
erations. Such information is highly geographic in nature
and contained in GIS databases explicitly created for such
purposes. To the best of our knowledge there are no search
engines that can provide such information.

Recently, there has been lot of commercial interest in
local (or location-based) information such as restaurants,
businesses, entertainment centers, etc. As a consequence,
popular search engines such as Google, MSN, and Ya-
hoo [16, 21, 9] have extended their text searching capabili-
ties to provide local information. Our application domain
is quite different from the application domain that these
search engines are meant for. They make heavy use of local
business directories like yellowpages and geographic refer-
ences in Web pages that are quite different from the kind
of information that publicly available GIS databases con-
tain. In fact, all these popular search engines failed to re-
turn relevant results in response to such queries. For exam-
ple, when we searched in Google for “earthquake zones in
Irvine, CA,” it returned lots of irrelevant Web pages as top
results.

The underlying location-based information entities
present in GIS databases fundamentally comprise of two
components: 1) spatial or location information and 2) tex-
tual information. Spatial information refers to the geo-
graphic location, size and shape of an entity. The shape
could be a point, or extended in space such as a line or a

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

polygon. Textual information refers to free-form keywords
describing the entity. The queries asked on location-based
entities also contain spatial and textual components. We
refer to them as spatio-keyword queries or SK queries for
short. Hence, to handle SK queries we need both spatial
and text processing techniques. We refer to retrieval of spa-
tial and textual information as Geographic Information Re-
trieval or GIR for short.

Mapdex [14], a search engine that points to GIS
databases on the Web, catalogs about 400,000 GIS
databases. This number only constitutes a small percent-
age, and such databases on the Web are growing at a very
fast rate. In order to build a search engine containing a
large number of databases with billions of records, ensuring
a small query response time is a key requirement. Given the
modern search engine’s sub-second query response time,
the expectation will also be similar for GIS search engines,
especially for time-critical applications such as disaster re-
sponse. We address this very aspect in greater detail in this
paper.

Recently, the academic community has started address-
ing this problem [3, 10, 11, 22] in the context of building
geographic search engine for Web pages. These search en-
gines extend text capabilities to include the geographic in-
formation in Web pages. Even though our application is
different, some of the indexing techniques proposed in lit-
erature can be adapted to building search engine for GIS
databases. In order to process SK queries, we need to build
index structures that can handle both spatial and textual in-
formation.

All work till now uses separate index structures or some
naive form of combined index for processing spatial and
textual data, where the performance is the main bottleneck.
Our main focus in this paper is to develop a hybrid index
structure that aims to reduce this performance bottleneck by
combining both spatial and textual information in a mean-
ingful way. Given that most of the textual queries contain
a set of keywords and the relevant results retrieved contain
all of the keywords in them, we consider SK queries with
AND semantics similar to conjunctive keyword queries for
the textual part. In this paper, we propose efficient indexing
strategies that process SK queries with AND semantics.

We make the following contributions in this paper:

• We propose a framework for query processing in Geo-
graphic Information Retrieval (GIR) Systems.

• We develop a novel indexing structure called KR*-tree
that captures the joint distribution of keywords in space
and significantly improves performance over existing
index structures.

• We have conducted experiments on real GIS datasets
showing the effectiveness of our techniques compared
to the existing solutions.

The remainder of the paper is organized as follows. In
Section 2, we describe a framework for GIR systems and
explain how different application domains fit within the
framework. In Section 3, we formally define SK queries
with AND semantics. In Section 4, we explain the exist-
ing indexing strategies proposed for SK queries followed
by discussion on their limitations. In Section 5, we describe
KR*-tree in detail with an example. In Section 6, we dis-
cuss experimental results performed on real GIS datasets
comparing our techniques with others. In Section 7, we
briefly describe the related work. We conclude our paper
and outline open problems for future work in Section 8.

2. Framework for GIR Systems

In this section, we first describe a framework for GIR
system, and how our indexing strategies can fit well within
the framework in the context of different applications. The
framework shown in Figure 1 consists of four major com-
ponents: 1) GIR database, 2) Indexer, 3) Ranker, and 4)
Interface.

l
b
s

govern
ment
GIS

GIR
Applications

Inde
xer

Inde
xer

++

Ran
ker
Ran
ker

GIR
Database

Inde
xer

Indexer

+
Geography

+
Text

Ran
ker

Ranker

Interface

ResultsSK Query

Figure 1. GIR System Framework

GIR Applications: Before describing the components of
the framework, we briefly explain different GIR applica-
tions that can fit within the framework. The class of
applications that take as input SK queries, process them
and output information sources that are relevant to the
queries are called as GIR applications. Geographic (or lo-
cal) search engines, location-based services (LBS) and GIS
search engines are various examples of GIR applications.
Geographic search engines treat Web pages as informa-
tion sources and process SK queries on top of them. GIS
search engines process SK queries on top of GIS databases.
LBS applications provide services based on the mobility of
users. They process SK queries on top of some specialized
GIS databases mostly containing local information. Our
framework can exploit both the explicit and implicit geo-
graphic references found in the information sources. For
example, in unstructured sources such as Web pages, geo-
graphic references are implicitly found as place names, tele-
phone numbers, addresses, etc., along with the other text

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

matter. These implicit references are extracted and con-
verted to metric measurements. In structured sources such
as GIS databases, the geographic references are explicitly
defined as spatial attributes along with non-spatial text at-
tributes. The spatial attributes along with non-spatial text
attributes constitute our GIR database. For example, any
GIS database available in ESRI shapefile format [6] forms
an explicit GIR database.
GIRDatabase: The input to a GIR database can come from
unstructured as well as structured data sources. There are
a number of pre-processing steps involved in converting a
unstructured source to a GIR database. Such tasks are geo
extraction, geo matching and geo propagation. Interested
readers can refer to [15] for more details. Structured sources
like GIS databases also involve pre-processing steps such
as coordinate conversion of spatial attributes, identification
and extraction of textual attributes, etc. In our experiments,
we use structured data sources and explain the details of the
pre-processing steps in Section 6.
Indexer: The primary search dimensions for processing SK
queries are spatial and text attributes. Hence, the indexer in
our framework builds data structures on spatial and textual
attributes. In particular, we construct a hybrid index that
combines both spatial and textual attributes. We can con-
sider each keyword appearing in the text as having a spatial
distribution. The spatial distribution of various keywords
may be correlated in space. Our indexing technique ex-
ploits this spatial correlation of keywords, thereby capturing
their joint distribution in space. Capturing this joint distri-
bution significantly improves the retrieval of answers to SK
queries. In Section 4, we describe our indexing mechanism
in detail.
Ranker: The ranker combines the ranking functions of spa-
tial and textual attributes. The goal of the ranking function
is to assign score to objects in GIR database based on its
relevance to the SK query. Given a SK query Q = {qr, qt}
[see Definition 1], the overall ranking function is

Fsk = α1 · Fr(qr, or) + α2 · Ft(qt, ot),

where Fr(qr , or) is a geographic ranking function, and
Ft(qt, ot) is a keyword-based ranking function. α1 and α2

are suitable weights where α1 + α2 = 1. The common
measure for Ft is the cosine measure that computes the rel-
evance of an object to the query (based only on their cor-
responding textual parts) using the tf − idf model [18].
The ranking function Fr considers geographic relationships
such as contain, overlap, inside, etc., between the spatial
parts of an object and the query. Other sophisticated rank-
ing mechanisms for geographic data are proposed in [1, 8]
that consider geographic hierarchies.
Interface: The interface allows the user to enter SK queries
using a map and a text interface. Search engines such
as Google, MSN, and Yahoo use similar interfaces. Each

SK query consists of a set of textual keywords and a ge-
ographic region of interest specified as a query rectangle.
We formally define SK query in Definition 1. The interface
presents a ranked results to each query.

3. Preliminaries and Definitions

Let S be a GIR database with attributes A = {R, T }
and size N (number of objects). The domain of R is a
rectangle. There are two components of a rectangle, r =
[(x1, y1), (x2, y2)] where x1, y1, x2, y2 ∈ �, lower-left and
upper-right corners specified in Cartesian coordinates by
(x1, y1) and (x2, y2), respectively. We take the minimum
bounding rectangles (MBR) for line and polygon objects
present in S. For point objects, the two corners of the rect-
angle are represented by the same point, that is x1 = x2

and y1 = y2. The value set of T is the bag of keywords
{t1, t2, t3, . . .}. The domain of T is the set of words. Each
object o in S is represented by the triplet 〈oid, or, ot〉, where
oid is the object id, or is the object’s MBR, and ot is a set
of textual keywords describing the object.
Definition 1: A SK query is defined as Q = {qr, qt},
where qr ∈ � is the spatial part of the query specified as
a minimum bounding rectangle (MBR), and q t ∈ T is a
set of keywords in the query. A SK query with the AND
semantics is defined as the one in which all the keywords
in qt are required to be present in the retrieved records.

Definition 2: The answer set to an SK query Q is defined
as the set of objects Oq = {oi

q} in S, where each object’s
MBR has a non-empty intersection with query’s MBR (i.e.,
oi

q ∩ qr �= φ), and contains all of the query keywords in q t.

4. Indexing Mechanisms

Existing indexing work in geographic information re-
trieval proposed can be broadly classified into two cate-
gories: 1) separate index for spatial and text attributes and 2)
hybrid index that combine spatial and text attributes. Next,
we briefly discuss the ideas of the techniques.

4.1 Separate Index for Spatial and Text
Attributes

In this approach, separate index structures are built for
spatial data and text data. The choice of index structure
for spatial data can be grid, quadtree, or R*-tree. One com-
monly used structure is R*-tree [19], and the choice of other
indices are also possible. For text, [18] proposed an in-
verted file index. The inverted file index stores for each
keyword, a sorted list of object ids in which the keyword
appears, its score, and frequency.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Using this approach, SK queries can be answered in two
ways. First, a set of candidate object ids that satisfy the
spatial part of the query are retrieved using the spatial in-
dex. The object ids are sorted and for each retrieved object
id, the textual keywords of the query are looked up in its
corresponding inverted list index. Finally, all the object ids
that satisfy the query are collected, ranked and presented as
sorted results to the user.

The second approach is to first filter object ids based on
the query keywords. Inverted index list for each query key-
word are looked up, and a set of object ids that are present
in the intersection of the lists are passed to the next stage
for spatial filtering. Finally, the scores for each object are
computed by combining the ranking of textual and spatial
parts. The performance of both approaches depends on the
selectivity of the objects satisfying the text or spatial part
of a query. If the number of objects in the spatial region of
the query is small, it is better to do the spatial filtering first
and vice versa. In [11], the choice for the spatial index is
a grid and inverted file index for textual keywords. [3, 22]
also discuss variants of this approach.

In [3], the authors propose a number of improved tech-
niques to the above basic approaches. First, they suggest
storing spatial data in the disk by following Hilbert curve
ordering [6]. This ordering maintains the spatial closeness
of objects thereby speeding up the disk access operations
in retrieving the spatial data. Secondly, the objects in the
inverted index list are assigned ids according to Hilbert or-
dering and sorted based on these ids. A grid-based structure
is built in memory to store the ids of the spatial data in each
tile of the grid. When a query is issued by the user, the rel-
evant tiles of the grid that overlap the spatial region of the
query are retrieved. The object ids contained in the tiles are
sorted and looked up against the inverted indices. Since the
object ids are arranged in the disk following Hilbert order-
ing, the relevant objects are retrieved using a small number
of scans.

Advantages and Limitations: The main advantage of the
above strategies is the ease of maintaining two separate in-
dices. However, the main performance bottleneck lies in
the number of candidate objects generated during the fil-
tering stage. If spatial filtering is done first, many objects
may lie within a query’s spatial extent, but very few of them
are relevant to the query keywords. This increases the disk
access costs by generating a large number of candidate ob-
jects. The subsequent stage of keyword filtering becomes
expensive. The same is true, if keyword filtering is done
first. Moreover, the above strategies assume a memory res-
ident spatial index which is not reasonable for large GIR
databases. In [3], this issue is discussed by proposing to re-
duce the granularity of spatial index, so that it fits in main
memory. However, if the grid is too coarse, it loses its prun-
ing capabilities. We build a disk resident spatial index.

4.2 Hybrid Indices

Hybrid indexing techniques combine the spatial and in-
verted file indices. In [11], the inverted list was modified as
the following. The list for each keyword was augmented
with the space in which the objects contained in the list
appear. For instance, if w1 is the keyword, its list was
augmented as: w1 = {r1(o1, o2, ...), r2(o2, ...),} where
r1, r2, .. are bounding rectangles in space. When a query
is issued, the corresponding keyword lists are loaded, and
objects are filtered using the associated spatial index. This
strategy still requires scanning the entire list.

The closest work to ours is the hybrid indexing structures
proposed in [22]. The first hybrid data structure shown in
Figure 2 is called Inverted File-R*-tree. In this structure,
first an inverted index file is built. Then, the file is modified
by building a R*-tree to the set of objects’s MBR pointed to
by each keyword in the file. The leaf node of R*-tree points
to a page list of object ids whose entry contain the keyword
and the MBR. This entry is called a geo-keyword. When a
query is issued, the query keywords are filtered using the
inverted index. Later, the R*-tree corresponding to each
query keyword are used to filter the spatial part of the query.
The intersection of object ids from the R*-trees produces
the final answer set.

The second data structure proposed in [22] is called R*-
tree-Inverted File. As shown in Figure 3, an R*-tree is first
built for all the objects’ MBR irrespective of keywords. An
inverted index file is created for keywords that appear in
the leaf node of the tree. Each keyword in this inverted in-
dex points to a page list of object ids whose entries contain
both the MBR and the keyword, again referred to as geo-
keyword. When a query is issued, a set of leaf nodes that
intersect with the query rectangle is retrieved first. Then
using the retrieved node’s inverted file index, object ids sat-
isfying the query keywords are obtained.

KeywordID KeywordID KeywordID

R*-tree R*tree R*-tree

p1

p3

p2
p4

p5

.........

................

........page lists

KeywordID KeywordID KeywordID

R*-tree R*tree R*-tree

p1

p3

p2
p4

p5

.........

................

........page lists

Figure 2. Inverted File - R*-tree

Advantages and Limitations: The first approach proposed
in [22] is highly insensitive to SK queries with the AND se-
mantics. This approach does not take advantage of the asso-
ciation of keywords in space. Hence, when query contains

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

...

p1

p3

p2
p4

p5

................

.........

.........

........

R*-tree

KeywordID

page lists

...

p1

p3

p2
p4

p5

................

.........

.........

........

R*-tree

KeywordID

page lists

Figure 3. R*-tree - Inverted File

keywords that are closely correlated in space, this approach
suffers from paying extra disk costs accessing different R*-
trees and high overhead in the subsequent merging process.

In the second approach proposed in [22], the leaf nodes
point to inverted index lists that are usually small. This is
because any leaf node covers only a small sub-space of the
entire data space and subsequently the number of distinct
keywords that exist in this sub-space is expected to be small.
This approach leverages the above advantage and hence the
keyword filtering of objects are usually fast. However, the
main disadvantage is the spatial filtering stage which gener-
ates many candidate object ids.

Considering the limitations of the previous approaches,
we propose a new approach that exploits the association of
keywords in space. We discuss the main ideas of our tech-
nique in the following section.

5. KR*-Tree: A Novel Indexing Mechanism

We propose a new indexing strategy called KR*-tree,
which is an acronym for Keyword-R*-tree. We measure
the effectiveness of indexing strategies in answering SK
queries with respect to the following criteria:

• Pruning text and space.

• Handling queries with multiple keywords.

First, the indexing methods previously proposed use the
pruning power of space and text, either separately or one
followed by the other. As a consequence, SK queries are
answered in a two-step filtering process, space followed
by text or vice-versa. In KR*-tree, we exploit the pruning
power of both space and text simultaneously, thus merging
the two steps into one.

Secondly, in previous methods the keywords are main-
tained separately. Hence queries are answered by the inter-
section of object ids from the inverted index file or R*-trees
of query keywords. In KR*-tree, we capture the joint distri-
bution of keywords and hence the object ids containing the

query keywords are directly obtained without merging any
lists. These characteristics greatly enhance the performance
of KR*-tree in answering SK queries.

At the outset, KR*-tree is similar to R*-tree-Inverted File
data structure, but we make the following modifications.

• All internal and leaf nodes of KR*-tree are augmented
with a set of distinct keywords that appear in the space
covered by the nodes. Thus, many keywords appear in
the upper level nodes of the tree and smaller number of
keywords appear in the lower level nodes of the tree.

• Since the number of keywords that appear in each node
varies, we do not store the keywords in the node. We
construct a special list called KR*-tree List that stores
the keywords appearing in the nodes. We give more
details of KR*-tree List in the next subsection.

5.1 KR*-tree Construction

The KR*-tree is constructed in a way similar to how an
R*-tree is constructed, but with minimal overhead in han-
dling the keywords. There are two distinct steps involved in
the construction of the tree.

1. First, the set of keywords corresponding to each node
of the tree is determined.

2. Next, the set of keywords in each node is converted to
a KR-tree List.

Step 1. In this step, we construct KR*-tree by inserting
GIS data objects as shown in Algorithm 1. The algorithm is
initialized with the data object O that needs to be inserted
and the root node Nr of the tree. For any non-leaf node
the algorithm computes the area of each of its child node by
expanding it with O’s rectangle (lines 2-4). The keyword
list of N is updated with the keyword list of O (line 5).
Then, it chooses the child with minimal area and inserts O
recursively (lines 6 and 7). For a leaf node, the algorithm
inserts O and updates the keyword list of N with O’s list
(line 10-11). If the leaf node gets full, N is split (line 13),
otherwise, the algorithm returns.

The node split mechanism is explained in Algorithm 2.
For any node N , the algorithm first creates two new nodes
Na and Nb (line 1). It then distributes the children of N
to Na and Nb and updates their bounding rectangles. The
keyword list of Na and Nb are updated using the keyword
list of their children nodes (line 2-3). If N is not a root node,
Na and Nb are attached to the parent of N , otherwise a new
root node is created. If the parent node gets full, then split
occurs recursively (lines 4-14).

After all the data objects are inserted, each node of KR*-
tree contain a set of distinct keywords that are covered under
its space.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Algorithm 1 INSERT (Object O, Node N)
1: if N is NOT leaf node then
2: for all child Ni of N do
3: Ai = Area(Ni.r ∪ O.r)
4: end for
5: N.t = {N.t ∪ O.t}
6: Select Ni with least Ai

7: INSERT (O, Ni)
8: Return
9: else

10: Insert O.r in N
11: N.t = {N.t ∪ O.t}
12: if N is full then
13: SPLIT (N)
14: else
15: Return
16: end if
17: end if

Algorithm 2 SPLIT (Node N)
1: Create Nodes Na and Nb

2: Distribute children of N to Na and Nb

3: Update Na.t, Na.r, Nb.t, Nb.r
4: if N is NOT root node then
5: Attach Na and Nb to N ’s parent node Np

6: if Np is full then
7: SPLIT (Np)
8: else
9: Return

10: end if
11: else
12: Create new root node Nr

13: Attach Na and Nb to Nr

14: end if

Step 2. The number of keywords that appear in each node
varies. Hence, we construct an auxiliary structure called
KR*-tree List. This list stores for each keyword, the node
ids of KR*-tree in which the keyword appears, along with
its parent id and children ids. The KR*-tree List is similar
to that of an inverted file index, the only difference is that it
stores the node ids instead of object ids. The number of in-
ternal nodes of KR*-tree is considerably smaller compared
to the number of objects indexed. Hence, KR*-tree List oc-
cupies only a small space.

5.2 Answering SK Queries

We answer a SK query as explained in Algorithm 3. The
algorithm is initialized with query Q and the root of KR*-
tree. First, the children node ids nids of current node N that
contain all the keywords present in Q are obtained (lines 1-
4). Next, each child of N that has a non-empty intersection
with Q’s rectangle and also whose id is present in the list
nids, is chosen for further traversal (lines 5-6). If N is a leaf

node, the qualified children are added as results, otherwise,
the algorithm traverses recursively (line 7-13). Finally the
set of objects Ores that satisfy Q are returned in line 14.

Algorithm 3 PROCESS (Query Q, Node N)
1: nids = GetNodeIds(Q.t1, N)
2: for all ti in Q.t such that i > 1 do
3: nids = GetNodeIds(ti, N) ∩ nids

4: end for
5: for all Child Nj of N do
6: if (Nj .r ∩ Q.r �= φ And Nj ∈ nids) then
7: if Nj is NOT leaf node then
8: PROCESS (Q, Nj)
9: else

10: Ores = Ores ∪ Nj

11: end if
12: end if
13: end for
14: Return Ores

5.3 Keyword Spread Problem

While we exploit the joint distribution of keywords in
space, the flip side of it is what we encounter as keyword-
spread problem. This problem occurs because KR*-tree in-
dexes all the objects together, hence the number of nodes in
which a keyword appear increases across the KR*-tree. This
increase is large compared to that of the number of KR*-
tree nodes that index only objects containing that particular
keyword. We address this problem by slightly modifying
our KR*-tree as shown in Figure 4. We traverse n levels
up the KR*-tree and maintain an inverted file index for each
keyword appearing below that level. Since we are main-
taining a list of separate keywords, the list becomes small
and controls the keyword-spread problem across KR*-tree
nodes. In Figure 4, we can see the number of pages for the
keyword earthquake gets compressed to single page be-
low nodes n1 and n2, which otherwise would have occupied
more pages. We use our modified KR*-tree in all of our ex-
periments. The specific value of n depends on the number
of objects that the KR*-tree indexes.

5.4 KR*-Tree Example

Consider a simple emergency GIS database presented
in Table 1. The database has 10 objects whose spa-
tial distribution and the corresponding KR*-tree nodes are
shown in Figure 5. Now, let us consider an SK query:
< q, {earthquake, shelter} > that asks for earthquake
shelter in the spatial region q. In order to answer this query,
we will consider the following plans:
Space First. To answer our example query, we access the
following nodes {r, n1, n2, n3, n4, n5, n6} to get the fol-
lowing 5 object ids {o2, o5, o6, o8, o10}. Next, the inverted

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

earthquake

n2n1

r

earthquake

Figure 4. Modified KR*-tree

OID X Y keywords
1 x1 y1 {fire, medical}
2 x2 y2 {earthquake, medical}
3 x3 y3 {fire, medical}
4 x4 y4 {facility, medical}
5 x5 y5 {earthquake, hazard}
6 x6 y6 {earthquake, medical}
7 x7 y7 {fire, facility}
8 x8 y8 {earthquake, shelter}
9 x9 y9 {fire, shelter}
10 x10 y10 {earthquake, shelter}

Table 1. Example GIS Database

indices of textual keywords earthquake and shelter
shown in Table 2 are looked up to further filter the object
ids that contain both the keywords. Finally, the answer set
for the query contains the objects {o8, o10}.
Using R*-tree-Inverted File. For the same example query,
the R*-tree nodes {r, n1, n2, n3, n4, n5, n6} are accessed to
generate the candidate object set. Next, the inverted in-
dex list of leaf nodes {n3, n4, n5, n6} are accessed to fil-
ter objects that contain the keywords earthquake and
shelter to finally arrive at the answer set {o8, o10}.
Using Inverted File-R*-tree. For the example query, first
the R*-trees of the keywords earthquake and shelter
are loaded to get the candidate object id lists. Then, the
intersection of the two candidate object id lists gives the
answer set {o8, o10}. We do not show the working of this
strategy due to space constraints. However, we will show in
experiments how this strategy performs.
Using KR*-tree. We can do much better than the above
strategies, if we know the joint distribution of keywords in
the nodes of the KR*-tree. In general, if more than one
keyword is present in a query, it can reduce the number of

q o1 o2

o5

o3 o4 o6 o7

o10

o8
o9

n3

n4
n5

n6

n1 n2

r

Figure 5. Objects Distributed in Space

keywords Object List
earthquake {o2, o5, o6, o8, o10}
fire {o1, o3, o7, o9}
medical {o1, o2, o3, o4, o6}
shelter {o8, o10}
hazard {o5}
facility {o4, o7}

Table 2. Inverted File Index

Leaf Node keywords Object List
n3 fire {o1}

medical {o1, o2}
earthquake {o2}

n4 fire {o3}
medical {o3, o4}
facility {o4}
earthquake {o5}

n5 earthquake {o6}
medical {o6}
fire {o7}
facility {o7}
hazard {o5}

n6 earthquake {o8, o10}
shelter {o8, o9, o10}
fire {o9}

Table 3. R-*tree Inverted Index

objects in which both keywords appear. In other words, the
joint frequency of m keywords is no greater than the joint
frequency of m− 1 keywords. In our example, even though
the keyword earthquake appears manytimes in space,
when it combines with shelter, the number of appear-
ances of both keywords reduces.

Table 5 shows the keywords that appear in space covered
by all the nodes of the KR*-tree. For the given query, we
access the root first to get its children n1 and n2. Now, for
each child node, we not only check its spatial intersection
with the query region, but also check for the presence of
query keywords in it. In this case, n1 does not contain both
the keywords, but n2 does, hence we only open node n2.
Applying the same principle for n2’s children, we can see
that only n6 satisfies the SK query. Hence we access only
{r, n2, n6} to generate the candidate object set.

The KR*-tree List for earthquake contains the fol-
lowing node ids: {n1, n2, n3, n4, n5, n6}. The KR*-tree
List for all the keywords is shown in Table 4.

6. Experiments

In this section, we describe our experimental results to
evaluate our techniques in comparison with the methods

keywords Node List
earthquake {n1, n2, n3, n4, n5, n6}
fire {n1, n2, n3, n4, n5, n6}
medical {n1, n2, n3, n4, n5}
shelter {n2, n6}
facility {n1, n2, n4, n5}
hazard {n1, n4}

Table 4. KR*-Tree List

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Node keywords
r {earthquake, medical, shelter, fire, facility, hazard}
n1 {fire, medical, earthquake, facility, hazard}
n2 {fire, medical, earthquake, shelter, facility}
n3 {fire, medical, earthquake}
n4 {fire, medical, earthquake, facility}
n5 {medical, fire, earthquake, facility}
n6 {earthquake, shelter, fire}

Table 5. KR*-Tree - Distribution of keywords
in Space

presented in Section 4.

6.1 Datasets

In our experiments, we used real datasets downloaded
from www.mapdex.org that catalogs vast amounts of GIS
databases. Our GIR database is mainly a repository of GIS
database(s) that contains different kinds of GIS objects. We
employ a number of pre-processing steps to arrive at a more
structured GIR database. The downloaded GIS databases
are heterogeneous in nature; that is, each of them has dif-
ferent attribute fields. For each database, we identified and
discarded the real-valued fields and retained the spatial and
text fields. All the text fields are then combined to form one
single text attribute. We performed basic pre-processing
on the text such as stemming and stop-word removal. The
spatial attributes from different databases are all converted
to a single coordinate system. Now, our GIR database is
more structured and homogeneous containing only spatial
and textual data.

We used different sizes of datasets in our experiments.
We categorized them as small, medium, and large datasets
as shown in Table 6.

Dataset Size Spatial Objects keywords
Small 50000 75

Medium 125000 100
Large 1000000 5000

Table 6. Datasets

6.2 Queries

We generated 1000 SK queries with their spatial compo-
nent consisting of different rectangle sizes and textual com-
ponent consisting of 2 to 3 keywords. All of our queries
consisted of a rectangle region of size s and a set of key-
words. We randomly generated rectangles of different sizes
and combined them with a set of keywords that were care-
fully chosen so that they resembled a real query trace.

6.3 Query Model

We used the following steps to generate query keywords:

1. Randomly select an object from the database.

2. From the distinct keywords appearing in the object’s
text field, generate required set of keywords.

3. Combine each set of keywords with the rectangle gen-
erated of particular size.

The above method is better than randomly combining key-
words. In fact, our approach works superior for such un-
usual combinations, hence we did not want to bias our ex-
perimental results by adding such queries. Since our data
structure indexes joint distribution of keywords, it captures
the true correlation of keywords in space. For all datasets
we generated rectangles of sizes 10km x 10km, 25km x
25km, 50km x 50km and 75km x 75km. These sizes repre-
sent geographic area of smaller to bigger regions. We gen-
erated two-set keywords and three-set keywords for each
rectangle size combination. In our experiments, we report
the average performance of queries in terms of random disk
IOs. For small and medium dataset, we used a page size
of 256KB, and for the large dataset we used a page size of
512KB in constructing the KR*-tree.

6.4 Performance Comparison

In Table 7, we show in a nut shell the performance of
various indexing structures. If d1 and d2 are the disk IOs
incurred by index i1 and index i2 respectively, we define
performance gain through disk IO reduction of i 1 over i2 as
dgain = (d2−d1)∗100

d2
. Positive value indicates better perfor-

mance of i1 over i2. In this table, we report the dgain of our
KR*-tree in comparison with others.

keywords Dataset Size KR*-tree vs.
Inv.R*-tree
(dgain)

KR*-Tree vs. R*-
tree.Inv (dgain)

2-keywords small 37% 66%
medium 24% 70%
large 33% 67%

3-keywords small 43% 61%
medium 26% 68%
large 36% 60%

Table 7. Average Disk I/Os

For 2-keyword queries, our indexing strategy achieves
a reduction in disk IOs ranging from 24% to 37% and
from 60% to 70% compared with Inverted Index-R*-tree
and R*-tree-Inverted Index, respectively. For 3-keyword
queries, the reduction is slightly more compared with In-
verted Index-R*-tree, ranging from 26% to 43%. The im-
provement occurs bacause our strategy is sensitive to the
number of keywords. As the number of keywords increases,
KR*-tree performs better. On the other hand, KR*-tree’s
performance gain over R*-tree-Inverted Index is slightly re-
duced compared to the 2-keyword queries. This is because,
the disk IOs in R*-tree-Inverted Index is dominated by the
spatial filtering step that is insenstive to the number of key-

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

words. On the other hand, the didk IOs for KR*-tree in-
creased overall.

In Figures 6-11, we show detailed plots of disk IOs in-
curred by various strategies for different sizes of datasets
and for different number of query keywords. In all the plots,
we can see that KR*-tree significantly outperforms R*-tree-
Inverted Index and moderately outperforms Inverted Index-
R*-tree.

7. Related Work

There has been lot of interest in building geographic in-
formation retrieval systems. The first work of this kind
started in the context of digital library (DL) projects such
as GIPSY at UC Berkeley and Alexandria Digital Library
Project at UC Santa Barbara [12]. In these projects, the
main objective is to address the extraction of geographic
references found in the text by using ontologies, gazetteers,
thesaurus, etc., and convert them to coordinates for retriev-
ing DL contents using geography.

In the context of geographic search engines, there are
numerous academic projects. Most of them can be broadly
classified under 1) work that focused on extraction of geo-
graphic references from documents and/or 2) efficient query
processing. We will briefly describe a few of these. In
GeoSearch System [10], the geographic scope of Web pages
are extracted by analyzing the geographic references in text
as well as the geographic location where the Web sites are
registered. In [15], the focus is on improving the extrac-
tion techniques. In particular, after the relevant geographic
references are extracted, ambiguities such as multiple place
name references and alternate place names are resolved us-
ing techniques such as geo-matching and geo-propagation.
Other relevant studies that addressed geographic search on
the Web are [11, 5].

In the context of query processing for GIR, indexing
techniques for processing text and geographic data are the
main focus. In [11], a simple inverted index structure for
text and grid file for geographic data are used. They pro-
pose a hybrid index structure in which each keyword is
combined with different partitions of space. In effect what
they are proposing is similar to [22]. The other technique
proposed in their work concatenates keyword with region
identifier. For example, keyword earthquake is com-
bined with spatial region ”R1” and represented as spatio-
textual key ”earthquakeR1”. All the documents that are in
”R1” and contains the text earthquake are attached as
list to the key ”earthquakeR1”. There are drawbacks of this
approach. First, for large set of objects, this approach will
generate a large number of false positives. For query con-
taining multiple keywords and spatial region, a number of
such keys have to be looked up and filtered.

In a recent work [3], the authors propose to maintain

individual indices for spatial and textual data. They pro-
pose various approaches to retrieve data from each index
before the final merging of results. The spatial objects in-
dexed in their applications are complex footprints that are
extended regions in space. They approximate them by us-
ing MBRs and use memory-resident spatial index. Their
approach does not scale well with increasing size of the
dataset. To alleviate the problem, they propose to compress
the MBRs, but the attempt generates large candidate set that
needs to be fetched from the disk, with a high rate of false
positives. This will become a major performance bottle-
neck for large scale GIR applications. In our work, we use
disk-resident spatial index for GIR applications. Our data
structure performs significantly better than their approach
with respect to two aspects: 1) first it reduces the number of
disk accesses in identifying the candidate objects and as a
consequence 2) it reduces the overhead in merging the can-
didate objects.

In another very related work [22], the authors proposed
a hybrid index by combining the spatial and inverted list
structures. Their approaches either use multiple R*-trees
to answer queries or generates more candidates for further
filtering. The main limitations of their approach are already
discussed in detail in Section 4.

8. Conclusions and Future Work

In this paper we proposed a novel indexing data struc-
ture called KR*-tree for processing SK queries with the
AND semantics by capturing the joint distribution of key-
words appearing in space. Given the common nature of
such queries, we discussed the performance bottlenecks of
current indexing mechanisms in processing them. Then we
showed through an example GIS database and later through
detailed experiments that our approach significantly reduces
such bottlenecks by directly reducing the disk IOs incurred
during spatial filtering of objects.

We plan to address some open problems as future work.
First, we would like to explore how to adapt our indexing
when there are many GIS databases. Here the main prob-
lem is that of database discovery not the individual records
within the databases. In such a setting, the query seman-
tics (AND/OR) changes and the user may require only top-k
databases relevant to the query. The ranking is computed
for the entire database using the individual records within
the database. This requires storing the aggregated pre-
computed scores of objects within ourKR*-tree and coming
up with pruning strategies to generate top-k results.

9 Acknowledgements

This work is supported by the National Science Founda-
tion under Award Number 0331707.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

0

500

1000

1500

2000

2500

3000

3500

4000

10x10 25x25 50x50 75x75

I/
O

Query Size

KR*-tree
Inv.Index:R*-tree
R*-tree:Inv.Index

Figure 6. Small, 2-
keywords.

0

1000

2000

3000

4000

5000

6000

10x10 25x25 50x50 75x75

I/
O

Query Size

KR*-tree
Inv.Index:R*-tree
R*-tree:Inv.Index

Figure 7. Medium, 2-
keywords.

0

200

400

600

800

1000

1200

1400

1600

10x10 25x25 50x50 75x75

I/
O

Query Size

KR*-tree
Inv.Index:R*-tree
R*-tree:Inv.Index

Figure 8. Large, 2-
keywords.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10x10 25x25 50x50 75x75

I/
O

Query Size

KR*-tree
Inv.Index:R*-tree
R*-tree:Inv.Index

Figure 9. Small, 3-
keywords.

0

1000

2000

3000

4000

5000

6000

10x10 25x25 50x50 75x75

I/
O

Query Size

KR*-tree
Inv.Index:R*-tree
R*-tree:Inv.Index

Figure 10. Medium, 3-
keywords.

0

200

400

600

800

1000

1200

1400

1600

1800

10x10 25x25 50x50 75x75

I/
O

Query Size

KR*-tree
Inv.Index:R*-tree
R*-tree:Inv.Index

Figure 11. Large, 3-
keywords.

References

[1] M.K. Beard and V. Sharma. Multidimensional Ranking in
Digital Spatial Libraries. In Special Issue of Metadata. Jour-
nal of Digital Libraries, Vol.1, No. 1, 1997.

[2] O. Buyukkoten, J. Cho, H. Garcia-Molina, L. Gravano, and
N. Shivakumar. Exploiting Geographical Information of Web
Pages. In WebDB, pages 91-96, 1999.

[3] Y. Chen, T. Suel, and A. Markowetz. Efficeint Query Process-
ing in Geographic Web Search Engines. In Proc. of ACM SIG-
MOD, pages 277-288, June 2006.

[4] J.Ding, L. Gravano, and N. Shivakumar. Computing Geo-
graphical Scopes of Web Resources. In Proc. of VLDB, pages
545-556, September 2000.

[5] M. Egenhofer. Toward the Semantic Geospatial Web. In Proc.
of ACM GIS, pages 1-4, November 2002.

[6] ESRI Shapefile Technical Description.
An ESRI White Paper - July 1998.
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[7] Geospatial One-Stop E-Government Initiative.
www.geodata.gov.

[8] S. Gobel and P. Klein. Ranking Mechanisms in Meta-Data In-
formation Systems for Geo-Spatial Data. In Proc. of EOGEO,
2002.

[9] Google Local Search. http://local.google.com.
[10] L. Gravano. Geoserach: A Geographically-Aware Search

Engine, 2003. http://geosearch.cs.columbia.edu
[11] C.B. Jones, A.I. Abdelmoty, D. Finch, G. Fu, and S. Vaid.

The Spirit Spatial Search Engine.: Architecture, Ontologies
and Spatial Indexing. In Proc. of GIScience, pages 125-139,
October 2004.

[12] R.R. Larson. Geographic Information Retrieval and Spatial
Browsing. In GIS and Libraries: Patrons, Maps and Spatial
Information, pages 81-125, 1996.

[13] R.R. Larson. Geographic Information Retrieval (GIR):
Searching Where and What. In In Proc. of the 27th Intl. ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR), page 600, July 2004.

[14] Mapdex Geographic Data Search. www.mapdex.org.
[15] A. Markowetz, Y. Chen, T. Suel, X. Long, and B. Seeger.

Design and Implementation of a Geographic Search Engine. In
Proc. of WebDB, June 2005.

[16] MSN Local Search. http://local.live.com.
[17] C. Ohm, G. Klump, and H. Kriegel. Xz-ordering: A Space-

Filling Curve for Objects with Spatial Extension. In Proc. of
the 6th Intl. Symp. on Advances in Spatial Databases, pages
75-90, July 1999.

[18] A. Singhal. Modern Information Retrieval: A Brief
Overview. In IEEE Data Engineering Bulletin, Special Issue
on Text and Databases, Vol. 24, No. 4, December 2001.

[19] Timos K. Sellis. Review - The R*-Tree: An Efficient and
Robust Access Method for Points and Rectangles In ACM SIG-
MOD Digital Review 2, 2000.

[20] S. Vaid, C.B. Jones, H. Joho, and M. Sanderson. Spatio-
Textual Indexing for Geographical Search on the Web. In Proc.
of SSTD, 2005.

[21] Yahoo Local Search. http://local.yahoo.com.
[22] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid

Index Structures for Location-Based Web Search. In Proc. of
CIKM, pages 155-162, November 2005.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

