
Indexing Text Data under Space Constraints

Bijit Hore
University of California Irvine

bhore@ics.uci.edu

Hakan Hacigumus
IBM Almaden Research

hakan@acm.org

Bala Iyer
IBM Silicon Valley Lab

balaiyer@us.ibm.com

Sharad Mehrotra
University of California Irvine

sharad@ics.uci.edu

ABSTRACT
An important class of queries is the LIKE predicate in SQL.
In the absence of an index, LIKE queries are subject to per-
formance degradation. The notion of indexing on substrings
(or q-grams) has been explored earlier without sufficient con-
sideration of efficiency. q-grams are used to prune away rows
that do not qualify for the query. The problem is to iden-
tify a finite number of grams subject to storage constraint
that gives maximal pruning for a given query workload. Our
contributions include: i) a formal problem definition, proof
that the problem is NP-hard and adaptation of a previously
studied approximate algorithm that produces results within
a provable error bound, ii) performance evaluation of the
application of the novel method to real data, and iii) par-
allelization of the algorithm, scaling considerations and a
proposal to handle scaling issues.

Categories and Subject Descriptors: H.2.4[Systems]:
Relational databases, Textual databases; H.3.1[Content Anal-
ysis and Indexing]: Indexing methods; H.2.2[Physical De-
sign]: Access methods

General Terms: Algorithms, Experimentation

Keywords: Like queries, SQL, Index, B-tree, q-grams

1. INTRODUCTION
In this paper we study the problem of designing efficient

indexing techniques to support SQL LIKE queries over string
data. In SQL, through the LIKE clause, UNIX style, wild
card queries can be specified. Two special characters ‘ ’
and ‘%’ are used to specify “any single character match”
and “any substring match” (including the empty string) re-
spectively. LIKE queries are a subclass of textual pattern
matching queries that have been extensively studied in the
literature ([22], [23], [16], [18], [4]). [11] provides an excel-
lent survey of various data structures/algorithms developed
for pattern queries. Unfortunately, none of these special-
ized data structures are supported as an access method by
modern DBMSs. Given the complexity of incorporating new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13,2004,Washington,DC,USA
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

data structures in DBMSs ([27, 28]1), solutions employing
existing access methods already supported by DBMSs - viz.,
B+trees [15], and bitmap indices [26] are more practical and
hence more useful.

Motivated by the above mentioned practical considera-
tions, we explore a q-gram based indexing approach in
which strings are indexed based on a set of q-grams they
contain. A q-gram is defined as follows:

Definition 1.1. q-gram: For a given alphabet
�

, a q-
gram is defined as any string of symbols from

�
of length

q. We will refer to a q-gram as a gram in general where its
length can be an arbitrary positive integer (usually small).

Now let us see how one can support SQL LIKE queries
over a dataset (attribute) of strings using a gram based ap-
proach.
Evaluating LIKE queries using q-grams: First, a set
of grams I are chosen to index a database of strings R. For
each gram g ∈ I there is a pointer to every string s ∈ R that
contains g. For a pattern P specified in the LIKE query, the
set of all common grams, i.e. the set I(P ) = G(P ) ∩ I are
extracted, where G(P ) is the set of all substrings in P . It is
easy to see that any string containing P also contains each
of the q-grams in I(P ). Therefore a (super)set of strings
containing P is returned by retrieving all strings that contain
some/all of the q-grams in I(P ). Lastly the false positives
are pruned out to determine the exact set.

While the gram-based technique for evaluating LIKE queries
is straightforward, it raises several non-trivial issues that re-
quire deeper analysis:

• How should candidate grams be generated and which
of the candidate grams should be chosen to build the
index? As should be obvious the choice of grams im-
pacts the number of false positives that need to be
pruned which impacts performance of queries.

• What data structure should be used to index the se-
lected grams and how should the queries be processed
given the data structure2?

1
Incorporating data structures into DBMSs requires developing so-

lutions to concurrency control, recovery, efficient updates, disk-based
storage and retrieval etc . . . . But the problem with most of these
data structures is, that they cannot be easily adapted to support these
features. As a result database vendors have not integrated these into
their systems.
2
Given an index, multiple approaches to evaluate a query may exist

since a query can be answered using any subset of grams it contains.

In such a situation, the most efficient way of evaluating a query can

be posed as an optimization problem



In this paper we focus on the first of the above two chal-
lenges. First, we formally define the problem of gram selec-
tion. Specifically, given a set of grams G, database strings
R, and queries Q, the gram selection problem consists of
choosing a set of grams from G that minimize the number
of false positives in evaluating Q over R. We show that even
though the gram selection problem is NP-Hard, a constant
factor approximation algorithm with polynomial complexity
exists. While the approximation algorithm is of polynomial
complexity, it does not scale to large data sets or a large
number of queries. We, therefore, examine two optimization
approaches in this context: i) parallelization: where we
break the original problem into smaller sub-problems which
can be solved in parallel. ii) workload reduction: where
we reduce the size of workload Q by selectively retaining
some of the queries from Q and discarding others. The
weights of the retained queries are also suitably adjusted
to reflect this change.

This paper makes the following contributions: i) To the
best of our knowledge, this is the first work to formally define
the gram selection problem. The paper shows that while the
gram selection problem is NP-hard, constant factor approx-
imation can be achieved in polynomial time. ii) Approaches
to exploit parallelism and workload reduction are developed
to scale the approach to large data and query sets. Tech-
niques for gram selection have previously been explored in
the literature [1, 6, 5, 7]. However, unlike our work, these
approaches are somewhat ad-hoc. We discuss a few of these
approaches in greater detail in the section 7.

The remaining sections of the paper are as follows: In sec-
tion 2, we formalize the gram selection problem and show it
to be NP-hard. In the same section we develop a constant-
factor approximation to the gram selection problem. Par-
allelization and workload reduction methods are explored
in sections 3 and 4 respectively. In section 5, we discuss a
way of generating candidate grams. In section 6, experimen-
tal results of our gram selection algorithm for a real biblio-
graphic database is reported and compared with a prototype
implementation of the algorithm proposed in [1]. In section
7, we present a brief overview of related work. Conclusions
are drawn in section 8.

2. GRAM SELECTION
We begin this section by formalizing the gram selection

problem. We show it to be NP-Hard and adapt an approxi-
mation algorithm for a generic “Set Cover” problem to our
case. Finally we analyze its time and space complexity.

2.1 Formalizing the Gram Selection Problem
Let Q = {q1, . . . , qnQ} be a set of query strings (workload).
R = {r1, . . . , rnR} be the set of strings in the database and
G = {g1, . . . , gnG} be the set of candidate grams. As stated
earlier, the gram selection problem is to choose a subset of
grams from G such that the total number of false positives
is minimized for queries in Q. To decide which set of grams
to be included in the index in order to minimize the false
positives, one needs to calculate the benefit of adding a gram
to the index. The benefit of a gram g to a query q that
contains it, is equal to the number of database strings it
prunes from R (i.e. the number of records not containing
g). Thus the total benefit of g, denoted by benefit(g), is
equal to the product of the number of records pruned by
g and the number of queries that contain g as a substring
(of course the benefit of a gram g to a query not containing

it is 0). Given the benefits associated with each gram, the
simple greedy algorithm to select the best k grams would be
to choose the k grams with the highest values of benefit out
of all candidate grams in G. But unfortunately, this greedy
heuristic does not result in the optimal selection as can be
seen from the following example:
Example 1: Consider an instance where G = {an, ra, ne};
R = {SanFrancisco, NewY ork, Newark} and workload
Q = {%San%, %Fran%, %kane}. The benefits associated
with the grams are benefit(g1) = 2 ∗ 3 = 6, benefit(g2) =
2 ∗ 1 = 2 and benefit(g3) = 1 ∗ 1 = 1. If the above men-
tioned greedy algorithm is used to choose the top-2 grams,
one would select an and ra in that order. But since all
the records pruned by gram ra for query %fran% (the only
query is appears in) are already pruned by gram an (which
also appears in the same query), there is no additional ben-
efit due to gram ra. Instead choosing ne is more beneficial,
as it prunes the record San Francisco for the query %kane,
which is not pruned by an. ♦

The above example illustrates that incremental benefit
and not the absolute benefit is more useful for selecting an
optimal set of grams. In this case, the order in which grams
are added to the index also become important. Therefore
selection of an optimal set of grams is not straight-forward
and requires deeper analysis.

This problem can also be visualized in a graph-theoretic
setting: Consider the graph H with the vertex-set V = G∪
R ∪ Q. Let there be an edge (g, q) between a vertex g ∈ G
and q ∈ Q iff q contains g as a substring (denoted as g ∈
q). Also an edge (g, r) exists between a vertex g ∈ G and
r ∈ R iff r does not contain g as a substring (denoted
as g /∈ r). We say that the gram g enables the pair (q, r)
where q ∈ Q and r ∈ R iff there exists a path of length 2
between q and r with g as the intermediate node (we will use
the terms “covers” and “enables” interchangeably from here
on). Therefore an optimal set of grams would maximize the
total number of distinct (q, r) pairs covered by its grams.
The example below illustrates the graph visualization and is
used as the running example in the remainder of the paper.
Example 2: Let the database R contain the records shown
in table 1, the query workload (assumed to be only on
the second attribute) be Q = { “ an%”; “%York%”; “San
Franc%”; “%kane%”} and the candidate set of grams (given
in advance) for the index be G = {“an”, “or”, “ne”}.

CODE AIRPORT

SJC San Jose, California
LAX Los Angeles International
JFK John F Kennedy, New York
LGA La Guardia, New York
EWR Newark
SFO San Francisco
OAK Oakland

Table 1: Airports and Codes

The associated graph H is shown in figure 1. For instance
the gram g2 enables the pairs (q2, r1), (q2, r2), (q2, r5),
(q2, r6) and (q2, r7) as seen from the graph.♦

Given that the gram selection problem can be visualized
as a graph, the simplest version of problem, where the goal is
to select the best k grams, can be formally stated as follows:

Definition 2.1. Top-k-Grams(G,R,Q,k): For a given
k find a G′ ⊆ G of size k, such that number of distinct (q, r)
pairs covered by grams in G′, is maximized over all possible
subsets of size k.



Figure 1: Graph Visualization

The above definition implicitly assumes that each gram
has an unit cost and each query has an unit weight. But in
the general case the cost3 associated with each gram and the
weight4 of queries may vary (can be arbitrary positive num-
bers). In addition one may specify the maximum available
space as a budget constraint on the index-size. Now assume
that besides the sets R,Q and G, the following parameters
and functions are also specified:

1. A weight function for queries: weight(q) : Q → �
denoting the importance/frequency of the query string
q (� stands for the real numbers).

2. The cost function cost(g) : G → �
3. The budget constraint M.

4. A one-to-many mapping for the candidate set of grams:
cover(g) : G → Q × R, the set of all (q, r) pairs cov-
ered by g (this can be explicitly computed from the
sets G, R and Q as seen in example 2). The following
extensions are also made:

• for a set of grams I ⊆ G, we define
cover(I) =

�
g∈I(cover(g)) and

weight(I) =
�

qi∈Q(weight(qi)×|coverqi(I)|) where

coverqi(I) denotes all (q, r) pairs enabled by g ∈ I
and q = qi.

Definition 2.2. Given the above, an instance of the gram
selection problem (in the general case), is to select an opti-
mal subset of grams, denoted by BestIndex(Q, R,G, M),
such that:

BestIndex(Q,R, G, M) = Imax ⊆ G such that

weight(Imax) is maximum over all I, where I ⊆ G and

cost(Imax) =
�

g∈Imax

(cost(g)) ≤ M

The BestIndex problem can be shown to be NP-Hard by
a straight forward reduction from the Set Cover problem
which is known to be NP-Hard [13]. Note that Top-k-Grams,
is a special case of the BestIndex problem where each gram
has an unit cost. It can be shown that Top-k-Grams problem
is NP-Hard as well. (Refer to [8] for proof.)

3
cost may vary with the indexing mechanism employed, eg. for

B+tree the cost of a gram g is the number of leaf level pointers that

need to be maintained for g, which is equal to the number of records

containing g
4
weight may denote importance or frequency of a query pattern

2.2 A Constant Factor Approximation
Algorithm for BestIndex

The BestIndex problem defined above can be shown to
form subclass of a more general class of problems called the
Budgeted Maximum Coverage of Sets (BMC) problem. We
refer the interested reader to appendix A for a brief de-
scription of the BMC problem and how we can represent
an instance of the BestIndex class as an instance of BMC
problem.

Khuller [3] presents a 1
2
(1 − 1

e
) factor approximation al-

gorithm for the BMC. It guarantees a set-cover of weight
1
2
(1 − 1

e
)w(OPT ) where w(OPT ) is the weight of the opti-

mum cover that is possible within some specified budget L
(if weight of each element is 1 then w(OPT ) simply denotes
the number of elements in the optimum cover). We adapt
this algorithm to the gram selection problem and present a
similar 1

2
(1− 1

e
) factor approximation algorithm for BestIn-

dex in figure 3.
Before presenting the basic algorithm for gram selection,

two measures need to be defined: benefit and utility of a
gram g. In general benefit is defined with respect to current
set of grams in the index I and is denoted by benefit(g, I)
or simply benefit(g) when it is clear from context.

Definition 2.3. The quantities benefit and utility for a
candidate gram g are defined as follows:

1. benefit(g, I) or benefit(g) = Total weight of new
(q, r) pairs covered by g that are not already covered by
some g′ ∈ I

2. utility(g) = benefit(g)
cost(g)

(i.e. benefit of g per unit cost)

For instance if a candidate gram g covers {(q1, r1), (q2, r2),
(q3, r3)}, but the pair (q1, r1) is already covered by some
other gram in the index, then benefit(g) = 2 instead of 3.

The BestIndex-Naive algorithm is given in figure 3 which
is adaptation of the greedy approximation algorithm of [3].
The algorithm needs to store information regarding cover(g)
for all grams. In effect it needs to generate all possible
(qi, rj) pairs that belong to some cover(g). This is denoted
by the matrix S in figure 2. But since S could be very large
in practice, we generate it on the fly using two smaller ma-
trices M1 and M2 instead. The example below illustrates
the process.
Example 3: Consider the problem of example 2. We store
the two matrices M1 and M2. M1 is the gram-record con-
tainment matrix and M2 is the gram-query containment ma-
trix. M1 has a 1 in the slot [i][j] iff gi ∈ rj otherwise has a
0, similarly for M2. The diagram of figure 2 illustrates how
to generate the matrix S using a couple of simple logical
operations to combine the entries from the two smaller ma-
trices M1 and M2. (Note that unlike in the graph model,
in our implementation we choose to denote the containment
relationship between grams and records in the matrix M1
(i.e. 1 if a gram is present in a record else 0). This helps
in making the matrix sparse leading to smaller subproblems
when partitioned as seen in section 3.) ♦

The BestIndex-Naive algorithm use M1 and M2 to gen-
erate S on the fly but we omit that step from figure 3.

2.3 Complexity of BestIndex-Naive Algorithm
The algorithm BestIndex-Naive needs to iteratively se-

lect the next best candidate gram to be added to the already
selected set of grams (index) till either all elements ((q, r)
pairs) that can be covered by some gram in G, are actually
covered or the allocated budget is used up. In each iteration,



Figure 2: Set theoretic representation

Algorithm 2: BestIndex-Naive(Q, R, G, M)
while some (q, r) uncovered AND space available

for every gram g ∈ G \ I set benefit[g] = 0
for every query qk ∈ Q

for every record rj ∈ R
if (pair (qk, rj) not covered by a g ∈ I) //verification

for every candidate gi ∈ G \ I
if (pair (qk, rj) covered by gi) then

benefit[gi] = benefit[gi] + 1
if (∃ a g with benefit[g] > 0) then

for every candidate g

utility[g] =
benefit[g]

cost(g)

else EXIT
I = I ∪ {gmax}, where gmax has maximum utility

end

Figure 3: The basic greedy gram selection algorithm

BestIndex-Naive needs to compute the incremental ben-
efit of each remaining candidate gram. Therefore the time
complexity is given by:

Theorem 1. Worst case time-complexity of BestIndex-
Naive to compute an index with n grams is O(n× | R | × | Q |
× | G |) if the verification step could execute in constant
time.

Proof: The term | R | × | Q | originates from the fact that
those many possible elements could be present in the uni-
versal set that need to be covered. Since there is no explicit
storage, we generate the elements by computing the Carte-
sian product of R and Q (figure 2 illustrates the procedure).
In our implementation the verification step is proportional
to size of index I at that stage. But since for most cases
| I | is small compared to | G |, we can approximate the
time taken by a constant.

Theorem 2. Worst case space complexity of BestIndex-
Naive is O(| G | ×(| Q | + | R |))
Proof: The space required is mainly due to the two boolean
matrices M1 (| G | × | R |) and M2 (| G | × | Q |).

M1 stores a true for a (g, r) pair if g is a substring of r and
false otherwise. Similarly M2 stores a true bit in the (g, q)
cell if g is a substring of q. (Note that a pair (q, r) is covered
by a gram g iff M1[g, r] = false and M2[g, q] = true).

For large size of Q, R and G, the running time of the
algorithm can become prohibitively large, as can be seen in
table 2 in section 6. Therefore we investigate optimization
techniques for scaling the naive algorithm to larger input
sets. In the next section we describe parallelization of the
BestIndex algorithm.

Algorithm 3: BestIndex-Improved(Q, R, G, M)
Q-G-list is a vector indexed by q where each slot

Q-G-list[q] is set of g′s s.t. g substring of q
G-R-list is a vector indexed by g where each slot

G-R-list[g] is set of r′s s.t. g is a substring of r
Rc = {r ∈ R | ∃g ∈ G where g is a substring of r}

(Rc computed using the Q-G-list and G-R-list)
while some (q, r) uncovered AND space available

for every gram g ∈ G \ I set benefit[g] = 0
for every query qk ∈ Q

for every record rj ∈ Rc

for each gram g ∈ Q-G-list[qk] \ I
if (g is not a substring of rj AND

(qk, rj) not covered by any g ∈ I) then
benefit[g] = benefit[g] + 1

if(∃g with benefit[g] > 0) then
for every candidate g

utility[g] =
benefit[g]

cost(g)

else EXIT
I = I ∪ {gmax}, where gmax has maximum utility

end

Figure 4: The improved greedy BestIndex algorithm

3. PARALLELIZABLE ALGORITHM
The BestIndex-Naive algorithm described in section 2 has

poor scale up properties, both in terms of space and time as
noted in section 2.3. We make several optimizations to make
it much faster in practice and scale well with problem size
both in terms of time and space requirements. The following
three paragraphs summarize the principal optimization that
were carried out :-

1) Pruning: In the preprocessing phase we prune out
some very frequent grams from the candidate set G. For
instance we pruned out all grams that had a selectivity of
more than 0.1 in most cases (i.e. grams that are present
in 10% or more of the records). The threshold selectivity
was chosen based on some runs of the algorithm on small
workloads using the complete set of candidate grams. We
noted the maximum selectivity of the grams chosen and de-
cided the cutoff point on that basis. The quality of the index
is not affected much by this pruning, which is quite evident
from results of our experiments. At the same time, one must
point out that most of the grams are infrequent (have selec-
tivity below threshold) and therefore continue to remain in
the candidate set during the actual run of the experiments.
Adding all the infrequent grams to the index is also not an
option as their combined weight is much larger than the
allocated budget, therefore optimization is required. From
performance perspective pruning helps in reducing the size
of the subproblems generated as we see below.

2) Auxiliary data structures: Q-G-list and G-R-list,
these two adjacency lists store id of all grams in a query q in
the slot Q-G-list[q] and id of all records containing gram g in
G-R-list[g] respectively. The two auxiliary data structures
can be populated initially in the pre-processing phase. This
makes the innermost loop of the BestIndex-Naive algorithm
(figure 3) proportional to a small constant c1 rather than
| G |, where c1 is the average number of grams in a query
string. The resulting algorithm, BestIndex-Improved is
shown in figure 4.

3) Partitioning and Parallelizing: Here we exploit
the sparseness of the boolean matrices M1 and M2. One
must note that these two matrices are generally sparse in
most cases when selectivity of each candidate gram is small
and hence a lot of compaction is possible. Our approach



Algorithm 4: Parallelizable-BestIndex(Q,R, G, M, k)
Partition Q into k disjoint sets Q1, . . . , Qk

Create corresponding sets Ri ⊆ R, Gi ⊆ G, i = 1 . . . k
where Gi = {g | g ∈ G ∧ g substring of any q ∈ Qi}
Ri = {r | r ∈ R ∧ ∃g ∈ Gi s.t. g is a substring of r}
while some (q, r) uncovered AND space left

for every gram g ∈ G \ I set benefitglobal[g] = 0
over all subproblems i = 1, . . . , k

compute benefiti[g], ∀g ∈ Gi

benefitglobal[g] = benefitglobal[g] + benefiti[g]
if (∃g with benefit[g] > 0) then

for all g ∈ G \ I

utility[g] =
benefitglobal [g]

cost[g]

else EXIT
I = I ∪ {gmax} where gmax has maximum utility
Update information in subproblems containing gmax

end

Figure 5: The Parallelizable BestIndex algorithm

is the following: We cluster queries into small groups us-
ing the following distance measure between two queries q1

and q2: Dist(q1, q2) = |(G1−G2)∪(G2−G1)|
|G1∩G2| where G1 and G2

denote the set of candidate grams occurring in q1 and q2 re-
spectively. In practice this results in a good partition on the
workload Q which leads to small subproblem sizes. Subprob-
lem generation is nothing but a natural breakup of the orig-
inal problem into smaller domains where they can be solved
more or less independently as shown in the Parallelizable-
BestIndex algorithm in figure 5. We profit from the fact
that both space and time requirements of each of the (say)
k subproblems generated, falls by a factor c2k(c2 > 1) on an
average, as compared to the BestIndex-Improved algorithm
(of figure 4) working on the complete problem. Hence the
resources required to solve the union of all the subproblems
is lesser than what is needed for the original problem. We
found this factor c2 to be approximately 5 or 6 for most
inputs. To illustrate, let the original problem take some T
amount of resource (time + space), then if we break it into
10 subproblems, empirically we found each of the 10 sub-
problems take about T

(c2∗10) amount of resources. Therefore

solving each of the 10 subproblems independently (almost),
we note a gain of c2(≈ 5 in our experiments) in terms of
resources. Here we should point out what is not shown ex-
plicitly in the parallel algorithm of figure 5, that it uses the
BestIndex-Improved algorithm of figure 4 to compute the
benefit of grams in each subproblem.

The new Parallelizable-BestIndex algorithm takes an in-
put parameter k which denotes the number of subproblems
to be generated. We choose k to be rather large (O(| Q |)).
Ideally gain is maximized when k =| Q |. But in prac-
tice the pre-processing and book-keeping time increases with
the number of subproblems when run on a single machine,
therefore in our experiments we clustered a small number of
“similar” queries into a single subproblem. We used a value

of k between |Q|
5

and |Q|
2

. We end the section with another
small example illustrating the benefits of partitioning and
parallelization approach.

Example 4: Continuing with the same example of air-
port database, we illustrate how the BestIndex problem can
be solved more efficiently using our partitioning strategy.
We have four queries in our database, q1, . . . , q4, therefore
if we decide to partition the problem into 4 sub-problems
then the inputs to each subproblem are as shown in the
figure 6 (refer to figures 1 and 2 in previous sections to

Figure 6: Sub-Problems resulting from partition

recall how to generate the inputs). Note that for the ith

subproblem if the query set is Qi, then to construct the ma-
trix M2i, the candidate set Gi contains only those grams
which appear in some q ∈ Qi. Similarly the set of records
indexed in the matrix M1i need be only those which con-
tain some g ∈ Gi. Therefore in our example, on an average
the time taken to complete one iteration of the algorithm
(i.e. to choose the next best gram) would require about
1 ∗ 1 ∗ 3+1 ∗ 1 ∗ 2+1 ∗ 1 ∗ 3+2 ∗ 1 ∗ 6 = 20 logical operations
between element of M1i and M2i (over all subproblems i),
whereas without partitioning, it would have been propor-
tional to 3∗4∗7 = 84 logical operations as one can see from
the matrices M1 and M2 in figure 2.♦

The algorithm of figure 5 is highly parallelizable since an
iteration can be carried out in each subproblem indepen-
dently from others. One only needs to make a small global
comparison per iteration (between k local best candidates)
to choose the next overall best candidate gram to be added
to the index. Time did not permit us to carry out implemen-
tation of the algorithm using parallel hardware, but even the
speedup obtained on a sequential machine was substantial.

4. WORKLOAD REDUCTION
In this section, we describe another approach that we ex-

plored, to address the scaling problem by reducing the size
of the workload. We experimented with a distance-based
clustering approach to compress the workload and propose
a few interesting distance measures.

As outlined in section 3, the running time of the BestIndex-
Improved and Parallelizable-BestIndex algorithm were made
literally independent of the size of the candidate gram-set
by maintaining auxiliary data structures (albeit at the cost
of a little extra preprocessing). But still in the worst case
scenario a factor of (| Q | × | R |) is unavoidable depend-
ing on the nature of queries and grams generated. This will
cause the running-time of even the Parallelizable-BestIndex
algorithm to increase rapidly as | R | and | Q | increase.
We decided not to alter the set of records and instead ex-
plored possibilities of reducing the size of the input query
workload Q. The main goal is to minimize the degradation
of quality while reducing the workload by discarding some
queries. The notion of quality degradation is explained in
the following paragraphs.

Quality of workload reduction is dependent on how
well the relevant characteristics (relevant to the application)
of the original workload Q are preserved in the reduced
workload Q′. Clustering based SQL workload compression
for index-tuning application has been studied in [12]. They
took a distance based clustering approach in that work and
the key is to design the appropriate distance measure suit-
able for the application at hand. The main step is to choose
the right representative for a group of pruned queries and



fold them onto this representative query, which is retained.
The notion is that, better the representation of the pruned
queries in the retained set (i.e. the reduced workload) nearer
will be the performance of the application to what it would
be on the original (uncompressed) workload, which is the
desirable goal. In our case, the application is of course se-
lection of best grams for index construction.

The authors in [12] deal with reducing (compressing) a
generic SQL query workload where the distance between
SQL queries is based upon the query signatures (the set
of attributes the query accesses) and selectivity of each at-
tribute in the queries. The goal there was to get the index-
selection tool to perform well using just the compressed
workload. That is, to suggest a good set of indices to build
on the data which benefits the original set of SQL queries.
Of course this makes the tacit assumption that working with
the uncompressed dataset would result in the selection of
most beneficial indexes for the dataset to start with (which
seems to be the common sense). We take a similar approach
to workload reduction as outlined below :-

1. Define a suitable computable distance measure dist()
on the query space (this distance measure need not be
a metric).

2. Decide a compression factor t. That is after reduction

we want k = � |Q|
t
� queries to be retained. (We chose

t based on the maximum size of the workload that
can be handled within the available memory of the
system).

3. Carry out the k-median clustering algorithm on Q.
When the clusters have stabilized, fold all the queries
in a cluster onto the median query of that cluster.
Folding of queries in a cluster consists of pruning all
remaining queries other than the median query and
adding the weights of these pruned queries to that of
the median query. These k cluster-medians that are re-
tained, form our reduced workload Q′. In effect these
cluster medians are the representatives of the set of
pruned queries from the respective clusters.

4.1 Maximum Deviation Distance
The key step to achieve good reduction is determined by

how well the distance measure captures the notion of loss
in quality when index is built using a reduced workload Q′

instead of the original Q. We measure quality of an index
I , for a query set Q by the statistic aggregate-proportion-of-
error(Q,I) also denoted by APE(Q, I) or simply APE when
there is no confusion. APE is defined as:

APE(Q,I) =

�
q∈Q # false strings returned for q using I
�

q∈Q # true strings containing q

Therefore the quality of an index I ′ built using Q′ with re-
spect to the original query set Q is determined by the statis-
tic aggregate-proportion-of-error(Q,I’) (i.e. APE(Q,I ′)). The
objective of our gram selection algorithm is to minimize the
quantity APE(Q, I ′).

Now we propose the MaxDevDist family of distance
functions based on APE and experimentally compare its
performance to random sampling and edit-distance based re-
duction (in section 6). The MaxDevDist measure is based
on the following assumption:

MaxDevDist Assumption: For a given Q, R, G and
budget M , BestIndex-Naive algorithm (and its variants) con-
struct the index IBest that minimizes the value of APE(Q, I)

over all indexes I that can be created in a “respectable” poly-
nomial time using the information Q, R, G and M .

In other words the assumption states that the BestIndex
algorithm with input Q, R, G and M will construct an index
that prunes out the maximum total number of false posi-
tives (for queries in Q) over all “respectable” polynomial-
time algorithms (by respectable, we mean practical.). Any
other index would only result in a higher APE. Let us call
this the ideal-index and the index computed using Q′ as the
reduced-index. Therefore any reduced-index would have a
higher APE than the ideal-index.

MaxDevDist(q1, q2) is computed as if q1 needs to be
folded onto q2 and in general the measures need not be a
metric. To simplify computation we consider effect of just
the set of grams present in these two queries q1 and q2 in
isolation from all other grams in the candidate set. Folding
causes nodes of kind (q1, r) to collapse into nodes of type
(q2, r) and transferring of weights to the latter. This causes
erroneous computation of benefit(g) for some grams g ∈ G
which results from two factors:-

1. Loss of some benefit-enhancing (q, r) pairs for g.

2. Increment in weights of some queries due to folding.

By the assumption stated above, this would lead to a loss
of quality and hence result in a higher APE (i.e. APE(Q, I ′) ≥
APE(Q, IBest)). We tried to combine these effects into a
single distance measure and came up with a few variations.
First we see an example of the folding process and then the
formal definitions follow.
Example 5: Continuing with the airport example, we have
| Q |= 4. Recall that the 4 queries were q1 = an%,
q2 = %York%, q3 =San Franc% and q4 = %kane%. Let the
weights of the queries be w1 = 1; w2 = 3; w3 = 2; w4 = 1 re-
spectively. Now if we want to reduce the workload to a size of
2, we make 2 clusters. Let the clusters formed be {q1, q3, q4}
and {q2} with the median queries as q1 and q2 respectively.
The reduced workload will therefore be Q′ = {q1, q2} with
weights w′

1 = 1 + 2 + 1 = 4 and w′
2 = 3. ♦

MaxDevDist(q1,q2) class of distance measure assigns a
numeric distance between two queries q1 and q2 when the
former is being folded onto the latter. Since benefit(g) for a
gram is dependent on the number of record it prunes we pro-
pose that the distance measure be directly proportional
to sum of the maximum deviation in benefit(g) of each
gram g ∈ (G1 −G2)∪ (G2 −G1) where Gi is set of all grams
occurring in qi. Some variants of the measure also take into
account the similarity between queries and therefore are in-
versely proportional to the similarity between q1 and q2

as well.
We suggest the following variants of the generic distance

measure. (Note: In the definitions given below, R(g) de-
notes the set of records that do not contain the gram g).

1. MaxDevDist1(q1,q2) =
�

gn
|R(gn)|

�
gd

|R(gd)|
where gn ∈ (G1 −G2)∪ (G2 −G1) and gd ∈ (G1 ∩G2)

2. MaxDevDist2(q1,q2) =
�

gn
|R(gn)|

�
gd

|R(gd)|
where gn ∈ (G1 − G2) ∪ (G2 − G1) and gd ∈ G2

3. MaxDevDist3(q1,q2) =
�

gn
| R(gn) |, where gn ∈

(G1 − G2) ∪ (G2 − G1).

Example 6: Let there be two query patterns : q1 = ab and
q2 = bb. Set of candidate grams for q1 is G1 = {a, b, ab}



and for q2 is G2 = {b, bb}, therefore G1 − G2 = {a, ab};
G2 −G1 = {bb} and G1 ∩G2 = {b}. Let | R |= 10. Let cost
associated with the grams a, b, ab and bb be 7, 5, 2 and 1
respectively (i.e. the number of records that contain these
grams). Also if weight associated with q1 be w1 = 1, folding
q1 onto q2 results in increment of w2 by 1 unit. Now the
various distance measures between q1 and q2 are:

MaxDevDist1(q1, q2) = |R(a)|+|R(ab)|+|R(bb)|
|R(b)| = 3+8+9

5
=

4.0
where R(g) is the set of records pruned by g. Similarly for
the second one
MaxDevDist2(q1, q2) = |R(a)|+|R(ab)|+|R(bb)|

|R(b)|+|R(bb)| = 3+8+9
5+1

≈
3.67 and
MaxDevDist(q1, q2) =| R(a) | + | R(ab) | + | R(bb) |=
3 + 8 + 9 = 20.0 ♦

5. CANDIDATE SET GENERATION
So far we have assumed that candidate set of grams has

been available to us all the while. There are many ways in
which G may be generated, from the set of records R, set of
query patterns Q or from both the sets R and Q (possibly).
Authors in [1] generate their candidate set from R. We
generated the set of candidate grams from the given set of
queries Q, which represent the patterns of interest to us.
We describe our method below, in detail. Let us define a
set G to be a Perfect Discriminating Set with respect
to set Q and R (i.e. G = PDS(Q, R)) if by evaluating any
q ∈ Q using G, we retrieve the exact set of records from
R that satisfy q (i.e. no false-positives are retrieved). It
is obvious that the set of all sub-strings appearing in any
query string in Q forms a PDS(Q, R). Therefore one can
achieve zero relative error for any q ∈ Q by inserting each of
its constituent strings as a key in the index. For example in
the query string “San Franc%” we would insert the string
“San Franc” as a single gram in the index. Similarly for
“Oak%California”, two grams would be inserted,“Oak” and
“California” and so on. But in trying to do so, two problems
arise:

Size of Index: If Q is large, then a PDS such as one
mentioned above, will be very large as well. Therefore we
cannot store all of these in the index, given the space restric-
tions. As a result one needs to generate a more compact set
of candidate grams that are common to many query strings.

Over-fitting: Choosing short, common grams from Q for
the candidate set is preferable as we do not want to over-fit
the index to patterns in Q. This will result in poor perfor-
mance of queries which are not represented well in the query
workload. Since any finite query set or query model cannot
capture the space of all possible queries perfectly, over-fitting
is likely to degrade performance5. Avoiding over-fitting is
even more desirable when we consider workload-reduction
using compression techniques. As we saw in section 4 a re-
duced workload uses only a representative subset of queries
and therefore the performance of the index on the actual
set of queries might degrade if it has been over-fitted to the
reduced set.

Candidate Set generation: Below we outline how to
generate the candidate set of grams using a suffix tree:

1. Build a suffix tree using all q ∈ Q (we use an imple-
mentation of Ukkonen’s algorithm [4]).

5
This is in a way analogous to the desire of fitting a smooth curve to a

data set instead of piece-wise linear curve though the latter will reduce
the error metric in many cases (for example least-squares metric)

Figure 7: Suffix Tree : Example

2. Generate the set of all path-labels from the root to each
node of the suffix tree, call it G0. Path label of a suffix-
tree node is simply the concatenation of each edge-label
from the root to that node.

3. Construct the candidate set of grams G from G0 by
just retaining the shortest prefix of each string in G0

so that they have a selectivity below some predecided
threshold c and still remain distinguishable from each
other. We call these grams prefix-path-labels. (The
term path-labels would imply the complete path label
from the root to a node). We illustrate the procedure
by the following example.

Example 7: For generating the prefix-path-label, assume
that a sequence of nodes from root to a leaf with their edge-
labels in the suffix tree are the following: (n1, “Fran”), (n2,
“cis”), (n3, “co”). Then corresponding to the nodes n1,
n2 and n3, we will generate the prefix-path-labels “Fra”,
“Franc” and “Francisc”6. The point to note is that though
“Fra” has selectivity less than the required threshold c, for
n2 we generate a prefix that is distinguishable from the
one generated for n1, hence minimally extend the edge-
label “Fran” to “Franc”. This is required since the string
“Fran” is probably present in more number of queries than
“Franc”and due to the nature of our algorithm, these two
strings might have completely different benefits (and/or util-
ities) associated with them (refer to previous section for def-
inition of the terms). ♦

Example 8: Continuing with example 2 of section 1, we
have the same dataset with two attributes (Code, Airport)
and an index to be built on the Airport attribute. The query
workload Q = { an%, %York%, San Franc%, %kane%}.
That is queries of type: “SELECT Code, Airport FROM R
WHERE text LIKE pattern”. Here pattern could be any of
the four strings from Q. Figure 7 displays the suffix tree
that is built from these four strings. In the figure each node
displays the edge-label of the edge joining it to its parent
node. The set of path labels that will be generated would be
G0 = { an, anc, ane, e, Franc, kane, n, ne, ork, r, rk, ranc,
York }. But a post-processing might lead to discarding the
grams from G0 which have a selectivity greater than some
threshold c (0 < c < 1) say like “e”, “n” and “r”. Also
we would add only the smallest prefix of the remaining
grams from G0 to G which have selectivity just less than c
and are distinguishable from each other. That might result
in adding just the strings “Fra” and “Y” to final candidate
set G instead of the Franc and York and similarly for the
other grams in G0 as well. ♦

As an observation, in our experiments we found that a
typical index of size 2MB discards more than 80% of the
candidates in many cases. For example, in one of the runs on
an input workload of 4, 000 queries, the selected set contains
about 2, 800 out of the total 14, 700 candidate grams.

In comparison to our methodology, the authors in [1]
choose the indexing grams in three different ways : i) the

6
assuming both F and Fr have selectivity > c



complete set of grams up to length 10; ii) all grams of length
up to 10 that have selectivity below a threshold c, they call it
the multigram set and iii) a set including only the smallest
common suffixes of the multigram set that have a selec-
tivity below c, they refer to it as the shortest suffix set. Of
course their gram generation takes only the database into
consideration and use no explicit query model/workload.

6. EXPERIMENTAL EVALUATION
In this section we summarize the experiments that we

carried out and discuss their results. The dataset on which
all our experiments were done is the real bibliographic data
available from the Digital Bibliography & Library Project
[2]. The schema consists of two character attributes, Author,
that stores author name(s) delimited by comma if there is
more than one author, and Publication, that stores the
name of the publication. In rest of the section 1) we briefly
describe the experimental setup and the various datasets.
2) Present the performance of the indexes constructed us-
ing the Parallelizable-BestIndex algorithm, on various query
workloads. We also compare our performance with a similar
algorithm to what was presented in [1] and implemented in
the FREE system (Fast Regular Expression Indexing En-
gine). 3) We present experiments testing resilience of an
index on workloads that incrementally deviate from the orig-
inal workload and compare it with performance of the FREE
algorithm. 4) Finally we present some results using reduc-
tion techniques discussed in section 4.

6.1 Setup and Performance Metrics
Database (R) consisted of 305,798 tuples each having two

attributes (Author-Names, Title-of-Publication). For query
workload Q we varied the size from 1000 to 4000 in steps of
1000. In the absence of a real query-workload, we generated
a synthetic workload consisting of randomly chosen author
last names from the bag of all author names occurring in the
DBLP dataset (here a bag refers to a collection where mul-
tiple occurrences of an element are allowed). The candidate
gram set (G) for a given set Q of queries were simply the
prefix-path-labels of the suffix tree built on the strings in Q
as described in section 5.

All experiments were carried out on a Dell workstation
with a 2G-Hz Intel-IV processor, 512MB memory and 80GB
hard-disk. Below we define the two main measures used
for testing query performance on the various indexes con-
structed (the latter has already been defined in section 4).

Average Relative Error(Q,I) (ARE): the average frac-
tion of false-positives retrieved in the solution set of a query
for a given query workload Q and a given index I . This is
our main measure of quality of an index. Average Relative
Error (ARE) is defined as

1

| Q |
�

q∈Q

# false positives retrieved for q

Total # of records retrieved for q

Aggregate Proportion of Error (APE): for a work-
load Q is the ratio of total number of false positive returned
to the total number of correct records returned, put math-
ematically, it is

�
q∈Q # false positives retrieved for q
�

q∈Q # true records for q

| Q |= 100, | R |= 305798, | G |= 500
Algorithm # iterations (secs)

BestIndex-Naive 1.52899 × 1012 (1530)

BestIndex-Improved 9.17394 × 1010 (100)

Parallelizable-BestIndex 3.0 × 109 (22)

Table 2: Running time of algorithms

6.2 Running Time of Algorithms
We summarize performance of the three algorithms in ta-

ble 2 using a small input problem. We make the assumption
that each query string on an average contains c = 30 grams
(it is usually smaller than this) and a query on an average is
present in not more than 5000 records at the most (this also
is a loose upper bound). Further if the processor is able to
perform 109 iterations per second, the number of iterations
executed by each algorithm for choosing the top-100 grams
is also shown in the table.

The factor of reduction in execution time while going from
BestIndex-Naive to Parallelizable-BestIndex, is not neces-
sarily as large as 500 as seen in the “# iterations” column.
This is nominally offset by the increased pre-processing time
for the parallelizable algorithm as compared to BestIndex-
Naive. None the less for this small input problem, we saw
a factor of 70 or more improvement in the running time in
practice. Parallelizable-BestIndex algorithm runs roughly 5
times faster than BestIndex-Improved algorithm as reported
in table 2.

6.3 Quality of Index
We discuss two sets of experiments here: Quality of Index

and Resilience of Index.
Quality: We determine the quality of the index by evalu-

ating query workloads of increasing size and computing the
two statistics mentioned above. The smaller the values of
the average relative error and aggregate proportion of er-
ror, better the index. We compared our performance to the
FREE algorithm [1] which is also a gram based indexing
algorithm, but meant for regular expression matching on
text databases. We implemented a simplified version of the
same which we refer to as the FREE algorithm from here
on. The setting of the problem is a little different there as
they do not impose any space constraint on the index. Also
[1] does not consider any query-model or workload with re-
spect to which the index needs to be optimized. Their un-
derlying dataset consists of web pages unlike ours, where
the dataset of interest is a particular column of a relational
database table. But since regular expressions semantics sub-
sume SQL-LIKE query semantics, the two algorithms are
definitely comparable. To impose space restriction on the
FREE algorithm, we terminate its gram-selection as soon as
the index-weight reaches the allocated budget. The DBLP
dataset used, was about 30MB of data. We allowed the in-
dex size to grow to a maximum of 2, 4 and 8 MB (which are
roughly 6.67%, 13.33% and 26.67% of the complete database
size). Assuming a B+tree as the index of choice, the number
of total leaf pointers allowed for the 3 indexes were there-
fore 512K, 1024K and 2048K respectively. We make the
assumption that each pointer takes 4 bytes and the size of
the B+tree is approximately equal to the space taken by
its leaf nodes. Figure 8 shows the performance of the 3 in-
dexes on each of the 4 query workloads of sizes 1000, 2000,
3000 and 4000. In each of the experimental runs, the cut-
off selectivity for both FREE and Parallelizable-BestIndex
algorithm were kept equal to some c (0.05 ≤ c ≤ 0.1).



 Workloads vs Performance (2MB)�

0�

0.2�

0.4�

0.6�

0.8�

1�

1000� 2000� 3000� 4000�

Workload size�

Av
era

ge
 Re

lat
ive

 �
Er

ror
�

BestIndex� FREE�

Workloads vs Performance (4MB)�

0�

0.2�

0.4�

0.6�

0.8�

1�

1000� 2000� 3000� 4000�

Workload size�

Av
era

ge
 Re

lat
ive

 �
Er

ror
�

BestIndex� FREE�

Workoads vs Performance (8MB)�

0�
0.1�
0.2�
0.3�

0.4�
0.5�
0.6�
0.7�

1000� 2000� 3000� 4000�

Workload size�

Av
era

ge
 Re

lat
ive

 �
Er

ror
�

BestIndex� FREE�

Figure 8: FREE vs BestIndex (Performance on var-
ious workloads)

Figure 9: Performance under Deviation

Resilience: We also test how resilient our indexes are by
letting the test query set deviate from the original workload
used to build the index. The deviation of the test set is
carried out at follows: We assume that we are given a bag
of all possible queries, the universal set (bag). The origi-
nal workload Q is considered to be a sample of size | Q |
from this universe. We create the “deviant” test query
workload by retaining a fraction f× | Q | of the original
queries (where f < 1) and randomly sampling the remain-
ing (1 − f)× | Q | queries from the universal set. Size of
the workload was kept constant at 4000. Figure 9 plots the
Average Relative Error(ARE) values for both FREE and
Parallelizable-BestIndex algorithms as f is decreased from
1 through 0 in steps of 0.1. As expected the performance
of FREE was more or less constant, since it took no work-
load (or query model) into consideration. Performance of
the BestIndex algorithm degraded more or less linearly with
deviation, but as is evident from the graph, its performance
is sufficiently better than FREE for the most part.

6.4 Workload Reduction
We carried out experiments using reduced workloads to

evaluate the effectiveness of the various distance functions.
For our experiments, the original workload Q contained 1000
queries. We tested with 3 different compression factors:- The
workloads were reduced to 20%, 40% and 60% percent of the

Figure 10: Performance of Distance Functions

original size and then used to build the index. We ran the
k-median clustering algorithm using the different distance
measures discussed in section 4. We also compared the per-
formance of our distance functions with random sampling
and edit-distance based compressions. Figure 10 shows the
performance of the various reduced workloads. The plot
shows two of the MaxDevDist family of functions along
with the random sampling and edit distance functions. We
found MaxDevDist2 to perform consistently better than
the rest of the distance functions for all sizes of workloads.
We present just one set of results due to lack of space. These
results are only to be considered as indicative of the poten-
tial of the “distance-based clustering” method to compress
workloads meaningfully as well as the effectiveness of the
suggested distance measures.

7. RELATED WORK
The area of string indexing, searching, string-pattern match-

ing (both for exact and approximate matching) has been re-
searched extensively for decades. Needless to say there is a
huge amount of work that is related to the context of the
problem we address in this paper. The B+tree [15] and its
variants, the SB-tree [16], prefix-B-tree [14] etc . . . can be
used to index strings and answer pattern matching queries.
But there is no work that tries to optimize such indices un-
der space constraints. In the following paragraphs we briefly
mention some related work in areas of exact, approximate
and regular expression string matching in textual or other-
wise string databases (eg. DNA sequences).
Automaton based matching: This is perhaps one of the
oldest approaches to string matching. There exists a vast
amount of work in the area, [17], [19], [20]. Baeza-Yates [18]
uses Patricia trees to model a text index and gives search
algorithms that are logarithmic expected time in the size
of the text for a class of regular expression. For dictionary
searches a well known algorithm is the Aho-Corasick algo-
rithm [21] which is also the basis of the fgrep command in
UNIX. A thorough survey of the area is beyond the scope
of this paper but we do believe that the main problem with
most automaton techniques is because they are not opti-
mized for secondary memory and hence for large data set
their I/O performance degrades rapidly.
Secondary memory data structures: Exact matching
can be carried out using Suffix trees [22] [4] and suffix ar-
rays [23] amongst others, which are versatile data structures
that are used to store all suffixes of a large string. They
both take up linear space and have near optimal search com-
plexity and optimal space complexity for external memory.
Inverted lists [25] are popular data structures for indexing
large text databases supporting complete word queries. An-
other secondary memory data structure is the SB-tree [16],
it maintains a lexicographic order of all suffixes of a text un-



der delete and insert operations. The SB-tree has optimal
I/O complexity for searches, inserts and deletes and optimal
space complexity for storage. A good survey of approximate
string matching literature can be found in [11]. But again
none of these data structures really solve the problem we
take on in this paper as they do not incorporate any notion
of space constraint on the index they construct.
q-gram based filtering techniques: This set of prior
work is nearest to ours in spirit. An important property
used to design algorithms for q-gram based searches is that
two strings which differ by a small edit-distance k will have
many q-grams in common. [6] and [5] store an auxiliary
table for positional q-grams of a given strings which needs
to be queried and present SQL commands that extract all
k-approximate strings to the query pattern. They extend
the approach to compute approximate string joins and ap-
proximate substring matches. They have to maintain all q-
grams of a given size for each database string thus perhaps
requiring up to O(n2) extra space per attribute that needs
to be queried. Another piece of similar work is [7], they
apply the techniques to match patterns in DNA sequences
by partitioning the base sequence into blocks and comput-
ing the number of common q-grams in these blocks and the
query pattern of interest. The ones that have more than
the threshold number of common q-grams are further scru-
tinized for approximate match. The closest piece of work
to ours, that of [1] has been discussed extensively in the
previous sections therefore we skip it here.

8. CONCLUSION
In this paper, we show that the gram selection problem is
equivalent to the NP-Hard Budgeted Maximum Set Cover-
age Problem. This enabled us to exploit and adapt already
available theoretical results and make significant advances
over prior work. From a practical perspective, a) motivated
by the observation that it is query performance that is the
user’s primary concern, we incorporated a query model into
the gram selection problem, b) we introduced storage as an
explicit constraint. As a result of our work, the gram se-
lection problem can be solved within provable error bounds.
Time and space complexity were the most important hur-
dle, which we have successfully overcome to a great extent
by developing a scalable implementation of the basic greedy
algorithm. We also explored quality preserving workload re-
duction techniques for scaling to larger workloads and sug-
gested useful distance functions for clustering. By applying
our results to a real database, we found our results superior
to prior work that was neither query-cognizant nor storage-
cognizant. The results are not just of theoretical significance
but can have significant practical impact.

Acknowledgement: This work was funded by NSF grant
number IIS-0220069

9. REFERENCES
[1] J. Cho and S. Rajagopalan. A Fast Regular Expression Indexing

Engine. In Proc. of ICDE, 2002.
[2] Digital Bibliography & Library Project.

http://dblp.uni-trier.de/.
[3] Khuller,S., Moss, A., and Naor, J. The Budgeted Maximum

Coverage Problem. IPL, V 70, Num 1: 39–45, 1999.
[4] E. Ukkonen. Online construction of Suffix-trees. Algorithmica,

1993.
[5] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,

S. Muthukrishnan, L. Pietarinen, and D. Srivastava. Using
q-grams in a dbms for approximate string processing. IEEE
Data Engineering Bulletin, 24(4):28–34, 2001.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491-500, 2001.

[7] Burkhardt, S., Crauser, A., Ferragina, P., Lenhof, H., Rivals, E.,
Vingron, M. q-gram based Database Searching Using Suffix
Array (QUASAR) RECOMB, 1999, pp. 77-83.

[8] Hore, B., Hacigumus, H., Iyer, B., Mehrotra, S. Indexing Text
Data under Space Constraints TR-DB-04-02,
www-db.ics.uci.edu/pages/publications/index.shtml

[9] D. S. Hochbaum. Approximating covering and packing
problems: Set cover, vertex cover, independent set, and related
problems. Approximation algorithms for NP-hard problems,
PWS Publishing Co., Boston, 1996.

[10] D. S. Hochbaum and A. Pathria. Analysis of the Greedy
Approach in Problems of Maximum k-Coverage. Naval Research
Quarterly, (45):615-627, 1998.

[11] G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, 33(1):31-88, 2001.

[12] S. Chaudhury. Compressing SQL Workloads. ACM SIGMOD
2002

[13] Garey, M. R, Johnson, D. S. Computers and Intractability: A
Guide to Theory of NP-Completeness. Freeman, San Francisco,
1979.

[14] Bayer, R., and Unteraurer, K. Prefix B-trees ACM Trans.
Database System. 2(1977), pp 11-26.

[15] Bayer, R., and McCreight, C. Organization and maintenance of
large ordered indexes Acta Informatica, 1972, pp173-189.

[16] Ferragina, P., and Grossi, R. A fully-dynamic data structure for
external substring search. ACM STOC, 1995, pp 693-702.

[17] Hopcroft, J., E., and Ullman, D. Introduction to automata
theory, languages and computation. Addison-Wesley, 1979.

[18] Baeza-Yates, R., and Gonnet, G, H. Fast text searching for
regular expressions or automaton searching on Tries. JACM, Vol
43, 1996, pp. 915-936.

[19] Crochemore, M., Hancart, C. Automata for Matching Patterns,
Handbook of formal languages. Rosenberg, C., and Salaama, A.
eds 2, Springer-Verlag, 1997, pp. 399-462

[20] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen,
M., T., and Seiferas, J. The smallest automaton recognizing the
subwords of a text. Theoretical computer science, 40(1), 1985,
pp. 31-55.

[21] Aho, A, V., and Corasick, M, J.. Efficient String matching : an
aid to bibliographic search. Comm. ACM. 1975, pp. 332-340.

[22] McCreight, E., M. A space efficient suffix-tree construction
algorithm. J. ACM 23, 1976, pp. 262-272.

[23] Manber, U., and Myers, G. Suffix Arrays a new method for
on-line string searches. Siam Journal on Computing 22, 1993,
pp. 935-948.

[24] Knuth, D., E. The Art of Computer Programming.
Addison-Wesley, 1973 Vol 3: Sorting and Searching.

[25] Salton, G. Automatic Text Processing. Addison-Wesley, 1989.
[26] Chan, C., Y, and Ioannidis, Y., E. Bitmap Index Desing and

Evaluation, ACM SIGMOD 1998. pp 355-366.
[27] Gray, J., Reuters, A. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann Pub, 1993.
[28] Chakrabarti, K., Mehrotra, S. Efficient Concurrency Control in

Multidimensional Access methods. SIGMOD, 1999, pp 25-36.

APPENDIX

A. THE BMC PROBLEM
The Budgeted Maximum Coverage(BMC) problem is de-

fined in [3] as follows: A collection of sets S = {S1, S2, . . . , Sm}
with associated costs {ci}m

i=1 is defined over a domain of ele-
ments X = {x1, x2, . . . , xn} with associated weights {wi}n

i=1.
The goal is to find a collection of sets S′ ⊆ S such that the
total cost of elements in S′ does not exceed a given budget
L, and the total weight of the elements covered by S′ is max-
imized. Again it is easy to show that the BMC problem is
NP-Hard. [10] provides a simple (1− 1

e
) greedy approxima-

tion algorithm for the special case where cost of each Si = 1.
The BestIndex problem can be reduced to an instance of the
BMC problem as illustrated in the example below:
Example 9: Consider the problem of example 2, construct
the set of elements X = {(qi, rj) | ∃g ∈ G s.t g ∈ qi and g /∈
rj} For each gi (“an”, “or” and “ne”), we create the corre-
sponding subsets of X (i.e. consisting of exactly the pairs
enabled by gi), call these sets Si. Assign weights to each
(q, r) ∈ X as weight((q, r)) = weight(q) (1 here). Define
cost(g) =| {r | r ∈ R and g ∈ r} |. The various Si’s are
represented in the adjacency matrix S shown in figure 2. ♦


