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Abstract. In this paper we address the problem of subsumption check-
ing for subscriptions in pub/sub systems. We develop a novel approach
based on negative space representation for subsumption checking and pro-
vide efficient algorithms for subscription forwarding in a dynamic pub/
sub environment. We then provide heuristics for approximate subsump-
tion checking that greatly enhance the performance without compromis-
ing the correct execution of the system and only adding incremental cost
in terms of extra computation in brokers. We illustrate the advantages of
this novel approach by carrying out extensive experimentation.
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1 Introduction

Content-based Publish/Subscribe (pub/sub) is a customized many-to-many
communication model that can satisfy requirements of many modern distributed
applications [1]. In a pub/sub scheme, subscribers express their interest in con-
tent by issuing a subscription (query). Whenever some content is produced, it
is delivered to the subscribers whose query parameters are satisfied by the con-
tent in the publication. By decoupling communication parties, a pub/sub system
provides anonymous and asynchronous communication making it an attractive
communication infrastructure for many applications. Such applications include
selective information dissemination, location-based services, and workload man-
agement [1].

In order to distribute the load of publications and subscriptions a distributed
content-based pub/sub system uses a set of network brokers (nodes). Differ-
ent architectures have been proposed for connecting brokers in a pub/sub net-
work [2, 12, 11]. Routing protocols for publications and subscriptions in brokers
aim to reduce network traffic that results from transferring publications and
subscriptions between nodes. One way in which publication traffic can be re-
duced is by enabling filtering of publications close to their sources. This can be
achieved by flooding each subscription to all brokers in the network. However,
such a naive approach significantly increases subscription dissemination traf-
fic. Broadcasting all subscriptions over the network also increases subscription
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table size at nodes which makes content matching more expensive during pub-
lication dissemination. An optimization for reducing subscription dissemination
traffic is to exploit ”covering” relationship between a pair of subscriptions. In
this case, if a new subscription is covered by an existing subscription, it is not
forwarded. Applying subscription covering in every broker in a pub/sub overlay
network can greatly reduce the subscription dissemination traffic. Most of the
existing pub/sub systems like SIENA [2], REBECA [6] and PADRES [4] imple-
ment pair-wise subscription cover checking to reduce redundancy in subscription
forwarding. Efficient techniques for checking pair-wise subscription covering have
also been proposed in the other works [5, 7].

A more efficient approach for reducing subscription dissemination traffic and
subscription table size is to exploit subscription subsumption relationship be-
tween a new subscription and a set of existing active subscriptions. In this case,
if a new subscription is completely covered (subsumed) by the set of existing
subscriptions, then it is not forwarded. Clearly, since subscription covering is a
special case of subscription subsumption checking for the latter results in greater
efficiencies both in terms of reducing traffic between nodes and reducing size of
the subscription table at nodes. Efficient subscription subsumption checking is
not a trivial task. The subsumption checking problem where subscriptions can be
represented as convex polyhedra has been shown to be co-NP complete [10]1. To
the best of our knowledge the only work that considers subscription subsumption
in pub/sub systems is a ’Monte Carlo type’ algorithm for probabilistic subsump-
tion checking proposed by Ouksel et al. [3]. However, this technique may falsely
determine a subscription to be subsumed by a set of existing subscriptions when
in fact it isn’t. This may result in false negatives in publication dissemination
meaning that a publication may not be delivered to subscribers with matching
subscription. In fact not forwarding some of subscriptions changes behavior of
pub/sub system from deterministic into probabilistic. While it may be accept-
able in some systems, having false negatives in publication dissemination may
not be tolerable in pub/sub systems that are used for dissemination of vital
information such as financial information and stock market data.

Main idea: In this paper we propose a novel approach for exact subscription
subsumption evaluation in d-dimensional content space. Our proposed approach
is based on the following observation: Verifying whether a set of existing sub-
scriptions (covered region) subsumes a new subscription is exactly the same as
verifying whether the new subscription intersects with the uncovered region (i.e.,
portion of the domain which is not covered by any existing subscription) . We
refer to the uncovered portion of the domain as the negative space. Then, one
only needs to forward the subscriptions that overlap with the negative space to
other nodes in the network. In a d-dimensional content space where subscrip-
tions are d-dimensional rectangles, we can always represent the negative space
using a set of non-overlapping d-dimensional rectangles. The main drawback of
1 Note that while subsumption problem in general case is co-NP complete, if the

subscriptions are d-dimensional rectangles as we show in this paper the problem can
be solved in O(nd) where n is the number of existing subscriptions.
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considering an exact representation of the negative space is that it might re-
quire maintaining a large number of rectangles. One can show that in the worst
case this may lead to O(nd) rectangles where n is the number of active sub-
scriptions. Besides the storage complexity, this can lead to poor performance
during subsumption checking and creation of new negative rectangles as we will
show later in the paper. To alleviate this problem, we propose an approximate
subsumption evaluation technique that enhances performance significantly while
adding a small overhead in terms of not determining some of subsumed subscrip-
tion. This leads to a minor increment in subscription forwarding traffic without
compromising the correctness of the pub/sub functionality, as illustrated by our
experiments. The approximate approach provides knobs to control the accuracy
of subsumption checking by adjusting the required space and time.

The remainder of the paper is organized as follows. In the next section we
formalize the subscription subsumption problem. In Section 3 we present our
approach for subsumption evaluation and subscription and unsubscription for-
warding algorithms. Section 4 describes approximate subsumption evaluation
along with the corresponding subscription and unsubscription algorithms. We
evaluate the proposed approach in Section 5 followed by an overview of the
related work in Section 6. Finally, we draw our conclusion in Section 7.

2 Problem Formulation

The architecture of pub/sub system consists of a set of broker nodes intercon-
nected through transport-level links which form an acyclic overlay network. Each
client is connected to one of these nodes that act as the proxies of the clients on
this network. When a client issues a subscription to the node it is connected to,
it in turn forwards the subscription (if need be) to its neighbors in the network.
Forward propagation is carried out till every node in the network receives the sub-
scription. When a client publishes an event, it sends the event to its designated
node (broker) that forwards the content through the overlay network to the nodes
that have a matching subscription. Finally, the node delivers the content to the ac-
tual client that subscribed to it. Figure 1 depicts a sample broker overlay network
with 11 broker nodes and shows the clients connected to one of these nodes.

Subscription & publication routing: Subscriptions are broadcast to all nodes
in the overlay network. Each node stores subscriptions in its subscription-table
along with the information about which neighbor requested for which subscrip-
tion. Upon receiving a publication from a neighbor or one of its clients, a broker
matches it against the subscriptions in its table and forwards the publication to
a neighbor if and only if it has received a matching subscription from that neigh-
bor. Since the content matching operation is performed at every node along the
path from publisher broker to subscribers, matching time has a significant effect
on the speed of publication dissemination. Several efficient matching techniques
have been proposed in the literature to reduce matching time [8, 9].

Redundancy minimization using pair-wise covering information: To
prevent unnecessary dissemination of subscriptions and reduce the size of
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Fig. 1. A sample broker overlay network Fig. 2. s3 is subsumed by s1 and s2

subscription tables, pub/sub systems use subscription covering and subsumption
techniques. A subscription s1 covers subscription s2 if and only if all publica-
tions matching s2 also match s1. When a node N receives a new subscription
from one of its neighbors, say subscription s2 from N

′
, such that it is covered

by some previous subscription s1 also forwarded by N
′
to N , then node N can

simply drop s2 without forwarding it to its other neighbors2. Since the covered
subscriptions are not disseminated to all brokers, it results in lower network
traffic and compact subscription tables. Note that N stores s2 in its passive sub-
scription list since it may need to forward s2 should its covering subscriptions
s1 (and potentially others) be cancelled by an unsubscription request. If s1 were
to be unsubscribed, it is removed from N ’s (active) subscription table and the
subscription(s) that were covered by s1, such as s2 in the passive subscription
list are moved to its subscription table and forwarded to the neighbors along
with the unsubscription request for s1.

Optimal redundancy minimization using subsumption information:
While the above discussion illustrates a simplistic approach to reducing sub-
scription traffic, we address this problem in its most general form. In the general
case, as long as the union of an existing set of subscriptions covers a new sub-
scription entirely, the new subscription need not be forwarded. It is easy to see
that pair-wise covering is a special case of the more general subsumption check-
ing problem. Our goal in this paper is to develop an efficient approximation
scheme for the subsumption checking problem. We define the problem formally
below after describing the notations used in the rest of the paper.

2.1 Notation

Cd denotes the d-dimensional content space where each dimension represents
an attribute. The set of independent (orthogonal) attributes along which

2 Note that if s2 was forwarded by some other neighbor N
′′

then, N would have to
forward s2 to N

′
.
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subscriptions andpublications are specified is denotedby the setA={a1, a2, ..., ad}.
The domain of each attribute is also pre-specified and is assumed to be ordered3.
One may visualize the content space as a d-dimensional rectangular region of
space. We represent the lowest and highest values taken by an attribute ai by
li and ui respectively. Each publication represents a point in the content space
that is represented by a d-dimensional point p = (v1, v2, ..., vd) where vi is the
value of attribute ai in the publication and vi ∈ [li, ui]. A subscription s is
represented as a conjunction of d predicates where the ith predicate represents
an interval on the ith attribute’s domain. Each predicate in subscription sj is
represented as [lowj

i , upj
i ] that indicates the boundaries of the subscription for

ith attribute4. Thus, a subscription corresponds to a d-dimensional rectangle in
the content space. Subscription rectangles partition the content space into two
parts, positive space and negative space.

Definition 1. For a given set of subscriptions, S = {s1, s2, .., sn}, we define
the positive space as the parts of the content space that are covered by at least
one subscription rectangle. We represent the positive space as C+

S where C+
S =⋃

si∈S si. We also define the negative space as the portions of the content space
that are not covered by any subscription rectangle. We represent the negative
space as C−S . Of course, C+

S ∪ C−S = CS and C+
S ∩ C−S = ∅.

We say that publication p matches(satisfies) subscription sj if and only if for
each vi in p, vi ∈ [lowj

i , upj
i ]. Subscription s is subsumed by set of subscriptions

S = {s1, s2, .., sn} if and only if for every publication p matching s, there is a
si ∈ S that matches p. We denote subsumption as s � S.

2.2 Subscription Subsumption Problem

We define the subscription subsumption problem for pub/sub system as follows:

Definition 2. Given S = {s1, s2, .., sn} is the set of existing subscriptions, is a
new subscription s subsumed by S?

The solution to the above problem is a ”true” if and only if for every pub-
lication p matching s, there is a si ∈ S that matches p. More succinctly, we
denote this fact by ”s � S iff s ⊂ C+

S ”. A solution to the subscription subsump-
tion problem returns a ”true” or ”false” when posed with an instance of the
problem.

Figure 2 depicts the subscription subsumption concept in a 2-dimensional con-
tent space. There are three subscriptions in this example where s1 = {[175, 510],
[180, 680]}, s2 = {[405, 840], [110, 540]} and s3 = {[380, 720], [230, 495]}. Neither
subscription s1 nor subscription s2 completely cover subscription s3. However,
s3 is fully covered by the union of s1 and s2.
3 In case of nominal attributes, we assume some random order is assigned to the

domain values. Alternatively, a partial order in the form of a taxonomy might also
be utilized to assign the nominal values some numeric identifiers from an ordered
domain.

4 If no interval is specified along a dimension, the selectivity of the corresponding
predicate is assumed to be equal to the whole domain of the attribute.



Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 67

3 Exact Subscription Subsumption Checking

In this section we present the exact subsumption checking approach and de-
scribe the subscription and unsubscription routing algorithms. We also present
a discussion on the complexity of the proposed algorithms.

As mentioned earlier, if s ⊂ C+
S then s � S. However, since the positive space

consists of the set of subscription rectangles which may be overlapping with each
other subsumption evaluation can be more complicated. On the other hand, we
can easily represent the negative space using a set of non-overlapping rectangles
and more importantly this set can be maintained easily under updates (addi-
tion and deletion of subscriptions). Using negative rectangles we simply need to
determine if a new subscription intersects with at least one of the negative rect-
angles. If this is the case, we can right away conclude that the new subscription
is not subsumed by previous subscriptions.

Proposition 1. Subscription s is not subsumed by the set of existing subscrip-
tions S = {s1, s2, .., sn} if and only if s ∩ C−S �= ∅.

Initially, when there is no subscription in the system the whole d-dimensional
domain denotes the negative space, C−S = Cd and the positive space C+

S = ∅.
When the first subscription, s1 is received we will have C−S = CS − {s1} and
C+

S = {s1} which means that the subscription is added to the positive space
(and forwarded to the neighboring nodes) and at the same time, is subtracted
from the negative space. The remainder of the negative space is not necessarily
a complete rectangle, therefore, it needs to be partitioned into a set of smaller
non-overlapping rectangles. Figure 3 depicts one of the several possible ways of

Fig. 3. Negative space
partitioning

FUNCTION Subtract:
Input ← subscription s
Input ← A negative rectangle r
Input ← i: Subtraction dimension.
Output ← Rnew set of new non-overlapping negative rectangles

1) Rnew = ∅.
2) If i ≥ d then RETURN Rnew

3) NonCoverRange(i) = r(i)− s(i).

( 0, 1 or 2 ranges in ith dimension)
4) For each range δ ∈ NonCoverRange(i) {
5) Create new rectangle rρ where ith dimension range is δ
6) and the rest of ranges are the same as r.
7) Rnew = Rnew ∪ {rρ} .
8) }
9) rRemaining: Remainig negative space where ith dimension
10) range is s(i) and the rest of ranges are the same as r.
11) Rnew = Rnew ∪ Subtract(s, rRemaining, i + 1).
12) RETURN Rnew

Fig. 4. Rectangle subtraction function for d-
dimensional space
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partitioning the negative space after adding the first subscription. We will refer
to this as a rectangle splitting operation.

Figure 4 depicts the rectangle splitting function which returns the set of non-
overlapping negative rectangles after subtraction of a subscription from a nega-
tive rectangle. The function receives the subscription and the intersecting neg-
ative rectangle along with the dimension number, (i), that the splitting should
be done along with. The initial call of the function must pass dimension number
zero (i = 0). For the given splitting dimension number i, the function subtracts
the subscription range from the given negative rectangle range in the ith dimen-
sion and returns the remaining ranges as a set of non-overlapping ranges in ith

dimension (Line 3). Depending on the intersection form, the subtraction of the
subscription range from the negative rectangle’s range can split the rectangle’s
range into one, two or three sub ranges where only one of them intersect with
the subscription’s range in the ith dimension. The sub ranges that are not in-
tersecting with the subscription’s range generate new non-overlapping negative
rectangles with the other ranges of the negative rectagle in the other dimensions
(Lines 4-8). The intersecting section of the rectangle range along with the ranges
in other dimensions represent the remaing part of the negative rectangle. The
function then recursively splits the remaining negative rectangle along with the
other dimensions (Line 11).

In the example in figure 3, the split leads to 4 smaller rectangles, that is 3 more
rectangles than before the split. Figure 5 also depicts the partitioned negative
space after adding s1, s2 and s3. The general case of d dimensions is captured
in the proposition below.

Proposition 2. In a d-dimensional content space, a rectangle splitting operation
can lead to at most 2d - 1 new negative rectangles.

Proof. After subtracting the intersecting region of a subscription from a nega-
tive rectangle, the remaining negative region can always be split into γ smaller
rectangles, where γ is the number of surfaces of the subscription that completely
or partially intersect with the negative rectangle. Since there are 2d faces of a
d-dimensional rectangle, we have at most 2d-1 new rectangles generated in this
process (counting one of them as the old rectangle). �
Observation. After n subscriptions have been added, let the negative space be
represented as an union of some m non-overlapping rectangles, then after the
(n+1)th subscription, the new (reduced) negative space can still be represented
as an union of non-overlapping rectangles by carrying out at most O(m) rectangle
splitting operations.

On an average, the number of splitting operations is much smaller than
O(m). We represent the set of non-overlapping negative rectangles as R(C−S ) =
{r−1 , r−2 , .., r−m}. As stated in the proposition 2 above, this set can be constructed
and maintained incrementally. We illustrate the subsumption checking procedure
using a sequence of 3 subscriptions in Figure 5.

As it can be seen, the negative space is partitioned into four new non-
overlapping rectangles. Assume we use the partitioning method depicted in
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figure 3 and we add subscription s2 which is depicted in figure 2. In this case
since subscription s2 intersects with negative rectangles r3 and r4 the subscrip-
tion is not subsumed and we need to add it into the active subscription list.
We also need to subtract the subscription from the intersecting rectangles and
represent the remaining parts of each negative rectangle after subtraction as non-
overlapping rectangles. The new partitioning of the negative space after adding
subscription s2 is depicted in figure 5. The negative space now consists of seven
non-overlapping rectangles. Finally, when we add subscription s3, since it does
not intersect between the subscription and any of the negative rectangles, we
conclude that the subscription s3 is subsumed.

Next, we formally describe the subscription and unsubscription forwarding
algorithms.

Fig. 5. Negative space partitioning af-
ter adding subscriptions s1, s2 and s3

Input ← subscription s
Input ← set of negative rectangles R = {r1, r2, .., rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) Find Rintersect: the set of intersecting rectangles in R.
2) If Rintersect = ∅ then { //s is subsumed and is not forwarded.
3) SP = SP ∪ {s}.
4) RETURN.
5) }
6) Otherwise { // s is NOT subsumed and is forwarded.
7) SA = SA ∪ {s}.
8) For every ri ∈ Rintersect do {
9) R = R − {ri}.

10) R
Remaining
i = ri − s.

11) Partition R
Remaining
i into non-overlapping rectangles.

12) and add them to (Rri
) set.

13) R = R ∪ Rri
.

14) }
15) Forward s.
16) }

Fig. 6. Subscription forwarding Algo-
rithm with exact subsumption cheching

3.1 Subscription Forwarding Algorithm

When a new subscription is issued, we need to quickly determine if it intersects
with any negative rectangle and if so, we need to identify all the rectangles
that may potentially undergo splitting. Any popular multidimensional indexing
structure such as R-Tree or KD-Tree [13, 14] can be used to speed up access
to the rectangles. The data structure used by the algorithm maintains the fol-
lowing information: (i) The set of negative rectangles; (ii) The list of active
subscriptions consisting of the subscriptions that have been forwarded; (iii) The
list of passive subscriptions that contains the subscriptions that are subsumed
and therefore, have not been forwarded. Figure 6 represents the subscription
forwarding algorithm with exact subsumption checking.

The algorithm starts with finding all the negative rectangles that intersect
with the subscription. If the set of intersecting negative rectangles is empty,
the subscription is subsumed and there is no need to forward it. In this case
the subscription is added to the list of passive subscriptions (Lines 2-5). On the
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other hand, if the set of intersecting negative rectangles is not empty, this implies
that the subscription is not subsumed and it must be forwarded. In this case,
the algorithm first adds the subscription into the list of active subscriptions. For
each of the negative rectangles in the intersecting set, it removes the negative
rectangle from the data structure (Line 9) and carries out the rectangle splitting
operation after determining the intersection area (Line 10-12). Then, the newly
created rectangles are added to the set representing the cover of the negative
space. Finally, the new subscription is forwarded to neighbor brokers except the
one that it was received from.

The space and time complexity of the subscription forwarding with exact
subsumption checking depends on the number of the non-overlapping negative
rectangles. Assuming the number of such rectangles is m(i) after i subscriptions
have been forwarded, we require O(m(i)) space to represent these rectangles. In
the worst-case, the time complexity of the (i+1)th subscription forwarding step
is O(d.m(i)) where d is the dimension of the content space. This is so, because the
(i + 1)th subscription may intersect with O(m(i)) negative rectangles resulting
in O(d(m(i)) splitting related operations. To represent the complexity of the
algorithm based on the number of subscriptions we present an upper bound for
m. We start our analysis with the following proposition about the number of
partitions in one dimensional space.

Proposition 3. In a one dimensional domain n ranges result in at most 2n + 1
non-overlapping ranges.

Proof. Proof is based on induction. Each range has two bounding points, start
and end. Initially there is only one range which covers all the domain. After
adding the first range, the domain will contain at most three ranges (2*1+1).
Assuming the maximum number of partitions resulting from n ranges is 2n + 1,
we add the (n + 1)th range. The boundaries of the new range will intersect with
at most two of the existing non-overlapping ranges which results in partitioning
each of these two ranges into two smaller ranges. Therefore, two new ranges is
added to the number of partitions and the number of non-overlapping ranges
that the domain is partitioned into will be 2n + 1 + 2 = 2(n + 1) + 1. �

Using the above proposition, we can provide an upper bound for the number of
rectangles (positive and negative) that can be generated by n rectangles.

Theorem 1. Given a set of n rectangles in d-dimensional space, an upper bound
to the number of non-overlapping rectangles that can partition the space based
on these rectangles is O(nd).

Proof. Each of the rectangles has a range in each dimension. Therefore, the
domain of each dimension is partitioned with n ranges. The maximum possible
number of non-overlapping ranges resulting from this partitioning is 2n + 1 in
each dimension (according to the Proposition 3). Using the partitioning ranges in
each dimension, the d-dimensional space can be partitioned at most into (2n+1)d
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non-overlapping rectangles. Therefore, the maximum number of non-overlapping
rectangles partitioning the space is O(nd). �

Based on the above theorem, the following theorem provides an upper bound
for the number of negative rectangles when there are n subscriptions.

Theorem 2. Given a set of n rectangles in d-dimensional space, an upper bound
for the number of non-overlapping rectangles that partition the negative space
is O(nd).

Proof. According to the Theorem 1 we know that the upper bound for total num-
ber of rectangles partitioning all the space resulted from n rectangles is O(nd).
Each of the given positive rectangles at least include one of the partitioning
rectangles. Therefore, the number of remaining rectangles for the negative space
is at least O(nd − n) which is O(nd). �

Since, the number of negative rectangles can grow really fast (O(nd) for n sub-
scriptions), the time and space complexity of the algorithm can become pro-
hibitive. This motivates our approximation algorithm which checks this growth
and which will be discussed in Section 4.

3.2 Subscription Cancellation Algorithm

If a subscriber wants to cancel a subscription, it makes a ”unsubscription” re-
quest that is forwarded along the path that the corresponding subscription was
forwarded earlier. When such a request arrives at a broker, it needs to check
which subscriptions in the passive list might now get uncovered due to removal
of this subscription and ensure that these queries are forwarded. Figure 7 shows
the algorithm.

To cancel a subscription s the unsubscription algorithm first checks if s is in
the passive set of subscriptions. If it is, then the subscription is subsumed by pre-
viously forwarded queries (active subscriptions) and he only needs to remove it
from the list of passive subscriptions (Lines 1-4). Otherwise, it first removes the
subscription from the list of active subscriptions (Line 5). Then, it finds Sintersect

A

which is the set of all active subscriptions that intersect with s. Unsubscribing
s can result in some uncovered space that needs to be added to the negative
cover. Obviously, the regions within s that are covered by other active subscrip-
tions should not be added to the negative space. To compute these regions, the
algorithm iterates over the set of intersecting active rectangles in Sintersect

A and
subtracts these regions from the s (Lines 8-19). Finally, the new negative space
(if there is one) is added to the set of negative rectangles in line 20. Now, the
algorithm needs to take care of the set of affected passive subscriptions which
is done in lines 21-26. Here, all the passive subscriptions that intersect with s
are detected and removed from the passive subscription list. Then, each of these
subscriptions are evaluated for subsumption against the new set of negative rect-
angles. The subscriptions that are not subsumed anymore are then forwarded to
neighbors along with the unsubscription request.
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Input ← subscription s that must be cancelled
Input ← set of negative non-overlapping hyper rectangles R = {r1, r2, .., rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) If s ∈ SP {
2) SP = SP − {s}.
3) RETURN.
4) }
5) SA = SA − {s}
6) Find Sintersect

A : the set of active subscriptions in SA that intersect with s.
7) Set RnewNegative = {s} as the set of new negative rectangles.
8) For every si ∈ Sintersect

A do {
9) Sintersect

A = Sintersect
A − {si}.

10) R
si
newNegative = ∅.

11) For every rj ∈ RnewNegative do {
12) If rj ∩ si �= ∅ {
13) RnewNegative = RnewNegative − {rj}.
14) Rrj

= rj − si where Rrj
is in the form of non-overlapping rectangles.

15) R
si
newNegative = R

si
newNegative ∪Rrj

.

16) }
17) }
18) RnewNegative = RnewNegative ∪ R

si
newNegative.

19) }
20) R = R ∪ RnewNegative.

21) Find Sintersect
P : the set of passive subscriptions in SP that intersect with s.

22) SnewActive = ∅.

23) For each si ∈ Sintersect
P do {

24) SP = SP − {si}
25) Subscribe(si, R, SA, SP ).
36) }

Fig. 7. Unsubscription algorithm for the exact case

The unsubscription algorithm searches the negative rectangles, the active sub-
scription and the passive subscription lists. Therefore, the time complexity of the
unsubscription algorithm is O(d.(m + |SA| + |SP |)).

As we mentioned above, the number of negative rectangles can grow very
quickly and make the subscription forwarding as well as unsubscription proce-
dures very expensive. We now develop an approximation algorithms that re-
markably enhances the efficiency at the cost of slightly increased traffic.

4 Approximate Subscription Subsumption Checking

In this section we introduce a heuristic that help maintain an acceptable upper
bound on the number of negative rectangles. The proposed heuristic pays a
small penalty in terms of falsely concluding some subscriptions as being ”not
subsumed” when in reality they are subsumed by the set of active subscriptions.
However, such false decisions do not have any effect on the correct execution of
the pub/sub system.
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Subsumption checking heuristic: We restrict the number of new negative
rectangles that are created after adding a new subscription to at most k, a
user specified constant. Assume Rintersect = {r1, r2, .., rα} is the set of α nega-
tive rectangles that intersect with a new subscription s. If α > k, we choose a
RSelected

intersect ⊆ Rintersect such that the number of new negative rectangles created
from subtracting s from rectangles in RSelected

intersect is at most k. The remaining
rectangles in Rintersect are not modified. This relaxation increases the chance
of wrongly concluding that a latter query is not subsumed when it is in fact
subsumed. Restricting the number of newly generated rectangles to k results
in at most O(k.n) negative rectangles after n active subscriptions, which is a
significant improvement over the O(nd) worst-case bound.

Tuning the accuracy of the approximate approach: We can control the
accuracy of subsumption detection by adjusting the value of k. By varying k
one can explore the tradeoff space between the probability of false-positives in
subscription dissemination and the number of negative rectangles generated.

The approximate subsumption checking can either assume a fixed value for k
or a dynamic threshold which changes for each subscription based on the number
of existing negative rectangles. The dynamic approach allows more fine tuning to
balance the two competing factors. For instance, let the threshold be a function
of the order of the subscription, say ζ(i) = k.i−mi−1 where k.i is the maximum
possible number of negative rectangles after i queries and mi−1 is the actual
number after i− 1 queries. This implies, if the number of negative rectangles in
the system is less than the maximum expected number, for the new subscription
si, we can add a larger number of rectangles to the system and therefore increase
the accuracy of subsequent subsumption checks.

Top-k selection: Given the maximum number of new rectangles allowed (k or
ζ(i)), we need to select the best candidates for splitting. We propose a model
based on benefit/cost for selecting these rectangles. We define the benefit of parti-
tioning a negative rectangle with respect to a subscription as the ”volume” of the
intersecting region. We define the corresponding cost to be ”the number of new
negative rectangles that are created”. The benefit is proportional to the increase
in chance of determining subsumption while the cost is proportional to the space
required for the new rectangles as well as the increase in computational cost to
determine intersections for new subscriptions. Therefore, we choose the top-k
negative rectangles with highest benefit to cost ratio are chosen for splitting.
Figure 8 shows the approximate subsumption checking algorithm.

The approximate subsumption checking algorithm in addition to the standard
inputs, also requires the set CoveredBys to be specified. This is the set of rectan-
gles in the content space that are covered only by subscription s. We also specify
k which is the maximum number of new rectangles allowed per subscription (we
only provide the algorithm for the constant k case. The version for variable ζ
is similar). Similar to the exact algorithm, if the subscription does not intersect
with the negative space it is subsumed (Lines 1-5). Otherwise it is added to
the active subscription set. Then for each of the intersecting negative rectangles,
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Input ← subscription s
Input ← CoveredBys = ∅: list of content space sections covered only by s
Input ← k: maximum number of new negative rectangle for s
Input ← set of negative non-overlapping hyper rectangles R = {r1, r2, .., rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) Find Rintersect: the set of rectangles in R that intersect with s.
2) If Rintersect = ∅ then { // s is subsumed.
3) SP = SP ∪ {s}.
4) RETURN .
5) }
6) Otherwise { //s is NOT subsumed.
7) SA = SA ∪ {s}.
8) For every ri ∈ Rintersect do {
9) rRemaining

i = ri − s.

9) If rRemaining
i is a compelete rectangle {

10) CoveredBys = CoveredBys ∪ (ri ∩ s).
11) R = R− {ri}.
12) R = R ∪ {rRemaining

i }.
13) }
14) Otherwise {
15) Compute the selection metric ( Benefit

Cost ) for ri.
16) Add ri to the IntersectingSelectionList.
17) }
18) }
19) newNegativeCount = 0
20) While (newNegativeCount ≤ k ) {
21) ri = the negative rectangle in IntersectingSelectionList with the maximum selection

metric value ( Benefit
Cost ).

22) R = R − {ri}.
23) rRemaining

i = ri − s.

24) Partition rRemaining
i into non-overlapping rectangles.

25) and add them to (Rri
) set.

26) newNegativeCount = newNegativeCount + |Rri
|

27) R = R ∪ Rri
28) CoveredBys = CoveredBys ∪ (ri ∩ s).
29) }
30) Forward s.
31) }

Fig. 8. subscription forwarding algorithm with approximate subsumption checking

the algorithm checks if the remaining rectangle after subtracting the subscription
from it is a complete rectangle. If the remaining is a complete rectangle subtract-
ing the subscription does not create a new negative rectangle and the algorithm
updates the negative rectangle (Lines 9-13). Otherwise, the selection metric value
is computed for the intersecting negative rectangle and the rectangle is added
to the IntersectingSelectionList (Lines 14-17). The IntersectingSelectionList
contains the set of negative rectangles that intersect with subscription s ( i.e.,
those that create extra negative rectangles after subtracting s from them). The
algorithm then picks the negative rectangle with the highest benefit/cost ratio
and removes it from the set of negative rectangles. Then, the algorithm subtracts
the subscription from it and updates the set of negative rectangles. It also adds
the intersecting section to the CoveredBys list since this section is only covered
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by this subscription. The algorithm iterates till the number of extra negative
rectangle reaches k (Line 19-29).

The unsubscription algorithm can be quite complicated depending on the level
of accuracy. We propose an approximate unsubscription algorithm that may
result in larger negative space. However, as mentioned before the larger negative
space only results in not detecting some of subsumption and does not affect the
correctness of the pub/sub system. Also, assuming the rate of unsubscriptions is
much lower that the rate of subscriptions such expansion of the negative space
may be tolerated in many cases. Figure 8 shows the approximate unsubscription
algorithm.

Input ← subscription s
Input ← CoveredBys: list of content space sections covered only by s
Input ← set of negative non-overlapping hyper rectangles R = {r1, r2, , rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) If s ∈ SP {
2) SP = SP − {s}.
3) RETURN.
4) }
5) SA = SA − {s}
6) R = R ∪ CoveredBys

7) Find Sintersect
P : the set of passive subscriptions in SP that intersect with CoveredBys.

8) SnewActive = ∅.
9) For each si ∈ Sintersect

P {
10) SP = SP − {si}
11) Boolean isActive = Subscribe(si, R, SA, SP ).
12) If isActive=TRUE {
13) SnewActive = SnewActive ∪ {si}.
14) }
15) SA = SA ∪ SnewActive.
16) Forward all subscriptions in SnewActive along with unsubscription message.
17) }

Fig. 9. Approximate unsubsumption agorithm

Similar to the exact case the subsumed subscription is only removed from the
passive subscription list (Lines 1-4). When a request for cancellation of an active
subscription is received, the algorithm first removes the subscription from the
active subscription list (Line 5). Then, the rectangles in CoveredBys are added
to the list of negative non-overlapping rectangles (line 6). The algorithm then
detects all the passive subscriptions that intersect with the new negative rectan-
gles in CoveredBys (Line 7). For each passive subscription that is not subsumed
anymore the algorithm forwards it along with the unsubscription request to its
neighbors (Lines 9-17).

The approximate unsubscription may increase the negative space volume in-
crementally that may affect the subsumption evaluation accuracy for later sub-
scriptions. In order to achieve more accurate subsumption checking, we can re-
construct the whole negative space using the set of subscriptions in the system.
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This can be done periodically in an offline manner, where one can recompute the
negative space by making one pass over complete set of existing subscriptions. If
the number of subscriptions is very large, then some pre-processing can be done
to speed up this computation. We will not go into the details of such a step in
this paper. We simply note that such a re-computation process results in new
SA, SP , R and CoveredBys sets.

5 Experimental Evaluation

In this section we evaluate the effectiveness of our proposed subscription sub-
sumption checking approach using extensive simulations. As described in previ-
ous sections, the efficiency of our approach directly depends on the number of
negative rectangles stored. We now describe the setup and the various experi-
ments that we carried out.

Simulation setup: We perform our simulations using 10,000 subscriptions in
2, 3, 4 and 5 dimensional content space. The domain of each dimension is set
as the range [0,1000] and the subscriptions are d-dimensional rectangles in this
domain. We generate the subscriptions by fixing the lower end-point of the range
along each dimension, say x and then selecting the size of the range randomly
from the interval [0, 1000− x] which determines the upper end-point along that
dimension. We sample the Zipfian distribution to pick the lower end-point of a
range along each dimension.

For the approximate subsumption checking experiments, we fix the value of
k to be 50. This implies that we limit the number of new negative rectangles
that are added to the index for each new subscription to at most 50. Recall that,
when the actual number of rectangles is more than k, we compute the best set
of rectangles to split by computing the ratio of benefit to cost and choosing the
ones that yield the highest values. For a negative rectangle and a subscription
the benefit is measured as the volume of the intersecting region and the cost is
the number of newly created negative rectangles as a result of the intersection.

Measuring advantage of subsumption checking: To compare the relative
merit of subsumption checking against the pair-wise covering approach, we mea-
sure how many messages were prevented from being forwarded by employing
each of these approaches. Figure 10 plots the number of redundant subscriptions
detected by the subsumption checking algorithm and the pair-wise subscription
covering approach. The results shown are for 2, 3 and 4 dimensional content
space. As expected, the number of redundant subscriptions detected using the
subsumption checking algorithm is always greater that the covering one. The
graph shows another interesting fact, that the number of subsumed subscrip-
tions is an inversely proportional to the dimension of the content space. This
can be justified by observing that the probability of overlap reduces with in-
creasing dimensionality, therefore reducing the probability of subsumption. The
same trend is seen in the covering relation between subscriptions and increasing
dimensionality of the space. However, even at higher dimensions, the number
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Fig. 11. Extra traffic reduction by ap-
proximate subsumption algorithm

of queries subsumed by the union of 2 or more queries is substantially greater
than number of pair-wise coverings. This result reveals the significance of ex-
ploiting subscription subsumption compared to using only pair-wise subscription
covering. Figure 11 depicts the same results for the approximate subsumption
checking.

Negative rectangle creation rate: The number of negative rectangles di-
rectly affects the efficiency of our subsumption checking algorithm. Therefore,
we measure how the number of negative rectangles vary with increasing number
of subscriptions and as well as content space dimensionality. Table 1 shows the
number of negative rectangles generated against number of subscriptions and
number of dimensions for the exact subsumption checking algorithm. Generally,
by adding more subscriptions, the number of negative rectangle grows. However,
in 2-dimensional space the observed behavior is counter-intuitive, wherein the
number of negative rectangles sharply grow for the first 100 subscriptions and
then remains steady between 140 and 200. This behavior can be explained con-
sidering the number of covered and subsumed subscriptions for 2-dimensional
scenario in our simulations. As depicted in figure 10 more than 95% of sub-
scriptions are subsumed in this scenario and since these subscriptions do not
generate new negative rectangles, the total number of negative rectangles in the
2-dimensional scenario remains significantly small. On the other hand, the num-
ber of negative rectangles significantly increases for 3 and 4 dimensional case. If
we store the negative rectangles in broker’s memory the algorithm may consume
all of the available memory as it is shown in the table for 4-dimensional case with
more than 4000 subscription and a machine with 1GB memory. The significant
number of negative rectangles is a clear justification for using our approximate
subsumption checking algorithm.

Table 2 represents the number of negative rectangles resulting from usage of
the approximate algorithm with value of k set to 50. As we expected, the number
of negative rectangles significantly drops for 4-dimensional space which results in
less space requirement and faster subsumption evaluation. However, this comes
at the cost of not detecting all the subsumed subscriptions.
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Table 2 also depicts an unexpected trend for 2 and 3 dimensional space where
using the approximate algorithm results in more negative rectangles. Since the
approximate algorithm may not partition all the intersecting negative rectangles
for a subscription, subsequent subscriptions that would have been subsumed will
intersect with the negative space and generate more negative rectangles. This
explains the reason for having more negative rectangles in approximate case
compared to the exact case. However, the number of negative rectangles remains
below the threshold of O(k.n).

Table 1. Number of negative rectangles for
exact subsumption

2000 4000 6000 8000 10000

2D 181 118 81 73 66

3D 15983 20154 19667 20756 22230

4D 364740 665000 – – –

Table 2. Number of negative rectangles
for approximate subsumption

2000 4000 6000 8000 10000

2D 367 405 430 438 443

3D 27928 30221 31755 33071 34079

4D 13455 23414 32148 39969 47064

Approximate algorithm: As mentioned earlier, the approximate algorithm
substantially improves the space and time complexities of subsumption checking
by restricting the number of new negative rectangles. We evaluate the advantage
of using the approximate algorithm for two main decision factors. First, we inves-
tigate the effect of threshold k on the number of detected subsumptions and the
number of new negative rectangles created. Then we evaluate the approximate
algorithm based on the function that is used to select the negative rectangles
for partitioning. The subsumed subscriptions detected in the following experi-
ments are in addition to the covered subscriptions and can not be detected using
traditional pair-wise covering techniques.

Effect of k: Figure 12 depicts the advantage of using the approximate algorithm
for three different k values, 10, 50 and 100 in a 3-dimensional content space. As
we expected, by increasing the value of k the number of detected subscription
subsumptions also increases. Increasing the value of k from 10 to 50 results in
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considerable improvement in subsumption detection, however, as it can be seen
in the graph there is no considerable improvement in increasing the value of k
from 50 to 100. On the other hand, as shown in figure 13 the number of negative
rectangles considerably increases when we vary k from 50 to 100. Based on the
results in figures 12 and 13 we can conclude that increasing k may not always
result in significant improvement in subsumption detection, however, it results
in increasing number of negative rectangles. Therefore, selecting proper value
for k can improve the performance of the approximate algorithm significantly.

Other Selection Metric Value Function: Figures 14 and 15 show the re-
sults for three different negative rectangle selection functions. Recall, the default
selection function is the ratio of the intersecting areas volume (benefit) to the
number of new generated negative rectangles (cost). We consider two other func-
tions where in the first one we only consider the benefit as the selection function
and in the other one we consider the inverse of cost as the selection function.
As it can be seen, using the ratio of benefit to cost results in better detection
of subsumed subscriptions and fewer negative rectangles. The graphs also show
that considering benefit alone performs slightly better than considering the cost.
The reason is that despite considering only cost reduces the number of new
negative rectangles for a new subscription but it may result in more intersec-
tions and therefore more negative rectangles for the future subscriptions. On the
other hand, if we select negative rectangles based on the intersecting volume, we
increase the probability of detecting subsumption for future subscriptions and
therefore resulting in fewer negative rectangles.
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Fig. 14. Effect of negative rectangle selec-
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6 Related Work

Subscription covering concept in pub/sub systems was introduced in Siena event
dissemination system [2]. Siena organizes subscriptions in a partially ordered set
(poset) where the order is defined by covering relation. Siena only considers
pair-wise covering relation between subscriptions and does not exploit subsump-
tion. REBECA is another pub/sub system that not only uses covering, but also
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considers subscription merging [6]. Subscription covering and merging algorithms
in REBECA have linear execution time regarding to the number of subscriptions.

Li et al. propose a representation of subscriptions using modified binary deci-
sion diagrams (MBD) in PADRES pub/sub system [4]. They propose subscrip-
tion covering, merging and content matching algorithms based on this repre-
sentation. However, the MBD-based approach does not consider subscription
subsumption relation among subscriptions.

Shen et al. propose a novel approach for approximate subscription covering
detection using Space Filling Curves(SFC) [15]. In this approach a subscription
s = {[low1, up1],...,[lowd, upd]} in d-dimensional space which is a d-dimensional
rectangle is transformed into a point p(s) = {−low1,up1,...,−lowd, upd} in 2d-
dimensional space. Considering each subscription as a point, the covering prob-
lem in d-dimensional space is converted into point dominance problem in 2d-
dimensional space. The point dominance problem then is answered using space
filling curve where the rectangle corresponding to a subscription is represented
as set of one dimensional ranges using SFC and if the point of another sub-
scription falls into these ranges it is covered by the subscription. However, the
proposed approach can only detect covering and it is not clear how to extend it
for subsumption.

To effectively detect covering subscriptions Triantafillou et al. propose an
approach based on subscription summaries [7]. Attributes of each incoming sub-
scription are independently merged into their corresponding summary struc-
tures. The summaries will ensure reduction in the network bandwidth required
to propagate subscriptions and the storage overhead to maintain them.

Ouksel et al. present a Monte Carlo type probabilistic algorithm for the sub-
sumption checking [3]. The algorithm has O(k.m.d) time complexity where k is
the number of subscriptions, m is the number of distinct attributes (dimensions)
in subscriptions, and d is the number of tests performed to detect subsumption
of a new subscription. This algorithm may result in false negatives in publication
dissemination. In this algorithm it is possible that propagation of a subscription
is stopped while it is not subsumed by the existing subscriptions. This may result
in not delivering publications to some subscribers that may not be acceptable in
applications like stock ticker.

7 Conclusion and Future Work

In this paper, we studied the problem of subsumption checking for queries in
publish/subscribe (pub/sub) systems. Efficient query subsumption checking can
greatly improve the performance of pub/sub systems by reducing subscription
routing traffic between brokers. We developed a novel approach based on nega-
tive (uncovered) space representation which allows for fast subsumption check-
ing. Specifically, we provided algorithms to maintain a cover of the negative
space using a set of disjoint rectangles, in a dynamic environment where both
subscription and unsubscriptions requests are made by clients. Further, since
certain query workloads can lead to large number of covering (negative) rectan-
gles that can adversely effect performance and storage, we developed a heuristic
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that checks the growth of the cover-size. Our approximate subsumption checking
algorithm reduces subscription forwarding traffic without affecting the correct-
ness of execution. Finally, we carried out extensive simulated experiments to
illustrate the advantage of our proposed approach.

As our ongoing and future work, we will be investigating some of other heuris-
tics for efficiency of subsumption checking as well as carry out tests in a real
system. We will look at the other strategies like rectangle merging to reduce
the number of negative rectangles. An interesting direction is to extend this ap-
proach to other more complex query classes and different query workloads, with
higher proportions of unsubscription request.
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