Instruction Set Architecture Level
- defines the set of machine instructions
- interface between software and hardware
- high-level language programs are compiled into ISA
- assembly language programs are assembled into ISA

Instruction Set Architecture Level Diagram

Primary Memory
- linear sequence of addressable cells
- cell: smallest addressable unit, e.g. 8 bits (1 byte)
- size of address ⇒ memory size (n bits: 2^n cells)

Primary Memory Diagram

Instructions
- opcode and 0 or more operands

Instructions Table

Instructions
- given instruction length, design instruction set
- trade-offs: address size vs memory size vs resolution
 1.
 2.
 3.

Instructions
- 1-2: given mem size, trade address size for resolution
- 1-3: given resolution, trade address size for mem size
- 2-3: given address size, trade mem size for resolution
Instructions

- another trade-off: opcode size vs #/type of operands
 - large opcode ⇒ many instructions but less space for operands
- observation: space available for opcode varies:
 - 0-operator instruction can use entire space
 - register-only operands also need little space
 - memory addresses are the largest consumers

⇒ expanding opcodes

Expanding Opcodes

- with k bits: 2^k different opcodes
- idea:
 - implement only 2^k-1 opcodes
 - use last opcode ($111 \ldots 1$) to indicate expansion:
 - subsequent m bits are part of opcode ⇒ 2^m additional
 - total: 2^k-1+2^m opcodes, some need k bits, some k+m bits

Example:

- $k=3$, $m=2$
- $2^3=8$, $2^2=4$

Error-Detecting/Correcting Codes

- memory, CPU, comm. lines all make mistakes
 - need to detect and/or correct
- key concept: Hamming distance
 - number of bits in which 2 code words differ
 - Ex: 0010, 0111 have distance $d=2$
- principle of error detection:
 - assume any two codes C_j, C_k have a distance d
 - d bit flips to arrive from C_j to C_k
 - need d bit flips to arrive from C_j to C_k
- rule: to detect d errors, need distance of $d+1$
Error-Detecting Codes

- **Example 1**: encode 0, 1, 2, 3 as follows
 - 0 = 000
 - 1 = 011
 - 2 = 101
 - 3 = 110
 - all d=2
- consider single flip, e.g.: 000 → 100 or 010 or 001
- all 3 are illegal code words ⇒ error

- **Example 2**: parity: add one bit to original code such that # of 1's is always even (odd)
 - 0010 ⇒ error
 - 1000 ⇒ error
 - 0011 ⇒ not detected (valid code)

Error-Correcting Codes

- **Rule**: to correct d errors, need distance of 2d+1
- **Hamming Code**
 - best known error-correcting code
 - **Principles**:
 - insert parity bits at positions 2i, i.e., 1, 2, 4, 8, ... such that:
 1. each parity bit checks the next i bits (including itself), then skips next i bits, then checks the next i bits, etc:
 - bit 1: 1 (2)
 - bit 2: 2 (3 4)
 - bit 3: 1+2 (4 5)
 - bit 4: 4 (5 6)
 - bit 5: 1+4 (6 7)
 - bit 6: 2+4 (7 8)
 - bit 7: 1+2+4 (8 9)
 2. each bit b is checked by those parity bits that add up to b:
 - bit 1: 1
 - bit 2: 2
 - bit 3: 1+2
 - bit 4: 4
 - bit 5: 1+4
 - bit 6: 2+4
 - bit 7: 1+2+4
 3. Example: 4 data bits plus 3 parity bits
 - correction:
 - determine which parity bits are wrong
 - add up all incorrect parity bit positions ⇒ the sum is the incorrect bit
 - Examples:
 - 0010000: b1, b2 wrong ⇒ error in bit 3
 - 0000100: b1, b4 wrong ⇒ error in bit 5
 - 0100000: b2 wrong ⇒ error in bit 2
 - 0000001: b1, b2, b4 wrong ⇒ error in bit 7
 - 1101111: b1, b2 wrong ⇒ error in bit 3

Error-Correcting Codes

<table>
<thead>
<tr>
<th>parity code</th>
<th>b1 b2 b3 b4 b5 b6 b7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 0 1 0 1 0</td>
<td>1 1 1 1 0 1 0</td>
</tr>
<tr>
<td>2 2 0 0 1 0 0</td>
<td>2 0 1 0 1 1 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15 1 1 1 1 1 1</td>
<td>15 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>