Number Systems

- binary, octal, and hexadecimal numbers
 - why used
- conversions, including to/from decimal
- negative binary numbers
- floating point numbers
- character codes

Lubomir Bic

1

Radix Number Systems

- octal: we have only 8 distinct symbols: 0-7
 - when we reach 7, we repeat 0-7 with 1 in front
 - **0**,1,2,3,4,5,6,7, **1**0,**1**1,**1**2,**1**3, ..., **1**7
 - then with a 2 in front, etc: 20, 21, 22, 23, ..., 27
 - until we reach 77
 - then we repeat everything with a 1 in the next position:
 - **1**00, **1**01, ..., **1**07, **1**10, ..., **1**17, ..., **1**77, **2**00, ...
- decimal to octal correspondence:

D	0	1	 7	8	9	10	11	 15	16	17	 23	24	:	63	64	
0	0	1	 7	10	11	12	13	 17	20	21	 27	30	:	77	100	

Lubomir Bic

Radix Number Systems

- basic idea of a radix number system -how do we count:
- decimal: 10 distinct symbols, 0-9
 - when we reach 9, we repeat 0-9 with 1 in front: 0,1,2,3,4,5,6,7,8,9, 10,11,12,13, ..., 19
 - then with a 2 in front, etc: 20, 21, 22, 23, ..., 29
 - until we reach 99
 - then we repeat everything with a 1 in the next position:
 100, 101, ..., 109, 110, ..., 119, ..., 199, 200, ...
- other number systems follow the same principle with a different base (radix)

Lubomir Bio

_

Radix Number Systems

- binary: we have only 2 distinct symbols: 0, 1
- why?: digital computer can only represent 0 and 1
 - when we reach 1, we repeat 0-1 with 1 in front
 - **0,1, 10,1**
 - then we repeat everything with a 1 in the next position:
 - **1**00, **1**01, **1**10, **1**11, 1000, 1001, 1010, 1011, 1100, ...
- decimal to binary correspondence:

D	0	1	2	3	4	5	6	7	8	9	10	11	12	
В	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	

Lubomir Bic

1

Radix Number Systems

- hexadecimal: we have 16 distinct symbols: 0-9,A-F
 - when we reach 9, we continue until F
 - then repeat with 1 in front
 - 0,1, ..., 9,A,B,C,D,F, **1**0,**1**1, ..., **1**9,**1**A,**1**B,**1**C,**1**D,**1**E,**1**F
 - then with a 2 in front, etc: 20, 21, ..., 29, 2A, ..., 2F
 - until we reach FF
 - then we repeat everything with a 1 in the next position:
 - **1**00, 101, ..., 109, 10A, ..., 10F, 110, ..., 11F, ..., 1FF, 200, ...
- decimal to hexadecimal correspondence:

D	0	1	 7	8	9	10	11	 15	16	17	 25	26	 31	32	
н	0	1	 7	8	9	Α	В	 F	10	11	 19	1A	 1F	20	

Lubomir Bic

Radix Number Systems

- purpose of different systems
- binary:
 - digital computer can only represent 0 and 1
- octal:
 - better for human use
 - very easy to convert to/from binary
- hexadecimal
 - also very easy to convert to/from binary
 - slightly more difficult for humans, but
 - 1 hex digit = 4 binary digits (power of 2: 1 byte = 2 hex)

Lubomir Bic

6

Number System Conversions

- convert binary ↔ octal
- 3 bits = 1 octal digit
- use conversion table:

0	0	1	2	3	4	5	6	7
В	000	001	010	011	100	101	110	111

Example:

10111010000110₂ = 10 111 010 000 110₂ = 27206₈

It also works with a decimal point, e.g.:

50.3₈ = 101 000.011₂

Lubomir Bic

Number System Conversions

- convert binary hex
- 4 bits = 1 hex digit
- use conversion table:

Н	0	1	2	3	4	5	6	7
В	0000	0001	0010	0011	0100	0101	0110	0111
Н	8	9	Α	В	С	D	E	F
В	1000	1001	1010	1011	1100	1101	1110	1111

Example:

 $10111010000110_2 = 10111010000110_2 = 2E86_{16}$

It also works with a decimal point, e.g.:

50.3₁₆ = 101 0000.0011₂

Lubomir Bic

Number System Conversions

- to/from decimal
- use basic principle of radix numbers:each digit corresponds to a power of the radix
- in decimal:

Lubomir Bio

$$3205.3 = 3*1000 + 2*100 + 0*10 + 5*1 + 3*0.1$$

= $3*10^3 + 2*10^2 + 0*10^1 + 5*10^0 + 3*10^{-1}$

In general, a decimal number can be decomposed into: ... $d_3*10^3 + d_2*10^2 + d_1*10^1 + d_0*10^0 + d_1*10^{-1} + d_2*10^{-2}$...

Number System Conversions

a binary number can be decomposed into:

...
$$+d_3*2^3 + d_2*2^2 + d_1*2^1 + d_0*2^0 + d_{-1}*2^{-1} + d_{-2}*2^{-2} + ...$$

... $+d_3*8 + d_2*4 + d_1*2 + d_0*1 + d_{-1}*0.5 + d_{-2}*0.25 + ...$

- convert binary → decimal
- learn powers of 2:
 - **1**, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...
 - for each binary digit that is 1 add corresponding power
- Example:

$$110101_2 = 2^5 + 2^4 + 2^2 + 2^0 = 32 + 16 + 4 + 1 = 53_{10}$$

 $1.01_2 = 2^0 + 2^{-2} = 1 + \frac{1}{4} = 1.25_{10}$

bomir Bic 10

Number System Conversions

- decimal → binary:
- decompose number into powers of 2
 - How: repeatedly subtract the largest possible power
- for each component write a 1 in corresponding digit
- Example: convert 53₁₀

$$53 - 2^5 = 53 - 32 = 21$$

 $21 - 2^4 = 21 - 16 = 5$
 $5 - 2^2 = 5 - 4 = 1$
 $1 - 2^0 = 1 - 1 = 0$

- the powers are: 5, 4, 2, 0
- the binary number is: 110101₂

Lubomir Bic

Number System Conversions

- summary

 - octal ↔ hex: via binary
 - binary → decimal: sum up powers of 2
 - decimal → binary: decompose into powers of 2

Lubomir Bic 12

Negative Binary Numbers

- signed magnitude:
 - left-most bit is a sign bit
 - Example with 8 bits:

 $5 = 0000\ 0101, -5 = 1000\ 0101$

- one's complement:
 - flip all bits (0 becomes 1, 1 becomes 0)
 - Example: 5 = 0000 0101, -5 = 1111 1010
 - Advantage: subtract by adding negative number
 - Example: 12 5 = 12 + (-5)
 - add left-most carry to sum
 - Problem: 2 forms of zero:
 - **0000 0000 = 1111 1111**

12	0000 1100
-5	+ 1111 1010
carry	1 1111 000
	0000 0110
7	0000 0111

Lubomir Bic

13

Negative Binary Numbers

decimal	binary	decimal	1's complement	2's complement
0	0000 0000	-0	1111 1111	0000 0000
1	0000 0001	-1	1111 1110	1111 1111
2	0000 0010	-2	1111 1101	1111 1110
3	0000 0011	-3	1111 1100	1111 1101
	•••			
126	0111 1110	-126	1000 0001	1000 0010
127	0111 1111	-127	1000 0000	1000 0001
128	nonexistent	-128	nonexistent	1000 0000

- eliminate –0 by shifting range down
 - **•** +0 = -0 = 0000 0000
- −128 exists only in negative range

Lubomir Bic

15

Negative Binary Numbers

- two's complement:
 - one's complement + 1
 - Example: 5 = 0000 0101, -5 = 1111 1010+1 = 1111 1011
 - add/subtract as before, but left-most carry is discarded

	_
12	0000 1100
- 5	+ 1111 1011
carry	1 1111 000
7	0000 0111

- drawback of two's complement: extra negative number
 - with 8 bits we have 2⁸ = 256 possible combinations:
 - 2⁷ = 128 combinations have left-most bit = 0: represent zero and 127 positive integers
 - 2⁷ = 128 combinations have left-most bit = 1: represent 128 negative integers

Lubomir Bic

14

Finite-Precision Numbers

- number of bits determines the max/min number
- Problem:
 - assume 4 bits
 - 4 + 5 = 9 4 0100 5 0101 carry 100 ? 1001
 - 1001 = -7 → wrong result!

9 is too large for 4 bits (largest positive integer: 0111=7)

overflow – must compare sign bits to detect:

A and B have the **same** sign and A+B has a **different** sign

Lubomir Bic

10

Negative Binary Numbers

- excess N representation
- basic idea: add N to every number (N=2^{m-1} or 2^{m-1}-1)
- Example: 8 bits
 - can represent 2⁸ = 256 different combinations (0-255)
 - add 2⁷ = 128 (or 127) to every number to be represented

number	-128	-127	 -1	0	1	 127	128
excess 128 representation	0	1	 127	128	129	 255	
excess 127 representation		0	 126	127	128	 254	255

used in floating point formats

Lubomir Bic

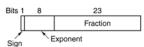
Floating-Point Numbers

- needed for very large or very small numbers
- express numbers as n = f * 10e
 - Example: $+213.1 = +2.131 * 10^2 = +0.2131 * 10^3$
 - two forms of normalized notation
- represent number as:

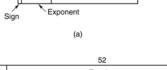
- base is implicit, normally 2
- fraction (mantissa) is normalized; common choices:
 - 0.1 ...
- **1**. ...
- sign bit applies to fraction (signed magnitude)
- exponent: signed integer (2's complement, excess 2^{m-1})

Floating-Point Numbers

- exponent size vs. fraction size: max/min size of expressible numbers vs. accuracy
- Example: IEEE Standard
 - single precision



double precision



Lubomir Bic

11 Exponent Fraction (b)

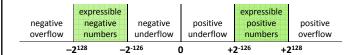
Floating-Point Numbers

- single precision standard: 32 bit word
 - 1 sign bit (0 is positive, 1 is negative)
 - 8 bits in exponent
 - excess 127 system used: exponent ranges from -126 to +127
 - 23 bits in fraction
 - normalized to 1. ...
 - leading 1 is always present and thus implied (not represented)
 - I.e.: precision is 24 bits
 - max. positive number:
 - fraction: 1.111 1111 ... 1111 = $2^0 + 2^{-1} + 2^{-2} + 2^{-3} + ... + 2^{-23}$ = 1 + 1/2 + 1/4 + 1/8 + ...
 - max = +2 * 2¹²⁷ = +2¹²⁸
 - min. negative number: -2¹²⁸

Lubomir Bic

Floating-Point Numbers

- min. positive number:
 - smallest fraction: 1.000 ... 0000 = 20 = 1
 - smallest exponent: -126
 - min pos number = 1 * 2⁻¹²⁶ = 2⁻¹²⁶
- max. negative number: -2⁻¹²⁶



Lubomir Bio

21

23

Representing Characters

ASCII:

American Standard Code for Information Interchange

- 7-bit code: 128 characters
- Examples
- do not confuse chars with numbers, e.g.
 - 6: 0011 0110 (char)
 - 6: 0000 ... 0000 0110 (int)
- UNICODE
 - 16-bits: 65,536 chars (symbols)
 - cover foreign languages

Lubomir Bic

20 (Space) 30 0 40 @
21 ! 31 1 41 41 A
22 " 32 2 42 B
23 # 33 3 43 C
24 \$ 34 4 44 44 D
25 % 35 5 45 E
26 & 36 6 46 F
27 ' 37 7 47 G
28 (38 8 48 H
29) 39 9 49 I
2A * 3A : 4A J
2B + 3B ; 4B L
2C . 3C < 4C L
2D - 3D = 4D M

Char Hex

Floating-Point Numbers

- Examples: show 0.5 as floating point (hex bit pattern)
 - change to binary and normalize: $0.5_{10} = 0.1_2 = 1.0 * 2^{-1}$
 - leading 1 is implied, fraction: 000 0000 ... 00002
 - exponent: -1 in decimal is -1+127 in excess 127, i.e. 126
 - 126 = 64 + 32 + 16 + 8 + 4 + 2 = 0111 1110,

	1	8 bits	23 bits
0)	0111 1110	000 0000 0000 0000 0000 0000

- 0011 1111 0000 0000 ... 0000₂ = 3F000000₁₆
- show 42E48000 in decimal

 - exponent = 1000 0101₂ = 128 + 4 + 1 = 133₁₀
 - 133 is in excess 127 notation; in decimal: 133 127 = 6
 - mantissa: 1.11001001₂
 - result = $1.11001001_2 * 2^6 = 1110010.01_2 = 114.25_{10}$

Lubomir Bic
