
Fuzzy Keyword Search on Spatial Data

Sattam Alsubaiee, Chen Li

Department of Computer Science, University of California, Irvine, CA 92697, USA
{salsubai, chenli}@ics.uci.edu

Abstract. In recent years, many websites have started providing keyword-
search services on maps. In these systems, users may experience difficul-
ties finding the entities they are looking for if they do not know their
exact spelling, such as the name of a restaurant. In this paper, we present
a solution to support fuzzy keyword search on spatial data. We combine
a spatial index structure with inverted indexes on grams to efficiently an-
swer fuzzy queries on maps. We show two system prototypes to demon-
strate the practicality of our solution.

1 Motivation

Many websites based on geographical information nowadays support keyword
search on their data such as business listings and photos. Such services accept
queries consisting of two parts: a set of keywords and a spatial location. The
goal is to find objects with these keywords close to the location. Such a query is
called a spatial-keyword (SK) query [1]. There are several local-search websites,
such as Google Maps, Yahoo! Local, Bing Maps, Yellow Pages, and MapQuest
Maps. At such a website, a user might look for a restaurant called “Aomatsu”
close to Irvine in California. The website returns business listings close to the
city that match the keywords. Another example website is the service by Flickr
that supports location-based photo search (http://www.flickr.com/map). A user
may ask for photos about the “Coliseum Stadium” close to Los Angeles.

Users often do not know the exact spelling of keywords. For example, the
user may mistype a query as (aumatso restaurant) near (Irvine, CA) when
looking for the restaurant Aomatsu. Similarly, a user could mistype the word
“coliseum” and submit a query: (colisum stadium) near (Los Angeles, CA).
It is important to find relevant answers to such mistyped queries. Unfortunately,
most existing location-based systems do not provide correct answers to a query
even with only a single typo. Table 1 shows how several systems behaved for five
mistyped variations of the query “aomatsu restaurant” as of June 20, 2009. In
most cases, the search engines either returned an empty answer or gave irrelevant
results. Both Google and Yahoo could suggest alternative queries, but they very
often could not give the right suggestion. We also experimented with the Flickr
Maps photo search engine and saw similar limitations. An interesting observation
is that during the development of our work, the results of these systems kept
changing. For instance, the evaluation results as of September 2009 had more
“no-results” cases.

2 Sattam Alsubaiee, Chen Li

Table 1. Results of Local-Search Engines for Mistyped Queries (as of June 20, 2009)

Search Engine Results of Mistyped Queries

aumatso aomatso aumatsp amatsu aumatso

restaurant restaurant restaurant restaurant

Yahoo! Local X

Bing Maps

Yellow Pages

MapQuest Maps

 : No results X : Correct suggestion : Wrong suggestion/answer

In this paper, we study how to solve this problem by supporting fuzzy key-
word search on spatial data. Given a query with keywords and a location, we
want to find objects close to the location with those keywords, even if those
keywords do not match exactly. Thus we can find relevant objects for the user
even in the presence of typos in the query or data. Notice our approach is more
powerful than the approach of suggesting an alternative query (the “Did you
mean” feature used by many systems). The latter can only suggest a new query,
while our approach can find relevant answers, even if the answers’ keywords are
only similar to those of the query.

2 Problem Formulation and Our Solution

Formulation: Consider a collection of spatial objects o1, . . . , on, and each ob-
ject has a textual description (a set of keywords) Ti and a location Li. A query
consists of the following: Q = 〈Qs, Qt〉, where Qs is a spatial region such as a
rectangle or a circle. Qt is a fuzzy-keyword condition, which consists of a set of
keywords and an edit-distance threshold δ. Our goal is to find the objects in the
collection such that each of them r is within the region Qs. In addition, for each
keyword k in Qt, the object r has a keyword d in its description, such that the
edit distance between k and r is within the threshold δ. For simplicity, we as-
sume the threshold is a constant, and our results can be easily generalized to the
case where the threshold varies based on the length of the keywords. A related
problem is fuzzy string search: given a collection of strings, how to efficiently
find those that are similar to a given query string? Many algorithms have been
proposed to answer fuzzy keyword queries using inverted lists of grams [2]. Sev-
eral algorithms have been proposed in the literature to answer spatial-keyword
queries by assuming exact matching of keywords [1, 3]. A recent paper [4] also
studies how to support fuzzy keyword search on spatial data. Their approach is
probabilistic, and does not guarantee to find all the answers to a query.

Our solution: We use an R*-tree to index the objects based on their spatial
attribute. Our solution extends naturally to other tree-based structures, such as
kd-trees and quadtrees. Each node in the tree stores the keywords of the spatial
objects in its leaf nodes. To support fuzzy keyword search, we choose nodes in

Fuzzy Keyword Search on Spatial Data 3

the tree to build gram-based inverted indexes for their stored keywords. In this
paper, we choose one level of the tree and construct gram indexes for all the
nodes at that level, denoted by L.

We answer a fuzzy spatial-keyword query as follows. Let Q be a query with a
spatial condition Qs and a fuzzy-keyword condition Qt. Intuitively, the algorithm
traverses the tree top-down. Before reaching level L, where the gram-based in-
verted indexes reside, the algorithm only relies on the spatial information of each
node to decide which nodes to traverse. The rationale is that higher levels can
have many keywords, and it is computationally expensive to do pruning based
on the condition Qt by finding similar keywords. At level L, for each candidate
node, the algorithm uses the node’s gram inverted index to find keywords that
satisfy the fuzzy-keyword condition Qt, i.e., finding keywords that are similar
to at least one keyword in Qt according to the edit-distance threshold. This set
of similar keywords, denoted by C, is propagated in the later process of the
traversal in order to prune branches in the tree.

We studied how to choose the level L of tree nodes to construct gram indexes.
Notice that at each tree node, its stored keywords is the union of the keywords of
its leaf-node objects. If multiple objects have the same keyword, this keyword is
stored only once in the common ancestors of their leaf nodes. In particular, the
root of the tree (L = 1) has all the keywords in the dataset. We can see a trade-
off between the query performance and the size of the gram inverted indexes.
As L increases, the total number of keywords on which we need to build gram
inverted indexes increases. Thus the total size of the gram inverted indexes will
increase. Meanwhile, the performance of finding similar keywords from a gram
inverted index is very related to the size of the index.

3 Demonstration Description

We used two real datasets to develop two prototypes for demonstration. The first
dataset was a multimedia metadata collection extracted from Flickr pages, called
“CoPhIR Test Collection” (http://cophir.isti.cnr.it). We processed the dataset
to extract the photos taken in the U.S. based on their latitude and longitude
values. Moreover, we used the keywords in the title, description, and tags of a
photo as its textual attribute. The final dataset had about two million objects,
with a size of 300MB. Each record had a URL corresponding to the photo or a
page including the photo. The second dataset had geographical objects (such as
lakes and hills) obtained from http://www.geonames.org/. We used the objects
residing in the U.S., and the final dataset had about 1.8 million objects. The
total data size was 90MB. In the experiments, we built inverted indexes using
2-grams.

Both systems provide an interface similar to existing local-search and photo-
search services on maps. Each interface has a map and two input boxes, one
for textual keywords and one for a location. The map is using the Google Maps
API, and can display the search results for a query. We also use the Google Maps
Geocoder API to obtain the latitude and longitude of the entered location. Once

4 Sattam Alsubaiee, Chen Li

the user clicks the search button, the objects satisfying the query conditions will
be shown as red markers on the map. If the user clicks a marker, the information
about the corresponding object (e.g., a photo) will be displayed. Some markers
overlap with each other, and we grouped these near-by markers under a green
marker. If the user clicks a green marker, the map will zoom in to show the
included objects. We will use the prototypes to demonstrate the capabilities and
advantages of supporting fuzzy keyword queries. Fig. 1 shows a screenshot of
the results page for a query with a mistyped keyword on the first dataset.

Fig. 1. A screenshot of our system on the CoPhIR dataset for answering the mistyped
query “colisum stadium near Los Angeles, CA”.

Acknowledgements: We thank Kensuke Ohta for his discussions in this work.

References

1. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (sk) queries
in geographic information retrieval (gir) systems. In: SSDBM, p. 16. (2007)

2. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In ICDE, pp. 257–266. (2008)

3. Felipe, I. D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In ICDE,
pp. 656–665. (2008)

4. Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial
databases. In ICDE. (2010)

