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Abstract The study on database technologies, or more generally, the technologies of data

and information management, is an important and active research �eld. Recently, many exciting

results have been reported. In this fast growing �eld, Chinese researchers play more and more active

roles. Research papers from Chinese scholars, both in China and abroad, appear in prestigious

academic forums.

In this paper, we, nine young Chinese researchers working in the United States, present concise

surveys and report our recent progress on the selected �elds that we are working on. Although the

paper covers only a small number of topics and the selection of the topics is far from balanced, we

hope that such an e�ort would attract more and more researchers, especially those in China, to

enter the frontiers of database research and promote collaborations. For the obvious reason, the

authors are listed alphabetically, while the sections are arranged in the order of the author list.

1 Introduction

The study on database technologies, or more

generally, the technologies of data and informa-

tion management, is an important and active re-

search �eld. Recently, many exciting results have

been reported. In this fast growing �eld, Chinese

researchers play more and more active roles. Re-

search papers from Chinese scholars, both in China

and abroad, appear in prestigious academic forums,

such as ACM SIGMOD, VLDB, IEEE ICDE, and

EDBT conferences.

In this paper, we, nine young Chinese re-

searchers working in the United States, present

concise surveys and report our recent progress on

the selected �elds that we are working on. Al-

though the paper covers only a small number of

topics and the selection of the topics is far from

balanced, we hope that such an e�ort would at-

tract more and more researchers, especially those in

China, to enter the frontiers of database research.

Moreover, this paper should be also read as a call

for future collaborations. Interested readers are en-

couraged to contact the authors of the correspond-

ing sections for further discussion. We believe that

the extensive collaborations will bene�t the Chi-

nese database research community.

The writing of this paper was initialized by the

two key oÆcers of Journal of Computer Science and

Technology, Prof. Guojie Li, the Chief-Editor, and

Ms. Xiaoxian Wan, the executive manager who is

acting as a coordinator of the paper.

For the obvious reason, the authors are listed al-

phabetically, while the sections are arranged in the

� Dr. Jian Pei, the corresponding author of the paper, is a guest editor of J. Comput. Sci & Technol for the database-

related �elds.
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order of the author list. The topics can be roughly

divided into the following categories. Section 2 is

on database system performance tuning. Section 3

is on data integration. Sections 4, 7 and 8 are on

mining various kinds of data. Sections 5, 6, 9 and

10 are on indexing and query answering.

2 Automatic Database Tuning and

Administration�

After decades of development, today's database

systems all have numerous features, making it very

diÆcult to choose these features toward the need

of the speci�c applications using them. For exam-

ple, building indexes and materialized views often

dramatically improve the performance on a given

query workload, but it is very diÆcult to select the

necessary indexes and views because such a deci-

sion depends on how these queries are executed. On

the other hand, the cost of hardware has dropped

dramatically. Thus the cost for human to tune and

manage the database systems often dominates the

cost of ownership. To reduce such cost, it is desir-

able to automate database tuning and administra-

tion.

Database tuning and administration includes

physical database design and tuning system param-

eters. Physical database design includes selecting

indexes, views, vertical partitioning and horizontal

partitioning, parallel database design, etc. Tuning

system parameters includes selecting the serializ-

ability level, locking granularity, placement of log

�les, bu�er pool size, RAID levels, cache sizes and

placement, etc.

There has been much work in the area of phys-

ical database design. Earlier work[1] uses a stand-

alone cost model to evaluate the goodness of a con-

�guration. However, all such work has the draw-

back that it is diÆcult to keep the stand-alone cost

model consistent with the cost model used by the

query optimizer.

More recent work proposed to use the query

optimizer for cost estimation, and to use a search

algorithm to enumerate possible con�gurations.

Such work includes [2{4] in the area of index se-

lection, [5] in the area of view selection, and [6] in

the area of parallel database design.

In the area of system parameter tuning, there is

plenty of work giving practical guidelines[7]. How-

ever, there is relatively less attempt to automate

this[8].

There are many research problems unsolved in

this area. First, very little work has been done in

automatically tuning system parameters, and it is

challenging to predict the system performance after

changing such parameters. Second, little is known

on how to adjust the system to changes of the work-

load. Ideally, the database system shall be able to

automatically adjust to such changes. Third, given

the numerous features to tune, it remains challeng-

ing to identify the system bottleneck as well as to

tune all these together.

3 Integrating Information from Heteroge-

neous Data Sources �

The purpose of data integration (a.k.a., infor-

mation integration, data mediation) is to support

seamless access to autonomous, heterogeneous in-

formation sources, such as legacy databases, corpo-

rate databases connected by intranets, and sources

on the Web. Many research systems (e.g., [9{

11]) have been developed to achieve this goal.

These systems adopt a mediation architecture[12],

in which a user poses a query to a mediator that re-

trieves data from underlying sources to answer the

query. A wrapper on a source is used to perform

data translation and local query processing.

Intensive research has been conducted on chal-

lenges that arise in data integration. The �rst chal-

lenge is how to support interoperability of sources,

which have di�erent data models (relational, XML,

etc.), schemas, data representations, and querying

interfaces. Wrapper techniques have been devel-

oped to solve these issues. The second challenge is

how to model source contents and user queries, and

two approaches have been widely adopted. In the

local-as-view (LAV) approach, a collection of global

predicates are used to describe source contents as

views and formulate user queries. Given a user

query, the mediation system decides how to an-

swer the query by synthesizing source views, called

answering queries using views. Many techniques

have been developed to solve this problem[13;14],

and these techniques can also be used in other

database applications such as data warehousing

and query optimization. Another approach to data

integration, called the global-as-view (GAV), as-

sumes that user queries are posed directly on global

views that are de�ned on source relations. In this

approach, a query plan can be generated using a

� This section is contributed by Dr. Zhiyuan Chen, Microsoft Research, zhchen@microsoft.com.

�This section is contributed by Dr. Chen Li, University of California, Irvine, chenli@ics.uci.edu.
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view-expansion process. Researchers mainly focus

on eÆcient query processing in this case. The third

challenge is how to process and optimize queries

when sources have limited query capabilities. For

instance, the Amazon.com source can be viewed as

a database that provides book information. How-

ever, we cannot easily download all its books. In-

stead, we can query the source by �lling out Web

search forms and retrieving the results. Studies

have been conducted on how to model and com-

pute source capabilities, how to generate plans for

queries, and how to optimize queries in the pres-

ence of limited capabilities[15;16].

Here we give three of the many open problems

in data integration that need more research in-

vestigation. First, most previous mediation sys-

tems adopt a centralized architecture. Recently,

database applications are seeing the emerging need

to support data integration and sharing in dis-

tributed, peer-based environments. In such an en-

vironment, autonomous peers (sources) connected

by a network are willing to exchange data and ser-

vices with each other. Thus each peer is both a

data source and a \mediator." Several projects

have been proposed to study issues in this new

architecture[17;18]. Second, researchers are paying

more attention on how to deal with source hetero-

geneity by cleansing data. One particular problem

is called data linkage, i.e., identifying and linking

duplicate records eÆciently and e�ectively. Sources

frequently contain approximately duplicate �elds

and records that refer to the same real-world entity,

but are not identical, such as \Tom M. Franz" ver-

sus \Franz, T.", and \Barranca Blvd., Irvine, CA"

versus \Barranca Boulevard, Irvine, California".

Variations in representations may arise from typo-

graphical errors, misspellings, abbreviations, and

other reasons. This problem is especially severe

when data is automatically extracted from unstruc-

tured or semi-structured documents or Web pages.

In order to integrate information from sources, we

need to \clean" the data before doing a higher-

level processing. Recently many results are devel-

oped on data cleansing and linkage[19;20]. Third,

the advent of XML introduces many new problems

that need to be solved to support data integration.

4 Mining Changes from Data Streams �

A growing number of emerging applications,

such as sensor networks, networking 
ow analysis,

and e-business and stock market online analysis,

have to handle various data streams. It is demand-

ing to conduct advanced analysis and data min-

ing over fast and large data streams to capture the

trends, patterns, and exceptions. Recently, some

interesting results have been reported of modelling

and handling data streams (see [21] for a com-

prehensive overview), such as monitoring statistics

over streams and queries answering (e.g., [22{24])).

Furthermore, conventional OLAP and data mining

models have been extended to tackle data streams,

such as multi-dimensional analysis (e.g., [25]), clus-

tering (e.g., [26]) and classi�cation (e.g., [27, 28]).

While extending the existing data mining mod-

els to tackle data streams may provide valuable

insights into the streaming data, it is high time

we considered the following fundamental question:

Compared to the previous studies on mining various

kinds of data, what are the distinct features/core

problems of mining data streams? In other words,

from mining data streams, do we expect something

di�erent than mining other kinds of data?

Previous studies (e.g., [21, 29]) argue that min-

ing data streams is challenging in the following

two respects. On the one hand, random access

to fast and large data streams may be impossi-

ble. Thus, multi-pass algorithms (i.e., ones that

load data items into main memory multiple times)

are often infeasible. On the other hand, the exact

answers from data streams are often too expen-

sive. Thus, approximate answers are acceptable.

While the above two issues are critical, they are

not unique to data streams. For example, online

mining very large databases also requires ideally

one-pass algorithms and may also accept approxi-

mations.

We argue that one of the keys to mining data

streams is online mining of changes. For exam-

ple, consider a stream of regular updates of var-

ious aircrafts' positions. An air traÆc controller

may be interested in the clusters of the aircrafts

at each moment. However, instead of checking de-

tails for \normal" clusters, she/he may be more

interested in those \abnormal" clusters, e.g., fast

growing clusters indicating the forming of a traÆc

jam. In general, while the patterns in snapshots

of data streams are important and interesting, the

changes to the patterns may be more critical and

informative. With data streams, people are often

interested in mining queries like \compared to the

history, what are the distinct features of the current

status?" and \what are the relatively stable factors

� This section is contributed by Dr. Jian Pei, State University of New York at Bu�alo, jianpei@cse.bu�alo.edu.
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over time?" Clearly, to answer the above queries,

we have to examine the changes.

Some previous works also involve change detec-

tion. For example, the emerging patterns[30] char-

acterize the changes from one data set to an other.

In [31], Ganti et al. propose methods of measuring

the di�erences of the induced models in data sets.

Incremental mining studies how to update the mod-

els/patterns by factoring in the incremental part of

data. However, mining data streams requires on-

line and dynamic detection and summarization of

interesting changes.

Interesting research problems on mining chang-

es in data streams can be divided into three cat-

egories: modelling and representation of changes,

mining methods, and interactive exploration of

changes.

First, while the term \changes" sounds general

and intuitive, it is far from trivial to de�ne and de-

scribe changes in data streams. First, it is essential

to propose concise query language constructs for

describing the mining queries on changes in data

streams. There can be many kinds of changes in

data streams, and di�erent users may be interested

in di�erent kinds. The user should be able to spec-

ify the changes she/he wants to see. Moreover,

the system should be able to rank changes based

on interestingness. The operations should be in-

tegrable into the existing data mining models and

languages. An \algebra" for change mining may

be essential. Second, methods of summarizing and

representing the changes need to be developed. In

particular, e�ective visualization of changes is very

important. Third, while the model for mining \�rst

order" changes is common and useful, the model for

mining \higher order" changes can be an important

kind of knowledge in some dynamic environments.

For example, a stock market analyst may feel par-

ticularly interested in the changes in the ranges of

price vibration, while the range of price vibration

itself is a description of changes.

Second, eÆcient and scalable algorithms are

needed for mining changes in data streams, at var-

ious levels. First, speci�c algorithms can be de-

veloped for speci�c change mining queries. While

such query-speci�c approaches may not be sys-

tematic, it will provide valuable insights into the

inherent properties, challenges and basic meth-

ods of change mining. Second, general evalua-

tion methods for \change mining queries" should

be developed based on the general model/query

language/algebra. Third, facilities for various as-

pects of change mining, such as quality manage-

ment, should be considered. For example, algo-

rithms should be able to meet user's speci�cation

on level/granularities/approximation error bound

of change mining.

Third, the results from change mining per sec-

ond form data streams, which can sometimes be

large and fast. It is important to develop e�ec-

tive approaches to support user's interactive explo-

ration of the changes. For example, a user may

want to monitor the changes at an appropriate

level. Once some interesting changes are detected,

she/he can closely inspect the related details.

To the best of our knowledge, the above prob-

lems have not been researched systematically so

far. By no means is the above list complete. We

believe that thorough studies on these issues will

bring about many challenges, opportunities, and

bene�ts to stream data processing, management,

and analysis. Our recent studies[32;33] are concrete

steps towards this direction.

5 Spatio-Temporal Indexing and Quer-

ing �

The spatio-temporal database (STDB) has re-

ceived considerable attention during the past few

years, due to the emergence of numerous appli-

cations (e.g., 
ight control systems, weather fore-

cast, mobile computing, etc.) that demand eÆcient

management of moving objects. These applica-

tions record objects' geographical locations (some-

times also shapes) at various timestamps, and sup-

port queries that explore their historical and future

(predictive) behaviors. The STDB signi�cantly ex-

tends the traditional spatial database, which deals

with only stationary data and hence is inapplica-

ble to moving objects, whose dynamic behavior re-

quires re-investigation of numerous topics including

data modeling, indexes, and the related query al-

gorithms. In this section, we survey the existing

solutions for these issues.

Depending on the temporal aspects of data, an

STDB aims at either historical or predictive re-

trieval. Speci�cally, given a set of objects o1, o2,

. . . , o
N
(where N is termed the cardinality), a his-

torical STDB stores, for each object o
i
(1 6 i 6 N),

its extent o
i
.E(t) at all the timestamps t in the his-

tory. Following the convention of spatial databases,

each extent o
i
:E(t) can be a polygon describing the

� This section is contributed by Dr. Yufei Tao, Carnegie Mellon University, taoyf@cs.cmu.edu.
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object's actual shape at time t (e.g., the contour of

a moving typhoon). Specially, if the shape is not

important (e.g., cars, 
ights, etc.), o
i
:E(t) degener-

ates to a point describing the location of o
i
at time

t. In practice, the extents of the same object at

the successive timestamps can be compressed using

various methods (e.g., if the object remains station-

ary at several continuous timestamps, its extent is

stored only once during this period). A predictive

STDB, on the other hand, stores, for each (usual

point) object o
i
, its most recent updated location

o
i
:L(t

upd
) (where t

upd
is the time of the object's

last update), and the motion function describing

its current movement. The most popular motion

function is the linear function[34�36], because it (1)

can approximate any trajectory, and (2) requires

the fewest number of parameters. Speci�cally, in

addition to o
i
:L(t

upd
), the system only needs to

record the object's velocity o
i
:vel , such that the

object's location at any future time t > t
upd

can be

calculated as o
i
:L(t) = o

i
:L(t

upd
)+o

i
:vel �(t�t

upd
).

Using such modeling, an object needs to issue an

update to the database only if the parameters of its

motion function (e.g., o
i
:vel for linear movement)

change.

Since the spatial database can be regarded as a

special type of STDB where all the objects have

zero velocities, all the spatial query types natu-

rally �nd their counterparts in STDB, except that

they are augmented with additional temporal pred-

icates. Speci�cally, a window query (WQ) speci�es

a query region q
R

and time interval q
T
(consist-

ing of continuous timestamps), and �nds all the

objects whose extents (or locations for point data)

intersect q
R
during q

T
. Particularly, the selectivity

of a WQ equals the number of retrieved objects di-

vided by the dataset cardinality, and its accurate

estimation[37�39] is imperative to query optimiza-

tion. A k nearest neighbor (kNN) query speci�es

a query point q
P
and time interval q

T
, and �nds

the k objects whose distances to q
P
during q

T
are

the shortest. These problems become even more

complex if query regions/points (in WQ/kNN) are

also moving. While the above queries involve only

one dataset, the within-distance join (WDJ), given

two datasets S1, S2, reports all the object pairs (o1,

o2) in the cartesian product S1 � S2, such that the

distance between o1, o2 during a query time inter-

val q
T
is shorter than that of a certain threshold d.

The selectivity of a join is the number of retrieved

pairs divided by the size of S1 � S2. Similarly, the

k closest pair (kCP) query retrieves the k object

pairs (o1, o2) such that the distance of o1, o2 dur-

ing q
T
is the shortest, among all the pairs in S1�S2.

Note that the above queries can be de�ned in both

historical and predictive STDB.

In addition to queries inherited from conven-

tional spatial databases, the dynamic nature of

STDB also leads to several novel query types. For

historical databases, [40] introduces the naviga-

tional WQ, which speci�es two query regions q
R1,

q
R2 and timestamps q

T1, qT2, and retrieves all the

objects that intersect q
R1 at q

T1, and also inter-

sect q
R2 at q

T2 (e.g., \�nd all the vehicles that

appeared in Harvard at 5pm yesterday and then

appeared in MIT 10 minutes later"). In predic-

tive STDB, [41] points out that the results of tradi-

tional queries (i.e., WQ, kNN, WDJ, kCP) are usu-

ally inadequate because they may change (some-

times almost immediately) due to the movements

of objects and/or queries (e.g., a user's nearest gas

station may change as she/he drives on the high-

way). Motivated by this, [41] proposes the time-

parameterized (TP) queries, which applies to any

traditional query, and returns, in additional to the

result R, also (1) an expiry time T of R, and (2)

the change C of the result after T . An example

of TPNN is to report (1) the nearest station s, (2)

when s will cease to be the nearest (given the user's

moving direction and speed), and (3) the new near-

est station after the expiry of s. The concept of

TP is extended to the continuous query in [42{

45], which is another general concept applicable

to all traditional queries, and aims at continuously

tracking the result changes until certain conditions

are satis�ed. A continuous WQ, for instance, may

\return the aircrafts within 10 miles from 
ight

UA183 now, and continuously update this infor-

mation until its arrival". In TP and continuous

processing, the moving direction of the query can

be clearly speci�ed, which is not true in some ap-

plications (e.g., a tourist wandering around casu-

ally). The concept useful in such scenarios is the

location-based (LB) query[46], which applies to WQ

and kNN, and �nds the query result as well as its

validity region such that, as long as the query is in

this region, its result will remain the same. For ex-

ample, a LB NN may return the nearest restaurant

of a tourist, as well as a validity region in which

the restaurant will remain the nearest.

Numerous access methods have been pro-

posed for eÆcient spatio-temporal query process-

ing. A straight-forward approach to index histor-

ical STDB is to create a spatial index (the most

common ones including the R-tree[47;48]) at each

timestamp in history, managing objects' extents at
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that timestamp. This is the idea behind the so-

called partially persistent structures
[49;50], which, in

order to reduce the space consumption, allow the

R-trees at consecutive timestamps to share com-

mon nodes, if the objects in these nodes do not

incur extent changes. The �rst partially persistent

structure, the historical R-tree (HR-tree)[51], how-

ever, still involves considerable data redundancy

as analyzed in [52], which led to the development

of the multi-version R-tree (MVR-tree)[53], and its

subsequent versions[54�56]. Besides the partially

persistent methodology, historical STDB can also

be indexed using a 3D R-tree by treating time

just as an extra dimension (in addition to the two

spatial dimensions). Speci�cally, each record in

the 3D R-tree[57] represents a 3D box, whose spa-

tial projection corresponds to the extent of a sta-

tionary object, and whose temporal projection de-

notes the time interval during which the object

is stationary. Similar ideas are used in the tra-

jectory bundle tree (TB-tree)[40], a structure op-

timized for navigational WQ queries. In practi-

cal STDB, [58] adapts the Quadtree[59] (a spatial

index) for indexing the movements of 1D objects,

while the time-parameterized R-tree[60] (TPR-tree)

and its improved versions[61;62] support objects of

arbitrary dimensionality. Finally, indexing mov-

ing objects has also been studied in theory[63�66],

which develop numerous interesting structures with

provable worst-case performance bounds. These

bounds, however, usually involve large hidden con-

stants, rendering these \theoretical" solutions to

be outperformed by the \practical" solutions in-

troduced earlier.

6 Indexing XML by Tree Structures �

With the growing importance of XML in data

exchange, much research has been done in provid-

ing 
exible query mechanisms to extract data from

XML documents[67�72]. We propose a novel index

structure that addresses a wide range of challenges

in indexing semi-structured data[73]. Unlike state-

of-the-art approaches that disassemble a structured

query into multiple sub-queries, and then join the

results of these sub-queries to provide the �nal an-

swers, our method uses tree structures as the basic

unit of query to avoid expensive join operations.

XML provides a 
exible way to de�ne semi-

structured data. Fig.1 shows an XML document

representing a purchase record. Many state-of-the-

art approaches create indexes on paths or nodes

in DTD trees. However, queries involving branch-

ing structures usually have to be disassembled into

multiple sub-queries, each corresponding to a sin-

gle path in the graph. The results of these sub-

queries are then combined by expensive join oper-

ations to produce �nal answers. For the same rea-

son, these methods are also ineÆcient in handling

`�' or \//" queries, which too, correspond to mul-

tiple paths. Moreover, to retrieve semi-structured

data eÆciently, it is essential to have index on both

structure and content of the XML data. Neverthe-

less, many algorithms index on structure only, or

index on structure and content separately, which

means attribute values, are not used for �ltering in

the most e�ective way.

We transform XML data and queries into

structure-encoded sequences by a depth-�rst traver-

Fig.1. A single purchase record.

�This section is contributed by Dr. Haixun Wang, IBM T.J. Watson Research Center, haixun@us.ibm.com.
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sal of their tree structure, and represent each node

by (Symbol, Pre�x) where a symbol encodes the

node and a pre�x is the path from the root node.

We also convert XML queries to sequences. Most

structural XML queries can be performed through

(non-contiguous) subsequence matching. The only

exception occurs when a branch has multiple identi-

cal child nodes[73]. The bene�ts of modeling XML

queries through sequence matching is that struc-

tural queries can be processed as a whole instead

of being broken down to smaller query units (paths

or nodes of XML document trees). For example,

Fig.2 is a sequential representation of the purchase

record, where the underlining part matches query

\�nd purchase records of Boston sellers and NY

buyers".

The index structure is built in three steps: 1)

adding all structure-encoded sequences into a suf-

�x tree; 2) labeling each node in the suÆx tree by

hn; sizei through a preorder traversal where n is

the preorder number of the node, and size is the

number of its descendents; and 3) for each node

(Symbol, Pre�x) labeled hn; sizei, inserting it to

the D-Ancestor B+Tree using (Symbol, Pre�x) as

the key, and then into the S-Ancestor B+Tree us-

ing n as the key.

(P; �); (S; P ); (N; PS); (v1; PSN); (I; PS); (M;PSI);

(v2; PSIM); (N; PSI); (v3; PSIN); (I; PSI); (M;PSII),

(v4; PSIIM); (I; PS); (N;PSI); (v5; PSIN); (L; PS);

(v6; PSL); (B;P ); (L; PB); (v7; PBL); (N; PB); (v8; PBN)

Fig.2. Sequential representation of Fig.1.

Fig.3. The index structure.

Suppose node x, labeled with hn
x
; size

x
i, is one

of the nodes matching a query pre�x q1; : : : ; qi�1.

To match the next element q
i
in the query, we

consult the D-Ancestor B+Tree using q
i
as a key.

The D-Ancestor B+Tree returns the root of an

S-Ancestor B+Tree. We then issue a range query

n
x
< n 6 n

x
+size

x
on the S-Ancestor B+Tree to

�nd the descendants of x immediately. For each de-

scendant, we use the same process to match symbol

q
i+1, until we reach the last element of the query.

If node y is one of the nodes that matches

the last element in the query, then the document

IDs associated with y or any descendant node of

y are answers to the query. Based on y's label,

say hn
y
; size

y
i, we know y's descendants are in the

range of (n
y
; n

y
+ size

y
]. Thus, we perform a range

query [n
y
; n

y
+ size

y
] on the DocId B+Tree to re-

trieve all the document IDs for y and y's descen-

dants.

Representing XML documents by sequences

and performing XML queries by subsequence

matching create many research issues. We are cur-

rently improving the index structure to support 1)

dynamic index, as the labeling scheme described

above prevents the index structure from support-

ing dynamic insertion and deletion[73]; 2) better

selectivity, as di�erent (Symbol, Pre�x) pairs have

di�erent selectivity, hence their order in the query

sequence has an impact on the query performance;

3) approximate queries, where approximate tree

matching can be simulated by approximate sub-

sequence matching; and 4) top-K queries.

7 Clustering Biological Data �

Currently, bio-informatics has became one of the

research areas that receive most of attention. In

general, bio-informatics aims to solve complicated

�This section is contributed by Dr. Wei Wang, University of North Carolina at Chapel Hill, weiwang@cs.unc.edu.
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biological problems, e.g., gene regulatory network

induction, motif discovery, etc, with computation

algorithms. Many of the data is in the form of se-

quences, e.g., DNA sequences, protein sequences,

etc. It is widely believed that the functionality of

these biological sequences is highly dependent on

its structures. Automatically extracting/analyzing

the biological structures is an important step in

better understanding their functionality.

Clustering has been widely recognized as a pow-

erful data mining technique and has been studied

extensively during recent years. The major goal

of clustering is to create a partition of objects such

that the objects in each group have similar features.

The result can potentially reveal unknown object

groups/categories that may lead to a better under-

standing of the nature. In the context we address,

each object is a symbol sequence and all poten-

tial features of a sequence are encoded (implicitly)

in the speci�c symbol layout in the sequence. It

is interesting to notice that these structural char-

acteristics sometimes can uniquely determine the

functional properties of the sequence and often play

a decisive role in meaningful clustering of the se-

quence.

Signi�cant challenges exist on how to abstract

and represent distinctive structural characteristics

(of sequences of vastly di�erent lengths) and to

design an e�ective yet eÆcient similarity measure

based on them. One possible approach to tack-

ling this diÆculty is to use the edit distance
[74]

to measure the distance between each pair of se-

quences. This, however, is not an ideal solution

because, in addition to its ineÆciency in calcula-

tion, the edit distance only captures the optimal

global alignment between a pair of sequences, but

ignores many other local alignments that often rep-

resent important features shared by the pair of se-

quences. These overlooked features may be very

crucial to produce meaningful clusters.

Another approach that has been widely used in

document clustering is the keyword-based method.

Instead of being treated as a sequence, each text

document is regarded as a set of keywords or

phrases and is usually represented by a weighted

word vector. The similarity between two docu-

ments is measured based on keywords and phrases

shared by them and is often de�ned in some form

of normalized dot-product. A direct extension

of this method to generic symbol sequences is to

use short segments of �xed length q (generated

using a sliding window through each sequence)

as the set of \words" in the similarity measure.

This method is also referred to as the q-gram-

based method in the literature. While the q-gram-

based approach enables signi�cant segments (i.e.,

keywords/phrases/q-grams) to be identi�ed and

used to measure the similarity between sequences

regardless of their relative positions in di�erent se-

quences, valuable information may be lost as a re-

sult of ignoring sequential relationship (e.g., order-

ing, correlation, dependency, etc.) among these

segments, which impacts the quality of clustering.

In [75], a new generative model is devised for

measuring the similarity between a cluster and a

sequence. Statistics properties of sequence con-

struction are used to assess the similarity. Se-

quences belonging to one cluster may subsume to

the same probability distribution of symbols (con-

ditioning on the preceding segment of a certain

length), while di�erent clusters may follow di�er-

ent underlying probability distributions. This fea-

ture, typically referred to as short memory, which is

common to many applications, indicates that, for

a certain sequence, the empirical probability dis-

tribution of the next symbol given the preceding

segment can be accurately approximated by ob-

serving no more than the last L symbols in that

segment. Signi�cant features of such probability

distribution can be very powerful in distinguishing

di�erent clusters. By extracting and maintaining

signi�cant patterns characterizing (potential) se-

quence clusters, one can easily determine whether a

sequence should belong to a cluster by calculating

the likelihood of (re)producing the sequence under

the probability distribution that characterizes the

given cluster.

In many applications, neither the number of

clusters in the data set nor the percentage of out-

liers is known in advance. For instance, the bi-

ologists usually do not know the number of pro-

tein families for a set of newly mapped protein se-

quences. To solve this problem, a novel clustering

algorithm (CLUSEQ) that produces a set of pos-

sibly overlapped clusters is proposed and is able

to automatically adjust the number of clusters and

the boundary to separate clustered sequences from

outliers, bene�ting from a unique combination of

successive new cluster generation and cluster con-

solidation. CLUSEQ is an iterative algorithm. At

each iteration, it �rst random generates a set of new

seed clusters and adds them to the set of existing

clusters. Next, CLUSEQ reclusters all sequences

according to the set of clusters. Finally, the thresh-

olds are adjusted to �t the current clusters. The

algorithm terminates when no improvement on the
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clustering is made in the current iteration.

CLUSEQ provides a sequence level generative

model (by assuming the sequences belonging to a

cluster are generated by a conditional probability

distribution). However, many biological data are

present in more complicated forms. For instance,

the natural state of a protein is a folded 3D struc-

ture. This additional complexity poses great chal-

lenges to the clustering task and mandates further

investigation and development of powerful meth-

ods.

8 Mining Sequential Patterns �

With the emergence of various applications, e.g.,

web log traces, system log traces, bio-informatics,

etc., analyzing sequential data becomes one of the

urgent problems with great practical implications.

Sequential patterns is an important model for an-

alyzing the sequential data. In this section, we are

surveying several techniques used for mining vari-

ous sequential patterns.

A sequence may have several periodic patterns.

For instance, an event may occur at 6th, 12th, 18th,

: : : position in a sequence. Periodic pattern can

further our understanding of the behavior of the

underlining system that generates the sequence.

The periodic sequential patterns were introduced

in [76]. In this work, a sequence is partitioned into

non-overlap contiguous portions of segments. Each

segment has the same length, l. A pattern of pe-

riod l will occur once at each segment. Using this as

a pruning condition, the search space for periodic

patterns can be reduced.

However, in many situations, the pattern may

not exhibit the periodicity in the entire sequence.

The pattern may be only present during some por-

tion of the sequence. For example, in a system trace

log, the system behavior may change over time.

Two parameters, namely min rep and max dis, are

employed to qualify valid patterns and the event

subsequence containing it, where this subsequence

in turn can be viewed as a list of valid segments

of perfect repetitions interleaved by disturbance.

Each valid segment is required to be of at least

min rep contiguous repetitions of the pattern and

the length of each piece of disturbance is allowed

only up to max dis. The intuition behind this is

that a pattern needs to repeat itself at least a cer-

tain number of times to demonstrate its signi�cance

and periodicity. On the other hand, the distur-

bance between two valid segments has to be within

some reasonable bound. Otherwise, it would be

more appropriate to treat such disturbance as a

signal of \change of system behavior" instead of

random noise injected into some persistent behav-

ior. The parameter max dis acts as the boundary

to separate these two phenomena. This type of

pattern is called asynchronous pattern
[77].

To eÆciently mine the asynchronous patterns, a

dynamic programming algorithm is devised. First,

a distance-based pruning mechanism is proposed to

discover all possible periods and the set of events

that are likely to appear in some pattern of each

possible period. In order to �nd the longest valid

subsequence for all possible patterns, a level-wise

approach is utilized. The apriori property also

holds on patterns of the same period. That is, a

valid segment of a pattern is also a valid segment of

any pattern with fewer events speci�ed in the pat-

tern. For example, a valid segment for (d1; d2; �)

will also be one for (d1; �; �). Then, for each likely

period, all valid patterns with their longest sup-

porting subsequences can be mined via an iterative

process.

In many applications, users may be interested

in not only the frequently occurred patterns, but

also the surprising patterns (i.e., beyond prior ex-

pectation) as well. A large number of occurrences

of an \expected" frequent pattern sometimes may

not be as interesting as a few occurrences of an

\expected" rare pattern. The support model is not

ideal for these applications because, in the support

model, the occurrence of a pattern carries the same

weight (i.e., 1) towards its signi�cance, regardless

of its likelihood of occurrence. Intuitively, the as-

sessment of signi�cance of a pattern in a sequence

should take into account the expectation of pattern

occurrence (according to some prior knowledge). A

new model is proposed in [78] to characterize the

class of so-called surprising patterns (instead of fre-

quent patterns).

The measure of surprise should have the follow-

ing properties: (1) The surprise of a pattern occur-

rence is anti-monotonic with respect to the like-

lihood that the pattern may occur by chance (or

by prior knowledge); (2) The metric should have

some physical meaning, i.e., not arbitrary created.

It is fortunate that the information metric which

is widely studied and used in the communication

�eld can ful�ll both requirements. Intuitively, in-

formation is a measurement of how likely a pattern

�This section is contributed by Dr. Jiong Yang, University of Illinois at Urbana Champaign, jioyang@cs.uiuc.edu.
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will occur or the amount of \surprise" when a pat-

tern actually occurs. If a pattern is expected to

occur frequently based on some prior knowledge or

by chance, then an occurrence of that pattern car-

ries less information. Thus, we use information to

measure the surprise of an occurrence of a pattern.

The information gain metric is introduced to rep-

resent the accumulated information of a pattern in

an event sequence and is used to assess the degree

of surprise of the pattern.

Many problems in sequential pattern mining

still remain as open problems. When the amount

of data is large, we only can a�ord to scan data

once, e.g., the stream environment. In this type of

application, it is not only important to discover the

new sequential patterns, but also interesting to dis-

cover how they evolve over the time. For instance,

at the beginning of a stream abc is a frequent pat-

tern, but later it becomes abd. From this change,

we may conjecture that some user/system behavior

has changed.

9 Derived Data Maintenance �

The use of derived data to facilitate access to

base data is a recurring technique in many areas

of computer science. Used in hardware and soft-

ware caches, derived data speed up accesses to

the base data. Used in replicated systems, it im-

proves reliability and performance of applications

in a wide-area network. Used as index structures,

it provides fast alternative access paths to the base

data. Used as materialized views[79] in databases

or data warehouses[80], it improves the performance

of complex queries over the base data. Used as

synopses[81], it provides fast, approximate answer

to queries or statistics necessary for cost-based

query optimization. Derived data vary in complex-

ity: It can be a simple copy of the base data, in the

cases of caching and replication, or it can be the

result of complex structural or content transforma-

tion of the base data, in the cases of indexes and

materialized views. Derived data also vary in pre-

cision. Caches and materialized views are usually

precise, while synopses are approximate.

Regardless of the form of the derived data, how-

ever, a fundamental problem is eÆcient mainte-

nance of the derived data. If base data change,

we need to keep the derived data consistent with

the new state of the base data. Derived data

maintenance is becoming an increasingly impor-

tant and diÆcult problem. First, more and more

data are being generated at high speeds (e.g., sen-

sor networks, network monitors, Web clickstreams,

high-volume transactions from multiple sources),

making it extremely expensive to compute queries

from scratch. A solution is to store the query re-

sults as derived data, and incrementally maintain

them as new data arrive, essentially creating a one-

pass algorithm. Second, computing is becoming in-

creasingly pervasive, and there are more and more

clients accessing dynamically changing data simul-

taneously over a wide-area network. An approach

is to place replicas of data at various locations in

the network based on client access patterns. Main-

tenance of derived data in this case must scale up

not only to the size, but also to the number of repli-

cas. Third, as computing resources keep getting

cheaper, human resources become more expensive.

Traditionally, systems often rely on hand-tuning of

derived data to achieve optimal performance, e.g.,

index tuning in databases. Nowadays, excessive

hand-tuning is no longer an option. This require-

ment calls for more self-tuning approaches to de-

rived data management.

At the �rst glance, derived data maintenance

has been extensively studied and well understood

in speci�c contexts, e.g., index updates and ma-

terialized view maintenance in databases, cache

coherence and replication protocols in distributed

systems. Although they share the same underly-

ing theme, these techniques have been developed

largely independently by di�erent research commu-

nities. However, an increasing number of newer

and more complex applications call for a creative

combination of the traditionally separate ideas. A

good example is semantic caching
[82], which has

received tremendous interests recently for its ap-

plication in caching dynamic contents[83�85]. Se-

mantic caching incorporates the idea of material-

ized views into a cache. Traditionally, caching is

done at the object level, and hence only supports

access to objects by identi�ers. If the cache receives

a declarative query, it is generally impossible to tell

whether the cached data provide a complete answer

to the query; therefore, base data must be queried.

Semantic caching supports declarative queries by

maintaining the cache as a pool of materialized

views. From the semantic descriptions of mate-

rialized views, it is possible to determine whether

the query answers are complete, so base data are

only queried when necessary. This feature makes

�This section is contributed by Dr. Jun Yang, Duke University, junyang@cs.duke.edu.
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semantic caching a perfect solution for those ap-

plications that require declarative accesses to the

data.

With more thinking of \outside the box," we

can discover more techniques such as semantic

caching that combine multiple 
avors of derived

data to provide better solutions to the problems.

For example, a lot of work in data warehousing fo-

cuses on storing auxiliary data to make warehouse

data self-maintainable[86�88], without ever access-

ing base data. In many cases, e.g., materialized

top-k and join views, we must store huge amounts

of auxiliary data to guarantee self-maintenance.

Borrowing the caching idea, we could remove the

rigid requirement of self-maintenance, and manage

auxiliary data as a semantic cache whose size is tun-

able by the application. The warehouse data are

no longer guaranteed to be self-maintainable since

the cache may occasionally \miss," i.e., the auxil-

iary data required for maintenance are not found

in the cache. However, with a good cache manage-

ment policy, we may be able to achieve a low miss

rate that lowers the expected overall cost of main-

tenance. We have obtained some promising results

for top-k view maintenance[89], and the work is un-

der way to generalize this technique to other types

of views including joins.

As another exmaple, we can apply indexing

techniques to materialized view maintenance. Tra-

ditionally, materialized views are simply stored as

database tables (possibly with a B+tree primary

index). However, updating such views can be very

expensive, as clearly illustrated by our earlier work

on maintaining materialized temporal aggregate

views[89]. For a temporal aggregate view, even a

slight modi�cation of the base table (e.g., on a sin-

gle row) may a�ect a large number of rows in the

view, making it prohibitively expensive to main-

tain incrementally. The solution is to materialize

the view, not as a regular table or B+tree, but in-

stead as a novel index structure called the SB-tree,

which supports eÆcient range updates to the ag-

gregate view (in time logarithmic in the size of the

view).

For yet another example, consider applying

view maintenance techniques to data replication.

Instead of propagating all updates immediately to

each replica, we propagate them only when relevant

views at the replica are a�ected. We could also

throw in approximation techniques borrowed from

synopses to improve performance further. Repli-

cas can be approximations of the base data within

the error bounds controlled by applications. Recent

work on TRAPP[91;92] represents a step toward this

general direction.

10 Aggregation Query Processing �

In this section, we summarize some recent work

on selection-based aggregation. The selection query

has been one of the most widely used queries in

databases. For instance, �nd the gas stations that

are within a given spatial range. Such queries se-

lect a subset of records from a large collection of

data based on a given selection condition. In con-

trast, the aggregation query aims not at �nding

the actual records themselves, but at some aggre-

gate value of these records. For instance, �nd the

total number of gas stations that are within a given

range. Besides this COUNT query, some other in-

teresting queries are SUM, AVERAGE, MIN, and

MAX.

A straight-forward approach to solve the sele-

ction-based aggregation problem is: �rst �nd all

the records that satisfy the selection condition and

then perform the aggregation on-the-
y. The prob-

lem with this approach is that the query perfor-

mance is at least linear to the size of the selection

result. If many records satisfy the selection condi-

tion, the performance is not satisfactory. A better

approach is to build some specialized index which

can help compute the aggregation result without

scanning through the records. Below we summa-

rize some major results of the latter approach.

The �rst problem we address is called Range-

Temporal Aggregation (RTA): \given a set of tem-

poral records, each having a key, a time interval

and a value, compute the total value of records

whose keys are in a given range and whose inter-

vals intersect with a given time interval". Previ-

ous work on temporal aggregation (the most eÆ-

cient one being[93]) aggregates on the whole key

space. To solve the RTA problem using the pre-

vious approaches, we need to maintain a separate

index for each possible key range, which is pro-

hibitively expensive. [94] proposes a new index

structure calledMulti-version SB-tree (MVSB-tree)

to solve the RTA problem in logarithmic time.

Another problem is the Hierarchical Temporal

Aggregation (HTA). Here we are interested in com-

puting temporal aggregates (both with and without

the key-range predicate) with �xed storage space.

�This section is contributed by Dr. Donghui Zhang, Northeastern University, donghui@ccs.neu.edu.
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Since historical data accumulates over time, while

with �xed storage space we cannot keep all of them,

we have to live with storing partial information.

One approach is to keep just the most recent infor-

mation. However, it leads to lose of the ability to

answer queries for the past. In [95], we propose to

maintain the temporal aggregates under multiple

granularities, with more recent information being

aggregated at �ner granularities.

When we consider the aggregation over spatial

objects, a related problem is the Box-Sum Aggre-

gation, which computes the total value of spatial

objects whose regions intersect with a given region.

One approach is to extend the R-tree index (state-

of-art spatial index used for the selection query)

by maintaining summary information in internal

nodes of the tree. This approach was proposed by

[96, 97] and is called the aggregation R-tree (aR-

tree). However, the worst-case performance is still

linear to the number of records. In [98] we proposed

a new index structure called the BA-tree to this

problem. The query performance is pretty much

logarithmic to the number of records, which is a

big improvement.

A variation of the previous problem is the Func-

tional Box-Sum Aggregation: \given a set of ob-

jects, each having a box and a value function, and

a query box q, compute the total value of all ob-

jects that intersect q, where the value contributed

by an object r is the integral of the value func-

tion of r over the intersection between r and q".

Compared with the original box-sum problem, in

some cases the new problem more accurately cap-

tures the application needs. This is because an ob-

ject contributes to the query result proportional to

how large it intersects the query rectangle. In [98],

we proposed techniques to solve the functional box-

sum problem. Basically, we managed to reduce this

problem to the original box-sum problem where no

function was involved.

In summary, in this section we have summarized

some major research results of the selection-based

aggregation problem as reported in [94, 95, 98]. In

all cases, the proposed specialized index structures

have much better query performance than the ex-

isting non-specialized indices. An interesting future

direction is how to extend the �ndings to the spatio

temporal aggregation problems. A simple case is to

aggregate moving points. Each object is a weighted

moving point whose location is a function of time.

An aggregation query asks to compute the total

weight of points which will move into a given area

during a given time interval. A more complicated

case is to aggregate moving objects with non-zero

extents.
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