Executing SQL over Encrypted Data in the
Database-Service-Provider Model

Hakan Hacigimus®! Bala lyer?

Chen Lit Sharad Mehrotra®

!Department of Information and Computer Science, University of California, Irvine, CA 92697, USA

hakanh@acm.org, {chenli,sharad}@ics.uci.edu
2|BM Silicon Valley Lab., San Jose, CA 95141, USA, balaiyer@us.ibm.com

ABSTRACT

Rapid advances in networking and Internet technologies have
fueled the emergence of the “software as a service” model for
enterprise computing. Successful examples of commercially
viable software services include rent-a-spreadsheet, electronic
mail services, general storage services, disaster protection
services. “Database as a Service” model provides users power
to create, store, modify, and retrieve data from anywhere in
the world, as long as they have access to the Internet. It
introduces several challenges, an important issue being data
privacy. It is in this context that we specifically address the
issue of data privacy.

There are two main privacy issues. First, the owner of
the data needs to be assured that the data stored on the
service-provider site is protected against data thefts from
outsiders. Second, data needs to be protected even from
the service providers, if the providers themselves cannot be
trusted. In this paper, we focus on the second challenge.
Specifically, we explore techniques to execute SQL queries
over encrypted data. Our strategy is to process as much of
the query as possible at the service providers’ site, without
having to decrypt the data. Decryption and the remainder
of the query processing are performed at the client site. The
paper explores an algebraic framework to split the query
to minimize the computation at the client site. Results of
experiments validating our approach are also presented.

1. INTRODUCTION

The Internet has made it possible for all computers to
be connected to one another. The influence of transaction-
processing systems and the Internet ushered in the era of
e-business. The Internet has also had a profound impact
on the software industry. It has facilitated an opportunity

$Supported in part by an IBM Ph.D. Fellowship. This work
was performed while the author was at IBM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGMOD ’2002 June 4-6, Madison, Wisconsin, USA

Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

to provide software usage over the Internet, and has led
to a new category of businesses called “application service
providers” or ASPs. ASPs provide worldwide customers the
privilege to use software over the Internet. ASPs are staffed
by experts in the art of putting together software solutions,
using a variety of software products, for familiar business
services such as payroll, enterprise resource planning, and
customer-relationship marketing. ASPs offer their services
over the Internet to small and large worldwide organizations.
Since fixed costs are amortized over a large number of users,
there is the potential to reduce the service cost even after
possibly increased telecommunications overhead.

It is possible to provide storage and file access as services.
The natural question is the feasibility of providing the next
value-add layer in data management. From the business per-
spective, database as a service inherits all the advantages of
the ASP model, indeed even more, given that a large num-
ber of organizations have their own DBMSs. The model
allows organizations to leverage hardware and software so-
lutions provided by the service providers, without having
to develop them on their own. Perhaps more importantly,
it provides a way for organizations to share the expertise
of database professionals, thereby cutting the people cost
of managing a complex information infrastructure, which is
important both for industrial and academic organizations
[15].

From the technological angle, the model poses many sig-
nificant challenges foremost of which is the issue of data pri-
vacy and security. In the database-service-provider model,
user data resides on the premises of the database-service
provider. Most corporations view their data as a very valu-
able asset. The service provider would need to provide suffi-
cient security measures to guard data privacy. At least two
data-privacy challenges arise. The first challenge is: how
do service providers protect themselves from theft of cus-
tomer data from hackers that break into their site and scan
disks? Encryption of stored data is the straightforward so-
lution, but not without challenges. Trade-offs need to be
made regarding encryption techniques and the data granu-
larity for encryption. This first challenge was examined by
Hacigiimiis et al. [6]. It was found that hardware encryp-
tion is superior to software encryption. Encrypting data in
bulk reduced the per-byte encryption cost significantly, ex-
posing to startup overheads. Encrypting by row was found
preferable to encrypting by field for queries from the TPC-H
benchmark [14].

The second challenge is that of “total” data privacy, which
is more complex since it includes protection from the database
provider. The requirement is that encrypted data may not
be decrypted at the provider site. A straightforward ap-
proach is to transmit the requisite encrypted tables from the
server (at the provider site) to the client, decrypt the tables,
and execute the query at the client. But this approach miti-
gates almost every advantage of the service-provider model,
since now primary data processing has to occur on client
machines. It will become clear later, for a large number of
queries such as selections, joins, and unions, much of the
data processing can be done at the server, and the answers
can be computed with little effort by the client.

Our proposed system, whose basic architecture and con-
trol flow are shown in Figure 1, is comprised of three fun-
damental entities. A wuser poses the query to the client.
A server is hosted by the service provider who stores the
encrypted database. The encrypted database is augmented
with additional information (which we call the index) allows
certain amount of query processing to occur at the server
without jeopardizing data privacy. A client stores the data
at the server. Client' also maintains metadata for trans-
lating user queries to the appropriate representation on the
server, and performs post-processing on server query results.
Based on the auxiliary information stored, we develop tech-
niques to split an original query over unencrypted relations
into (1) a corresponding query over encrypted relations to
run on the server, and (2) a client query for post-processing
results of the server query. We achieve this goal by de-
veloping an algebraic framework for query rewriting over
encrypted representation. Finally, we explore the feasibility
and effectiveness of our approach by testing the performance
of our strategy over numerous queries. Our results show that
privacy from service providers can be achieved with reason-
able overhead establishing the feasibility of the model.

There is previous work in different research areas some
of which are related to our work. Search on encrypted data
[2], where only keyword search is supported, and doing arith-
metic over encrypted data [10] have been studied in the lit-
erature. However functionalities provided by those are very
limited and insufficient in executing complex SQL queries
over encrypted data.

The rest of the paper is organized as follows. Section 2
presents how data is encrypted and stored on the server.
Section 3 discusses how a condition in a query is translated
to a condition on the encrypted data at the server. In Sec-
tion 4 we describe how individual relational operators such
as selection, join, set difference, and group by are imple-
mented. Section 5 shows how to rewrite a query by splitting
it into a server query and a client query, such that the com-
putation at the client is reduced. Section 6 gives our exper-
imental results on queries from the TPC-H benchmark. We
conclude the paper in Section 7.

2. RELATION ENCRYPTION AND STOR-
AGE MODEL

Before we discuss techniques for query processing over en-
crypted data, let us first discuss how the encrypted data is
stored at the server.

For each relation R(A1, As, ..., A,), we store on the server

1Often the client and the user might be the same entity.

5CI|ent Site Query
Executor

g’

3|

v

[

14

T

=

‘6‘
. < : .
. Meta o . :
. Data Original Quel;yj . Encrypted |
: : : Client |:
~D Database J :

Web Browser
(USER)

Figure 1: The service-provider architecture.

an encrypted relation:

RS(etuple, AT AS . Ai)

where the attribute etuple (We will explain how etuple is
defined in Section 2.4.) stores an encrypted string that cor-
responds to a tuple in relation R.2 Each attribute A cor-
responds to the index for the attribute A; that will be used
for query processing at the server. For example, consider a
relation emp below that stores information about employees.

[eid | ename [salary [addr | did |
23 Tom 70K Maple 40
860 | Mary 60K Main 80
320 | John 50K River 50
875 | Jerry 55K Hopewell | 110

The emp table is mapped to a corresponding table at the
server:

emps(etuple, eid®, ename”, salarys, addr®, dids)

It is only necessary to create an index for attributes involve
in search and join predicates. In the above example, if we
knew that there would be no query that involves attribute
addr in either a selection or a join, then the index on this
attribute need not be created. Without loss of generality,
we assume that an index is created over each attribute of
the relation.

2.1 Partition Functions

We explain what is stored in attribute A7 of RS for each
attribute A; of R. For this purpose, we will need to develop
some notations. We first map the domain of values (D;)
of attribute R.A; into partitions {p1,...,pr}, such that (1)
these partitions taken together cover the whole domain; and
(2) any two partitions do not overlap. Formally, we define
a function partition as follows:

partition(R.A;) = {pl,p2,...,pr}

As an example, consider the attribute eid of the emp table
above. Suppose the values of domain of this attribute lie in
the range [0, 1000]. Assume that the whole range is divided

2Note that we could alternatively have chosen to encrypt at
the attribute level instead of the row level. Each alternative
has its own pros and cons. We point the interested readers to
[6] for a detailed description. The rest of this paper assumes
encryption is done at the row level.

into 5 partitions®: [0,200], (200, 400], (400, 600], (600, 800],
and (800, 1000]. That is:

partition(emp.eid) =
{[0, 200], (200, 400], (400, 600], (600, 800], (800, 1000]}

Different attributes may be partitioned using different par-
tition functions. It should be clear that the partition of at-
tribute A; corresponds to a splitting of its domain into a
set of buckets. Any histogram-construction technique, such
as MaxDiff, equi-width, or equi-depth [9], could be used
to create partitioning of attributes. In the examples used
to explain our strategy, for simplicity, we will assume the
equi-width partitioning. Extension of our strategy to other
partitioning methods is relatively straightforward, though it
will require changes to some of the notations developed. For
example, unlike equi-width case where a value maps to only
a single histogram bin, in equi-depth it may map to multi-
ple buckets. Our notation assumes that each value maps to
a single bucket. In the experimental section, besides using
the equi-width we will also evaluate our strategy under the
equi-depth partitioning,.

In the above example, an equi-width histogram was illus-
trated. Note that when the domain of an attribute corre-
sponds to a field over which ordering is well defined (e.g.,
the eid attribute), we will assume that a partition p; is a
continuous range. We use p;.low and p;.high to denote the
lower and upper boundary of the partition, respectively.

2.2 ldentification Functions

Furthermore, we define an identification function called
ident to assign an identifier identr 4;(p;) to each partition
p; of attribute A;. Figure 2 shows the identifiers assigned
to the 5 partitions of the attribute emp.eid. For instance,
tdentemp.eid ([0, 200]) = 2, and identemp.ciq((800,1000]) = 4.

2 7 5 1 4
| | | ° | | |

0 200 400 600 800 1000

Figure 2: Partition and identification functions of
emp.eid.

The ident function value for a partition is unique, that is,
identr.a;(pj) # tdentr.a;(p1), if j # [. For this purpose,
a collision-free hash function that utilizes properties of the
partition may be used as an ident function. For example, in
the case where a partition corresponds to a numeric range,
the hash function may use the start and/or end values of a
range.

2.3 Mapping Functions

Given the above partition and identification functions, we
define a mapping function Mapr.4; that maps a value v in
the domain of attribute A; to the identifier of the partition
to which v belongs: Mapr.a;(v) = identr.a;(p;), where p;
is the partition that contains v.

In the example above, the following table shows some
values of the mapping function for attribute emp.eid. For
instance, Mapemp.cid(23) = 2, Mapemp.cia(860) = 4, and
Mapemp.cia(875) = 4.

3Note that it is not necessary to create all of the partitions
at the beginning. They can be created as the values are
inserted into the database.

eid value v 23 | 860 | 320 | 875
Mapemp.eid (’U) 2 4 7 4

We further classify two types of mapping functions:

1. Order preserving: A mapping function Mapr.4; is
called order preserving if for any two values v; and v;
in the domain of Aj, if v; < v;, then Mapg.4;(vi) <
Mapr.a; (v5).

2. Random: A mapping function is called random if it is
not order preserving.

A random mapping function provides superior privacy
compared to its corresponding order-preserving mapping.
However, as we will see later, whether a mapping function
is order preserving or not affects how we translate a query
into queries on the client and server. Query translation is
simplified using a order-preserving mapping function. We
will develop translation strategies for both types of map-
ping functions.

We further define three more mapping functions that will
help us in translating queries over the encrypted represen-
tation. While the first function defined holds over any at-
tribute, the latter two hold for the attributes whose domain
values exhibit total order. Application of the mapping func-
tion to a value v, greater than the maximum value in the do-
main, Umaz, returns Mapr.a; (Umaz)- Similarly, application
of the mapping function to a value v, less than the minimum
value in the domain, vmim, returns Mapr.a; (Vmin)-

Let S be a subset of values in the domain of attribute A;,
and v be a value in the domain. We define the following
mapping functions on the partitions associated with A;:

Mapr.a;(S) = {identr.a; (p;)|p; N S # 0}
Mapsy a,(v) = {identr.a, (p;)|p;.low > v}

Map a,(v) = {identr.a, (p;)|p;-high < v}

Essentially, Mapr.4,(S) is the set of identifiers of parti-
tions whose ranges may overlap with the values in S. The
result of Map3, 4, (v) is the set of identifiers corresponding to
partitions whose ranges may contain a value not less than v.
Likewise, Mapy, 4, (v) is the set of identifiers corresponding
to partitions whose ranges may contain a value not greater
than v.

2.4 Storing Encrypted Data

We now have enough notations to specify how to store
the encrypted relation RS on the server. For each tuple
t = {a1,as,...,a,) in R, the relation R® stores a tuple:

(encrypt({a1, as,...,an}), Mapr.a,(a1),

MapR_A2 (a2), ey MapR.An (an))
where encrypt is the function used to encrypt a tuple of
the relation. For instance, the following is the encrypted
relation emp® stored on the server:

| etuple | eid” | ename® | salarys | addr® | did® |
1100110011110010. .. 2 19 81 18 2
1000000000011101. .. 4 31 59 41 4
1111101000010001. .. 7 7 7 22 2
1010101010111110... 4 71 49 22 4

The first column etuple contains the string corresponding
to the encrypted tuples in emp. For instance, the first tu-
ple is encrypted to “1100110011110010. ..” that is equal to

encrypt(23, Tom, 70K, Maple,40). The second is encrypted
to “1000000000011101. ..” equal to encrypt(860, Mary, 60K,
Main, 80). We treat the encryption function as a black box
in our discussion. Any block cipher technique such as AES
[1], RSA [11], Blowfish [12], DES [3] etc., can be used to
encrypt the tuples.

The second column corresponds to the index on the em-
ployee ids. For example, value for attribute eid in the first
tuple is 23, and its corresponding partition is [0, 200]. Since
this partition is identified to 2, we store the value “2” as
the identifier of the eid for this tuple. Similarly, we store
the identifier “4” for the second employee id 860. In the
table above, we use different mapping functions for different
attributes. The mapping functions for the ename, salary,
addr, and did attributes are not shown, but they are as-
sumed to generate the identifiers listed in the table.

In general, we use the notation “E” (“Encrypt”) to map
a relation R to its encrypted representation. That is, given
relation R(A1, As, ..., Ay), relation E(R) is RS (etuple, A7,
A5 ..., AS). In the above example, E(emp) is the table
emp®.

2.5 Decryption Functions

Given the operator E that maps a relation to its en-
crypted representation, we define its inverse operator D that
maps the encrypted representation to its corresponding un-
encrypted representation. That is, D(R®) = R. In the ex-
ample above, D(emp®) = emp. The D operator may also be
applied on query expressions. A query expression consists
of multiple tables related by arbitrary relational operators
(e.g., joins, selections, etc.)

As it will be clear later, the general schema of an en-
crypted relation or the result of relational operators amongst
encrypted relations, RS is:

(R? .etuple, RS .etuple, . . .,
R7.A7,R{.A3,... R5.A7 R3.A5,..)

When the decryption operator D is applied to R}, it strips
off the index values (Rf.A7, RY.AS, ... R5.A7,R5.A5,...)
and decrypts (Ri9 .etuple, RS .etuple, . . .) to their unencrypted
attribute values.

As an example, assume that another table defined as mgr
(mid, did) was also stored in the database. The corre-
sponding encrypted representation F(mgr) will be a table
mgr® (etuple, mid®, did). Suppose we were to compute
a join between tables emp® and mgr® on their did® at-
tributes. The resulting relation temp® will contain the at-
tributes (emps.etuple, eid® , ename®, salary®, addr® , emp®.
did®, mgr® .etuple, mid®, mgrs.dids). If we are to de-
crypt the temp® relation using the D operator to compute
D(temp®), the corresponding table will contain the attributes

(eid, ename, salary,addr, emp.did, mid, mgr.did)
That is, D(temp®) will decrypt all of the encrypted columns

in temp® and drop the auxiliary columns corresponding to
the indices.

3. MAPPING CONDITIONS Mapcona

In this section we study how to translate specific query
conditions in operations (such as selections and joins) to
corresponding conditions over the server-side representation.
This translation function is called Mapeong. Once we know

how conditions are translated, we will be ready to discuss
how relational operators are translated over the server-side
implementation, and how query trees are translated.

For each relation, the server side stores the encrypted tu-
ples, along with the attribute indices determined by their
mapping functions. Meanwhile, the client stores the meta
data about the specific indices, such as the information about
the partitioning of attributes, the mapping functions, etc.
The client utilizes this information to translate a given query
Q to its server-side representation Q°, which is then exe-
cuted by the server. We consider query conditions charac-
terized by the following grammar rules:

e Condition « Attribute op Value;

e Condition « Attribute op Attribute;

¢ Condition + (Condition V Condition) | (Condition A Con-
dition) | (- Condition);.

Allowed operations for op include {=, <, >, <, >}.

In the discussion below we will use the following tables to

illustrate the translation.
emp(eid, ename, salary, addr, did, pid)
mgr (mid, did, mname)
proj(pid, pname, did, budget)

Attribute = Value: Such a condition arises in selection
operations. The mapping is defined as follows:

Mapcond(Ai = U) = Af = MapAi (U)

As defined in Section 2.3, function Mapa; maps v to the
identifier of A;’s partition that contains with value v. For
instance, consider the emp table above, we have:

Mapeona(eid = 860) = eid”® = 4

since eid = 860 is mapped to 4 by the mapping function of
this attribute.

Attribute < Value: Such a condition arises in selection
operations. The attribute must have a well defined order-
ing over which the “<” operator is defined. Depending upon
whether or not the mapping function Mapa; of the attribute
is order-preserving or random, different translations are pos-
sible.*

o Order preserving: In this case, the translation is straight-
forward:

Mapcond(A'i < U) = Als S MapAi (U)

e Random: The translation is a little complex. We check
if the attribute value representation A$ lies in any of the
partitions that may contain a value v' where v < v. For-
mally, the translation is:

Mapeona(Ai < v) = A € Mapii (v)
For instance, the following condition is translated:
Mapeona(eid < 280) = eid® € {2, 7}

since all employee ids less than 280 have two partitions
[0,200] and (200, 400], whose identifiers are {2, 7}.

“Note that we can always use the mapping defined in
the random case to translate conditions involving order-
preserving attributes. We differentiate between the two
cases since the translation (as well as the query processing)
is easier for the former case.

Attribute > Value: This condition is symmetric with the
previous one. As before we differentiate whether or not the
mapping function is order preserving. The translation is as
follows:

o Order preserving: Mapeond(Ai > v) = A7 > Mapa, (v);

e Random: Mapeona(Ai >v) = A] € Map; (v).

For instance, the following condition is translated:

Mapeona(eid > 650) = eid® € {1,4}

since all employee ids greater than 650 are mapped to iden-
tifiers: {1,4}.

Attributel = Attribute2: Such a condition might arise
in a join. The two attributes can be from two different ta-
bles, or from two instances of the same table. The condition
can also arise in a selection, and the two attributes can be
from the same table. The following is the translation:

Mapeond(Ai = Aj) =
V(A7 =identa, (pe) AN A = identa; (p1))

©

where ¢ is pi, € partition(A;),pi € partition(A;), pr NP1 #
§. That is, we consider all possible pairs of partitions of
A; and A; that overlap. For each pair (pg,p;), we have a
condition on the identifiers of these two partitions: A =
identa; (pr) A A] = identa;(p;). Finally we take the dis-
junction of these conditions. The intuition is that each pair
of partitions may provide some values of A; and A; that can
satisfy the condition A; = A;.

| Partitions | Identemp.diq | Partitions [Identgr.did

[0,100] 2 [0,200] 9
(100,200 1 (200,400] 3
(200,300 3
(300,400 1

For instance, the table above shows the partition and iden-
tification functions of two attributes emp.did and mgr.did.
Then condition emp.did = mgr.did is translated to the fol-
lowing condition C;:

Ch: (empS.did® = 2 Amgr®.did° = 9)
vV (emp®.did® =4 AmgrS.did® = 9)
vV (empS.did® = 3 AmgrS.did® = 8)
vV (emp®.did® =1 Amgr®.did® = 8).

Attributel < Attribute2: Again such a condition might
arise in either a join or in a selection. Let us assume that
the condition is A; < A;. Just as in translating conditions
with inequality operator seen previously, the mapping of
the condition depends upon whether or not the mapping
functions of the attributes A; and A; are order preserving
or random. We specify the translation for each in turn.

e Mapa, is order preserving: In such a case we list out all
the partitions of A; and identify all the partitions of A; that
satisfy the ordering condition. Specifically, the mapping is
as follows:

Mapcond(Ai < A]) =
(A7 =identa,;(p) N A > Mapa, (p.low))
pEpartition(A;)
e Mapa, is order preserving: If A; is order preserving, we
can do the translation in a symmetric way with the roles of

A; and A; reversed. The mapping will be as follows:

Mapwnd(A¢ < Aj) =
V (A7 =identa,;(p) A A7 < Mapa, (p.high))
pEpartition(Aj)

e Both Maps, and Mapa; are order preserving: In this
case we have a choice of using either of the above two map-
pings. Our choice is based on the specific partitioning of A;
and A;. We can do the translation as follows:

Mapc,md(A¢ < Aj) =
V(Mapa, (pr.low) < Mapa,(pi.high))
]

where @ is pi € partition(A;), pi € partition(A;).

e Both Mapa,; and Mapa; are random: We have the fol-
lowing translation:

Mapwnd(Ai < Aj) =
V(A7 = identa, (px) A Aj = identa; (p))

©
where ¢ is py € partition(A;), pi € partition(A;), pi.-high >
pr-low. That is, we consider all pairs of partitions of A; and
Aj; that could satisfy the condition. For each pair, we have a
condition corresponding to the pair of their identifiers. We
take the disjunction of these conditions.

For example, condition C5 : emp.did < mgr.did is trans-
lated to:

Cs: (emp®.did® = 2 A mgrS.did® = 9)
(emp®.did® = 2 A mgrS.did® = 8)
(emp®.did® = 4 A mgrS.did® = 9)
(emp®.did® = 4 A mgrS.did® = 8)
(emp®.did® = 3 A mgr®.did° = 8)
emp”.did> = 1 A mgr”.did> = 8).
S.did® =1 S.did® =8

<< <K< <<

Condition emp®.did® = 4 A mgrS.did® = 9 is included,
since partition (100, 200] for attribute emp.did and partition
(200, 400] for attribute mgr.did can provide pairs of values
that satisfy emp.did < mgr.did.

For condition Attributel > Attribute2, the Mapcond map-
ping is same as the mapping of Attribute2 < Attributel, as
described above with the roles of the attributes reversed.

Conditionl V Condition2, Conditionl A Condition2:
The translation of the two composite conditions is given as
follows:

Mapcond(Conditionl V Condition2) =
Mapconda(Conditionl) V Mapcond(Condition2)

Mapeond(Conditionl A Condition2) =
Mapeond(Conditionl) A Mapeond(Condition2)

Translation of Mapcond(—~Condition) treatment is more in-
volved since negated queries are not monotonic and their
correct translation requires more notation. This discussion
can be found in [5].

Operator < follows the same mapping as < and operator
> follows the same mapping as >. Conditions that involve
more than one attribute and operator are not discussed.

4. IMPLEMENTING RELATIONAL OPER-
ATORSOVER ENCRYPTED RELATIONS

In this section we describe how individual relational oper-
ators (such as selections, joins, set difference, and grouping
operators) can be implemented in the proposed database ar-
chitecture. Our strategy is to partition the computation of
the operators across the client and the server. Specifically,
we will attempt to compute a superset of answers gener-
ated by the operator using the attribute indices stored at
the server. These answers will then be filtered at the client
after decryption to generate the true results. We will at-
tempt to minimize the work done at the client as much as
possible. Furthermore, we will try to ensure as much as
possible that operators executed on the client side are such
that they can be applied to the tuples arriving over the an-
swer stream as soon as they arrive (without a need to store
them). The purpose is to guarantee that the client-side op-
erators can be efficiently implemented. The implementation
of operators developed in this section will be used in the
following section, where we develop an algebraic framework
for rewriting SQL queries for the purpose of splitting the
query computation across the client and the server.

For explaining the implementation of operators, we will
consider the following two simplified relations of those in
the previous section:

emp(eid, did), mgr(mid, did)

In the previous sections we have given the Map functions of
emp.etd, emp.did, and mgr.did. For simplicity, we assume
that the Map function of mgr.mid is the same as that of
emp.etd, as shown in Figure 3. In addition, we use R and T
to denote two relations, and use the operator notations in

[4].

emp.eid emp.did
L2 7, 5,1, 4 L2, 4,3, 1
0 200 400 600 800 1000 0 100 200 300 400
mgr.mid mgr.did
L2 7T, 5,1, 4 1 1 8]
0 200 400 600 800 1000 0 200 400

Figure 3: Partition and identification functions for
four attributes.

The Selection Operator (0): Consider a selection oper-
ation 0¢(R) on a relation R, where C is a condition speci-
fied on one or more of the attributes A1, As,..., A, of R. A
straightforward implementation of such an operator in our
environment is to transmit the relation R® from the server
to the client. Then the client decrypts the result using the
D operator, and implements the selection. This strategy,
however, pushes the entire work of implementing the selec-
tion to the client. In addition, the entire encrypted relation
needs to be transmitted from the server to the client. An
alternative mechanism is to partially compute the selection
operator at the server using the indices associated with the
attributes in C, and push the results to the client. The client
decrypts the results and filters out tuples that do not satisfy
C. Specifically, the operator can be rewritten as follows:

oc(R) = oc (D(forapmd(m (RS)))

In the above notation, we adorn the O operator that ex-
ecutes at the server with a superscript “S” to highlight
the fact that the select operator executes at the server.
All non-adorned operators are assumed to execute at the
client. The decryption operator D will only keep the at-
tribute etuple of R®, and drop all the other A attributes.
We explain the above implementation using an example
O cid<395ndid=140 (emp). Based on the definition of Mapcond(C)
discussed in the previous section, the above selection opera-

tion will be translated into o¢ (D(ag, (emps))), where the

condition C’ on the server is:
C' = Mapcona(C) = (eid® € [2,7] Adid® = 4)

The Join Operator (X): Counsider a join operation R %4 S.
The join condition C could be either equality conditions (in
which case the join corresponds to an equijoin), or could
be more general conditions (resulting in theta-joins). The
above join operation can be implemented as follows:

X b
R ¢ T:UC(D(RS Mapcona(C) TS))

As before, the S adornment on the join operator empha-
sizes the fact that the join is to be executed at the server.
For instance, join operation emp cmp.did=mgr.dida Mgr is
translated to:

UC(D(empS D(qy;s mgrs))

where the condition C’ on the server is condition C; defined
in Section 3.

The Grouping and Aggregation Operator (v): A
grouping and aggregation operation is denoted by vz (R),
where L = Lg U La. Lg refers to a list of attributes on
which the grouping is performed, and L4 corresponds to
a set of aggregation operations. As an example, the op-
eration vc,counT(B)—F(R) means that we create groups
using attribute C of relation R, and for each group com-
pute the count(B) function. That is, Lg = {C}, and La =
{COUNT(B) — F}. The resulting relation will contain two
attributes C and F. A tuple in the result will have an entry
for each distinct value of C, and the number of tuples in the
group reported as attribute F. If Ly = 0, only grouping is
performed.

Implementation of the grouping operator vr(R) can be
achieved as follows:

vo(R) =1 (D('yfl (RS))>,where L' = {AS|A; € Lg)

That is, the server will group the encrypted tuples based
on the attributes of Lg. The server does not perform any
aggregation corresponding to L, since it does not have any
values for those attributes in L4. The results of 45, are
returned to the client, which performs the grouping opera-
tion «yr. This operation can be implemented very efficiently,
since every tuple belonging to a single group of ; will be
in a single y§, group computed by the server. As a result,
the client only needs to consider tuples in a single v2, group
when computing the groups corresponding to yr. Of course,
the aggregation functions specified in L4 will be computed
at the client, since their computation requires that tuples be
first decrypted.

We explain the implementation using the example below.

Ydid,COUNT (eid)—F (emp)

That is, we want to find the number of employees in each
department. Let L denote “did, COUNT(eid) — F.” The
operation is translated to:

YL (D ('Ydsids (emps)))

That is, we first do a grouping on the did® attribute on the
server. After the grouped tuples are returned to the client,
we decrypt the data, and perform the grouping operation on
the did attribute. This step can be done efficiently, since all
the tuples with the same did have already been grouped by
the server. Finally, we perform the aggregation count(eid)
to count the number of employee ids for each did.

The Sorting Operator (7): A sorting operation 7z(R)
can be implemented similarly to the grouping operator. That
is, we first sort on partition ids at the server. The strategy
to implement 7. (R) is as follows:

L(R) =1L (D(7f' (RS)))

where L' = list of A7 corresponding to the A; in the list L
of attributes.

That is, we do a grouping operation 7, on the encrypted
attributes L' of those in L. If the mapping functions of
the attributes in L are all order preserving, this grouping
3, operation can be replaced by a corresponding sorting
operation 75,. After the results are returned to the client, we
call the decryption function D, and perform the 71, operation
by sorting the tuples on attributes L.

Note that the amount of work done at the client to com-
pute 77, in postprocessing depends upon whether or not the
attributes listed in L have order-preserving mappings. If the
attributes have order-preserving mappings, then the results
returned by the server are presorted upto within a parti-
tion. Thus, sorting the results is a simple local operation
over a single partition. Alternatively, even if the mapping
is not order preserving, it is useful to compute 4° at the
server to reduce the amount of client work. Since the tuples
have been grouped by the server, 77 can be implemented
efficiently using a merge-sort algorithm.

For example, the sorting operation 7e;q(emp) can be im-
plemented as follows:

Teid (D ('Yesid (Gmps))>

where L = {eid}. That is, we first perform a grouping op-
eration 7eiq on the emps relation on the server. The client
decrypts the returned tuples, and applies the sorting opera-
tion Temp.

The Duplicate-Elimination Operator (§): The duplicate-
elimination operator 4 is implemented similarly to the group-
ing operator:

5(R) = 6(D(yL(R)))

where L = list of all attributes A;g where A; is an attribute
in R.

That is, we first group the encrypted tuples on the server
using all the attributes in RS. After the results are returned

and decrypted at the client, we perform the duplicate elim-
ination operation d. For example, the operation d(emp) is
translated to:

4 (D (’Yeids ,didS (emps)))

The Set Difference Operator (—): Implementation of
the difference operation R—T at the server is difficult since,
without first decrypting the relations R and T, it is impos-
sible to tell whether or not a given tuple of R also appears
in S. However, the indices stored at the server can still be
used to meaningfully reduce the amount of work done at the
client. In the following we assume that relations R and T
are set difference compatible and are defined over attributes
Aiq,As,..., A, and By, Bs, .. ., By, respectively. The follow-
ing rule can be used to implement the set difference operator:

R—T=mgra,, ra,(R)—7rB 78, (R)

B = D(VE(RS > (= n(R.A,—=T.Bi)) TS))

=1,...,

where L = {A7 A5 ... AS BY,Bs,...,BS}.

Once again, the symbol S as a superscript of the left-
outer join emphasizes (denoted <) that the operator is im-
plemented on the server side. We illustrate the above rule
through an example. Suppose we want to compute emp —
mgr, that is, we want to find all the employees who are not
managers. The query is translated to the following query:

Temp.eid,emp.did (R’) — Tmgr.mid,mgr.did (RI)

;o s s S s
R = D(’yaids,emps.dids,mids,mgrs.dids (emp ANer mgr))

The condition C' is: Mapcond(emp.eid = mgr.mid) A Ci,
where C: is defined in Section 3. (See Attributel = At-
tribute2 case)

A few observations about the above implementation of the
set-difference operator are noteworthy. First, the grouping
of the results based on index attributes is not necessary —
that is, the translation would be correct even without the
grouping operator. The reason for including the grouping
operator is that it can significantly reduce the computation
on the client. For example, due to the grouping operator,
all the tuples that have a NULL value for T° attributes
will be grouped together. When the resulting tuples of the
set difference operator arrive at the client, such tuples can
be decrypted and the corresponding R tuple immediately re-
turned as an answer. The reason is that there are no match-
ing tuples of T that could cause the potential elimination of
these tuples of R. Hence, the projection and the subsequent
set difference implemented on the client side may only be re-
stricted to those tuples for which the corresponding T value
is not NULL.

Furthermore, in computing the projection to the attributes
of R and S and the subsequent set difference between the two
projections we only need to consider a single group formed
by 7; operator at a time. That is, a T tuple from a differ-
ent group will not eliminate an R tuple from another group.
Thus, performing the grouping at the server side, while not
necessary, could significantly reduce the computation at the
client.

Second, even with the above optimization, the implemen-
tation of the set-difference operator using the outer-join on
the server should be used with care. A naive strategy is to
transmit the entire relations R® and T to the client, which

decrypts them and computes the set difference. This naive
strategy might be cheaper than the previous strategy since
the size of the outerjoin might be quadratic resulting in high
transmission and decryption cost compared to the strategy
of transmitting the two relations individually and comput-
ing the set difference at the client. Which strategy is used
depends upon the content of the relations. Selecting the spe-
cific strategy depends upon integrating our framework into
a cost-based query optimizer, which is beyond the scope of
this paper.

The Union Operator (U): There are essentially two dif-
ferent union operators based on the bag and the set seman-
tics. The former does not eliminate duplicates, while the lat-
ter does. The implementation of the union operator based
on bag semantics is straightforward:

RUT = D(R® U° T%)

If we wish to compute the union under the set semantics,
it can be computed as follows:

RUT = §(D(rf (B U° T%)))

where L = list of all attributes A7 where A; is an attribute
in R.

While the implementation of the union operator on the
server side (that is, US) is straightforward, there is one
technical challenge that arises. Specifically, since tuples in
R3UST? could originate either from RS or T'°, to be able to
apply the correct decryption function at the client, as well
as to correctly interpret the values in the index attributes
of the result at the server, we will store an additional at-
tribute in the result of the union that will determine the
origin of the tuple (that is, whether it originates from R’
or T°). Adding such an attribute is crucial for the correct
implementation, but we will ignore it in the discussion to
keep the algebra simple. The full version of the paper [5]
illustrates the need for maintaining the additional attribute
and the resulting modifications to the mapping functions
and developed algebra.

The Projection Operator (7): Since each tuple in a rela-
tion R is encrypted together into a single string in the etuple
attribute of relation R at the server, a projection 7 is not
implemented at the server. As a result, to compute 7z (R),
where L is a set of attributes, the strategy is to transmit the
complete relation RS to the client, decrypt the relation at
the client, and then compute the projection. That is,

72(R) = 7o (D(R®))

For instance, we have meiq(emp) = meiq (D(emps))-

5. ALGEBRAICFRAMEWORKFOR QUERY

SPLITTING

Given a query @, our purpose in this section is to develop
a strategy to split the computation of () across the server
and the client. The server will use the implementation of
the relational operators discussed in the previous section to
compute as much of the query as possible, relegating the re-
mainder of the computation to the client. Our objective is to
come up with the “best” query plan for () that minimizes the
execution cost. In our setting, the cost of a query consists of

many components — the I/O and CPU cost of evaluating the
query at the server, the network transmission cost, and the
I/0 and CPU cost at the client. A variety of possibilities ex-
ist. For example, consider the following query over the emp
table that retrieves employees whose salary is greater that
the average salary of employees in the department identified
by did = 1.
SELECT emp.name FROM emp
WHERE emp.salary > (SELECT AVG(salary)
FROM emp WHERE did = 1);

TMename

emp.sal>avgsal

Tename
l><l DJ Yavg(sal)—avgsal
emwaugsat] |
em T~ emp®
p Yavg(sal)—avgsal Ud|id:1
D
Odid—1 R |
Q° emp®
emp

(a) Original query (b) Replacing en-

tree. crypted relations.
c Tename
Q Uemp.?al>augsal
Tename |
b
emyw Qs emp.sal>avgsal
—
l|? Yavg(sal)—avgsal £mp. l.lj
emp®
O did=1 Q° Vawg(sal)—avgsal
| 0,1“:1

1
1
OMapeona(did=1) oMﬂrmd(did:U
s
S Q S

emp emp’

Qs

(¢) Doing selec-
tion at server.

(d) Multiple interactions
between Client and Server.

Figure 4: Query plans for employees who make more
than average salary of emloyees who are in did=1

Umname

Minname emp.did = mgr.did

emp.did = mgr.did gm_p.pidqu j.pid
— T s o

emp.pidepraj pid mer Upnamezl’diskdrive’ Usal>l1 gr ;
U'pname:'d]'skdme' 0sal>lmok D D Qs

) i et

proj emp i pro® emp®

(a) Original query tree. (b) After replacing with

encrypted relations.

Figure 5: Evaluation of a join query.

The corresponding query tree and some of the evaluation
strategies are illustrated in Figures 4(a) to (d). The first
strategy (Figure 4(b)) is to simply transmit the emp ta-
ble to the client, which evaluates the query. An alternative

H’ITLTLG/ITLC

emp.did = mgr.did

o T

emp.pid = proj.pid D
/

Upnamezl’ diskdrive’

(a) After rewriting selections.

Hmname

emp.did = mgr.did

Opname='diskdrive’ Asal>100K

Oemp.pid=proj.pid

%d(ew&@j-m@

Hmname

emp.did = mgr.did
/

Opname='diskdrive' Asal>100K D

emp.pid = proj.pid marS

(b) After pulling up selections.

Hmname

Opname='diskdrive’ Asal> 1OOK/\proj]pidzemp.pid/\emp.did:mgr.did

>
Mapcond p.did:w
mgrs

B>
M WP-I»W@

Eo's 0-3 : éo-S 0.8
Mapcon,T(pname:’dz'skdrz’ve’) Mapeond(sal>100K) | i Mapcomi(pname:’diskdrive’) Mapcond (sal>100K)

.S S i :S s

(c) After rewriting join. (d) The final query tree.

Figure 6: Query rewriting heuristic for join queries

strategy (Figure 4(c)) is to compute part of the inner query
at the server, which selects (as many as possible) tuples cor-
responding to Mapcond(did = 1). The server sends to the
client the encrypted version of the emp table, i.e., emp®,
along with the encrypted representation of the set of tuples
that satisfy the inner query. The client decrypts the tuples
to evaluate the remainder of the query. Yet another pos-
sibility (Figure 4(d)) is to evaluate the inner query at the
server. That is, select the tuples corresponding to the em-
ployees that work in department did = 1. The results are
shipped to the client, which decrypts the tuples and com-
putes average salary. The average salary is encrypted by the
client and shipped back to the server, which then computes
the join at the server. Finally, the results are decrypted at
the client.

5.1 Heuristic Rules to Separate Queries

It should immediately be obvious that a rich set of pos-
sibilities exist in evaluating a query in our framework, and
that the decision of the exact query plan should be cost
based. This topic, however, is outside the scope of this pa-
per. Our attempt is primarily to establish the feasibility
of the proposed model, and cost-based optimization is rele-
gated to future work. Instead, in this section, we will restrict
ourselves to a simpler task — we will explore heuristic rules

that allow for a given query tree to be split into two parts —
the server part (referred to as Q%) that executes at the server
first, and the client part (referred to as Q) that executes at
the client based on the results of the query evaluated at the
server. Our objective will be to minimize the computation
in Q. That is, we would attempt to rewrite the query tree,
such that most of the effort of evaluating the query occurs
at the server, and the client does least amount of work.

We illustrate our ideas using examples. As a first example,
consider the following query that computes the names of the
managers of those employees working on project “diskdrive”
whose salary is more than 100K.

SELECT mname
FROM emp, mgr, proj
WHERE proj.pname = ‘diskdrive’
AND proj.pid = emp.pid
AND emp.sal > 100K
AND emp.did = mgr.did;

The first step is to convert the above query into a corre-
sponding query tree, and to manipulate the query tree to
generate a good plan (using the standard query rewrite laws
of relational algebra [13]). Figure 5(a) shows the query tree
in which the two selections have been pushed down to rela-
tions proj and emp. Since relations are encrypted and stored

on the server, we first replace each relation R in the query
with encrypted relation RS. The resulting tree is shown in
Figure 5(Db).

As it stands, the current query tree requires the entire
relations proj®, emp®, and mgr® to be sent to the client
that will decrypt the relations to evaluate the query. We
next replace the selection operations by their implementa-
tion listed in the previous section resulting in the query tree
shown in Figure 6(a). Notice that in the corresponding tree,
the server is participating in the evaluation of the two selec-
tion conditions. Since our objective is to perform as much
of the computation at the server as possible, we next pull
up the two client-side selection conditions 0 ppnqme="diskdrive’

and O sq1=100x above the join operator emp.pid=proj.pid USIng
the standard rewrite rules involving selections in relational
algebra [13]. The new query tree is shown in Figure 6(b).
We can now rewrite the query tree again using the join im-
plemenbtqation discussed in the previous section, such that

emp.pid=proj.pid 1S €xecuted at the server. Figure 6(c) shows
the query tree after the rewriting. Finally, we pull the two
selections O-pname=’d'iskdri'ue’/\sal:lOOK and Oemp.pid:proj.pid
above the join operator ¢mp.did=mgr.dia- Then we replace
the join operator based on the implementation discussed in
the previous section, and get the final query tree, as shown
Figure 6(d).

Notice that in the tree of Figure 6(d), much of the work of
query processing is done at the server. The results obtained
from the server are decrypted and filtered at the client. Our
success in splitting the query Q into the server-side Q° and
client-side Q° depended on (1) being able to pull the selec-
tion operations above other relational operations higher in
the query tree; and (2) repeatedly rewriting the higher-level
operations using the operator implementations listed in the
previous section.

There are situations when the selection operator cannot
be pulled up the query tree as it is illustrated in the following
example, which uses a set-difference operator. Consider a
query that retrieves the set of employees who do not work
for the manager named “Bob.” The corresponding SQL
query is shown below:

SELECT ename FROM emp
WHERE eid NOT IN (
SELECT eid FROM emp, mgr
WHERE eid = mid AND ename = ’Bob’);

Using the strategy discussed above, we can easily con-
vert the query into the query tree shown in Figure 7(a). If
we are to execute the query plan illustrated in Figure 7(a),
the server will submit to the client the relation emp®, as
well as the encrypted answers generated by the X° opera-
tor. The projections followed by the set-difference operator
will be implemented at the client. Notice since the selec-
tion and projection operators cannot be pulled above the
set-difference operator, it is difficult to apply the implemen-
tation of the set-difference operator discussed in the previous
section to evaluate the set difference at the server. The trick
is to rewrite the set-difference operator using the left-outer
join operator =< (similar to the implementation of set differ-
ence discussed in the previous section). Using the rewrite
law for set difference, the corresponding tree is modified to
the query tree shown in Figure 7(b). We can now pull the
selections and projections above the outer join, resulting in
the query tree shown in Figure 7(c). Finally, this tree can be

Q@ | Q° |

Teid Tmid
— - — Mg s
T - Meid=mid
”[‘ Tmid Teid
T Tmid
D Ocid=midAename='Bob' o
[y PR 1? Ocid=midAename=' Bob’
emp 1? emp® i
: R

[l . . NS
s Mapeona(eid=mid) Map.ona(eid=mid)

o - s s
Mapeona(ename='Bob’) mgr P Mapeona(ename='Bot') mgrS

emps emp’

(a) Query tree with join
computation at Server.

(b) Rewriting difference
operator using outerjoin.

/ - \ /
Teid Tmid 7'reid\ }id
Teid,mid Teid,mid

Oeid=midAename='Bob’ Oeid=midAename=' Bob'

_— Neid=mid l[?
D 1 Nflapww:mid)

! S > —_ s

emp’ Mapcond(eid—=mid) em,ps Mapcon;?eid:mid)
s —_— — s s — s
”Mapmrd(ename:' Bob') 9T g Mapeoja(ename="Bob) mygr
S S
. S em,
empS Q P Q

(c) After pulling selec- (d) Final query tree.

tion and projection.

Figure 7: Query rewriting for a set-difference query.

manipulated using the operator implementation discussed in
the previous section, resulting in the final tree shown in Fig-
ure 7(d). The final tree performs much of the query com-
putation at the server, and the results are decrypted and
filtered, and the final answer is evaluated at the client.

6. EXPERIMENTAL EVALUATION

We have conducted experiments to show the validity and
the effectiveness of the architecture proposed in this paper.
In this section, we present our experimental results.

We ran the tests by utilizing TPC-H benchmark [14].
TPC-H benchmark database is created at scale factor 0.01
and 0.1, which are also referred to as the 10 MB and 100 MB
database respectively. The experiments were conducted on
two IBM Intel-based personal computers with Pentium IIT
700 MHz processors with 256 MB RAM. One of the comput-
ers performed as the server, and another one performed as
the client according to our client/server architecture. Rel-
evant software components used were IBM DB2 v7.1 and
Microsoft Windows 2000 as the operating system.

Relations: While the TPC-H benchmark includes mul-
tiple tables, of particular interest in our experimental study
are the lineitem, customer, and order tables. We parti-
tioned the following attributes for these tables:

Lineitem : 1l_shipdate, 1l_discount, 1l_quantity
Orders : o_orderdate,o_custkey,o_shippriority
Customer : c_custkey

Partitions have been created based on the partitioning cri-
teria described below. To encrypt the rows of the relations,
we used the Blowfish encryption algorithm [12] implemented
in Java.

Partitioning Algorithm: We used equi-width and equi-
depth histograms [9] to partition the data for two different
classes of queries. Equi-width and equi-depth histograms
have been widely used and investigated in the context of se-
lectivity estimation in databases [7, 8]. Detailed description
of constructing equi-depth histograms is given in [9].

Queries : We considered two different queries from TPC-
H suite to present the evaluation of the different aspects of
the architecture. The first query, as shown in Figure 8,
is a selection query from a single table, and it is not in-
volved join operations. The second query, as shown in Fig-
ure 9, is a modified version of TPC-H query number 3, de-
noted Q3. This query involves a join operation between
two tables, customer and orders. We first successfully
rewrote the given queries using the rewriting rules described
in the paper, and then executed the translated queries in the
client/server architecture with different partitioning schemes.

select sum(l_extendedprice * I_discount) as revenue
from tpcd.lineitem

where 1_shipdate >= date (’1994-01-01")

and l_shipdate < date (’1994-01-01’) + 1 year

and l_discount between 0.06 - 0.01 and 0.06 4 0.01
and l_quantity < 24

Figure 8: Query used for first set of experiments,

based on Q6 from TPC-H benchmark.

select o_orderdate, o_shippriority from tpcd.customer,tpcd.orders
where c_custkey = o_custkey and o_orderdate < date (’1995-03-15’)
group by o_orderdate, o_shippriority order by o_orderdate

Figure 9: Query used for second set of experiments,
based on Q3 from TPC-H benchmark.

6.1 Experiment1

In the first set of experiments, we studied the components
of the query-execution time in our architecture. We con-
ducted these tests with increasing number of buckets. Fig-
ure 10(a)(b) show the results of the tests. It is shown that
network communication cost and client-site query-execution
time significantly decrease with the increase in the number
of buckets. The reason is due to the decreasing number of
rows returned by the server. When the number of buckets
that partition the data increases, the server has a better ca-
pability to filter out more false rows, which do not satisfy
the selection predicates. While network cost and client-site
query-execution time decrease sharply, it is not the case for
the server-site query-execution time. In the experiments, the
selectivity of the query is approximately 18%. Because of
the possibility of prefetch batch I/O’s, doing a table scan re-
mained as the best choice for the database optimizer. Hence,
independently from the number of buckets, predicate eval-
uation is performed via a sequential table scan, causing the
steady behavior in server-site query-execution time.

In these experiments we also compared the query-execution
times in our architecture with the case of having a single
server, which performs all the functions described in the ar-
chitecture. The former represents total data privacy, while
the latter represents row-level data encryption/decryption,
where the server is trusted to decrypt the data. Figure 10(b)
shows this comparison. Again we present the results for dif-
ferent numbers of buckets. The first bar in the figure shows
the query-execution time for the single-server setup, where

the server selects the etuple columns from the encrypted ta-
bles, and performs the real query on the selected rows. The
second and third bars show the query-execution times for
the server side and client side respectively when the query is
executed in our architecture.® These experiments show that
our architecture does not introduce significant overhead due
to the proposed communication protocol between client and
server.

6.2 Experiment 2

In the second set of experiments, we studied queries that
include join operations. Experiments are based on the mod-
ified version of Q3 (Figure 9) in the TPC-H benchmark.
Figure 11(a) to (c) show the client-side, server-side, and the
total query-execution times for increasing number of buckets
on join attributes, namely, c_custkey and o_custkey in the
query. The figure illustrates that query response times de-
crease very sharply with the increasing number of buckets.
As was explained in the previous experiment, this behav-
ior is primarily since with increasing number of buckets the
server is better able to eliminate tuples which would other-
wise have to be decrypted and filtered at the client. The per-
formance is significantly improved for both client and server
side queries. Although the client-side query-execution time
also shows steep decrease, it is greater than the server-side
query-execution time. The reason is due to the dominant
cost of decryption performed at the client site. To express
this fact, Figure 11(b) shows the query response times of
client-side query-execution time with decryption and client-
side query-execution time without decryption, which is plot-
ted by removing decryption cost from the query-execution
time.

As was studied in our first set experiments, Figure 11(c)
shows the total query-execution times for single-server and
client-server architectures. The results of these tests are also
consistent with the previous ones.

7. CONCLUSIONS

Application Service Provider (ASP) model for enterprise
computing has emerged with the rise of Internet technolo-
gies. In the ASP model, a service provider can provide soft-
ware as a service to a very large client-base over the Internet.

Unlike many other services, however, databases are spe-
cial. Data is a precious resource of an enterprise. As a
result, privacy and security of data at the service-provider
site is paramount. In this paper, we addressed a specific
data-privacy challenge — what if the owner of the database
does not trust the service provider with the data? Our so-
lution is to store the data at the service provider after en-
crypting it, which can only be decrypted by the owner. We
have developed techniques using which the bulk of the work
of executing the SQL queries can be done by the service
provider without the need to decrypt the stored data. The
technique deploys a “coarse index”, which allows partial ex-
ecution of an SQL query on the provider side. The result
of this query is sent to the client. The correct result of the
query is found by decrypting the data, and executing a com-
pensation query at the client site. We proposed technique to
operate the SQL query, and split it into a server query and a

®The client-site query-execution time also includes the net-
work communication cost required to transfer selected rows
by the server.

OClientsite
W Network cost
B Server site

Query Execution Time

Number of Buckets

Query Execution Time

OSingle server
@ Senersite (C/S)
BClientsite (C/S)

Bl N

Number of Buckets

a) Cost factors for the uery-
q
execution time.

(b) Comparison for Client-Server
strategy v.s. the single-server
strategy.

Figure 10: Effect of number of buckets on nonjoin queries.

PPPPP

Query Execution Time.
Query Execution Time

Query Execution Time.

0 800
Number of Buckets

1400 a00
Number of Buckets

(a) Client, server, and total (b) Effect of decryption per- (c) Comparison for client-server
query-execution times. formed on the client site. strategy v.s. single-server strat-
egy

Figure 11: Effect of number of buckets on join query.

client query. The service provider retains the responsibility
to manage the persistence of the data. The client gets total
privacy, and the cost of cooperating in query execution with
the service provider. The client does not need to manage
data persistence, thus continues to benefit from the system-
management service of the database service provider.

8. REFERENCES

[1] AES. Advanced Encryption Standard. National
Institute of Science and Technology, FIPS 197, 2001.

[2] D. Song and D. Wagner and A. Perrig. Search on
encrypted data. In Proc. of IEEE SRSP, 2000.

[3] DES. Data Encryption Standard. FIPS PUB /6,
Federal Information Processing Standards Publication,
1977.

[4] H. Garcia-Molina, J. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[6] H. Hacigiimiis, B. Iyer, C. Li, and S. Mehrotra.
Executing SQL over Encrypted Data in
Database-Service-Provider Model. Technical Report
TR-DB-02-02, Database Research Group at University
of California, Irvine, 2002.

[6] H. Hacigiimiig, B. Iyer, and S. Mehrotra. Providing
Database as a Service. In Proc. of ICDE, 2002.

[7] Y. E. Ioannidis and V. Poosala. Histogram-based
approximation of set-valued query answers. In Proc. of
VLDB, pages 174-185, 1999.

[8] H. V. Jagadish, H. Jin, B. C. Ooi, and K.-L. Tan.
Global optimization of histograms. In Proc. of ACM
SIGMOD, 2001.

[9] G. Piatatetsky-Shapiro and C. Connell. Accurate
estimation of the number of tuples satisfying a
condition. In Proc. of ACM SIGMOD, 1984.

[10] R. L. Rivest, L. M. Adleman, and M. Dertouzos. On
Data Banks and Privacy Homomorphisms. In
Foundations of Secure Computation, pages 169-178,
1978.

[11] R. L. Rivest, A. Shamir, and L. M. Adleman. A
method for obtaining digital signatures and public key
cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

[12] B. Schneier. Description of a new variable-length key,
block cipher (blowfish), fast software encryption. In
Cambridge Security Workshop Proceedings, 1994.

[13] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts, 8rd Edition. McGraw-Hill
Book Company, 1997.

[14] TPC-H. Benchmark Specification.
http://www.tpc.org.

[15] M. Winslett and J. D. Ullman. Jeffrey D. Ullman
speaks out on the future of higher education, startups,
database theory, and more. SIGMOD Record, 30(3),
2001.

