
Architectural Adaptation for Power and Performance

Weiyu Tang Alexander V. Veidenbaum Rajesh Gupta

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425
E-mail: fwtang,alexv,rguptag@ics.uci.edu

Abstract

Modern computer architectures represent design trade-
offs involving a large number of variables in a very large
design space. Choices related to organization of major sys-
tem blocks (CPU, cache, memory, I/O) do not work well
across different applications. The performance and power
variation across applications and against changing data set
in a given application can easily be an order of magnitude.

Architectural adaptation provides an attractive means to
ensure high performance and low power. Adaptable archi-
tectural components support multiple mechanisms that can
be tailored to application needs. In this paper, we show the
benefits of architectural adaptation for power and perfor-
mance using the cache memory as an example. Dynamic
L0 cache management selects either L0 cache or L1 cache
for instruction fetch. It reduces average power consumption
in instruction cache by 29.5% with only 0.7% performance
degradation. Dynamic fetch size profiling changes cache
fetch size at run-time to improve locality utilization. It im-
proves average benchmark performance by 15%.

1. Introduction

Modern computer architectures represent design trade-
offs and optimizations involving a large number of vari-
ables in a very large design space. Even when successfully
implemented for high performance, which is benchmarked
against a set of representative applications, the performance
optimization is only in an average sense. The performance
variation across applications and against changing data set
in a given application can easily be an order of magnitude.
In other words, delivered performance can be less than one
tenth of the system performance that the underlying hard-
ware is capable of. A primary reason of this fragility in
performance is that rigid architectural choices related to or-
ganization of major system blocks (CPU, cache, memory,
I/O) do not work well across different applications.

Architectural adaptation provides an attractive means to
ensure high performance and low power. Architectural
adaptation refers to the capability of an architectural com-
ponent to support multiple architectural mechanisms that
can be tailored to application needs. Architectural adap-
tation has received a lot of attention recently with a drastic
increase in VLSI complexity and transistor count as well
as advances in reconfigurable logic. Making an architec-
tural component adaptable typically involves the following
steps:

� identify mechanisms that are important for perfor-
mance/power and can be easily adapted in the archi-
tecture;

� determine the relationship between application behav-
iors and architectural mechanisms;

� design compiler-transformations or hardware predic-
tions for architectural mechanism selection.

Architectural adaptation can be done at compile time or
run-time. Run-time configuration can be controlled either
by compiler-inserted instructions or by dynamic hardware
prediction based on detected application behaviors. Dy-
namic hardware prediction is preferable, as it does not re-
quire code recompilation and Instruction Set Architecture
modification.

The AMRM project at UC Irvine focuses on adaptation
of the memory hierarchy and its role in latency and band-
width management. In this paper, we describe how archi-
tectural adaptation can be used in improving system perfor-
mance and power efficiency. This paper is organized as fol-
lows. Previous work on architectural adaptation is briefed
in Section 2. Then we present two architectural adaptations
as examples of how adaptive architectures can be useful.
Dynamic L0 cache management for power efficiency is pre-
sented in Section 3, followed by dynamic cache fetch size
profiling for high performance in Section 4. We conclude
with Section 5.



2. Related work on architectural adaptation

There are a number of places where architectural adap-
tation can be used, for instance, in tailoring the interac-
tion of processing with I/O, customization of CPU elements
(e.g., splittable ALU resources) etc. Architectural adap-
tation is not a new idea. Adaptive routing pioneered by
ARPANET in computer networks is applied to multiproces-
sor interconnection networks [3] to avoid congestion and
route messages faster to their destination. Adaptive traffic
throttling for interconnection networks [13] shows that ”op-
timal” limit varies and suggests admitting messages into the
network adaptively based on current network behavior .

Adaptive cache control or coherence protocol choices are
investigated in the FLASH and JUMP-1 projects [6, 11].
Adapting branch history length [8] in branch predictors
shows that optimal history length varies significantly among
programs. Adaptive adjustment of data prefetch length in
hardware is shown to be advantageous [4], while in [5] the
prefetch lookahead distance is adjusted either in hardware
or with compiler assistance.

Reconfigurable cache [12] enables the cache SRAM ar-
rays to be dynamically divided into multiple partitions that
can be used for different processor activities to improve per-
formance. Memory hierarchy reconfiguration [1] dynam-
ically detects application phase change and hit/miss toler-
ance. Then the boundaries between different levels of mem-
ory hierarchy are adjusted to improve memory hierarchy
performance while taking energy consumption into consid-
eration. Adaptive cache line size [14] exploits changing ap-
plication locality with different cache line size to improve
performance.

Pipeline gating [10] dynamically stalls instruction fetch
to control rampant speculation in the pipeline. It reduces
power consumption by reducing the number of wrong-path
instructions.

3. Dynamic L0-Cache Management

As an example of adaptation for power management, let
us consider design of the CPU-cache datapath for power.
Due to its increasing size and high duty-cycle, cache is an
important part of the power-performance strategies for mod-
ern high-performance processor designs. Further, to sustain
the increasing instruction-level parallelism in modern pro-
cessors, a very high utilization of the instruction memory
hierarchy is needed. As a consequence, power consumption
by the on-chip instruction cache is high. For instance, the
power consumption by on-chip L1 instruction cache alone
can comprise as high as 27% of the processor power[7].
To reduce the power consumption, a small “L0 cache,” as
shown in the left of Figure 1, can be placed between the L1
cache and the CPU to service the instruction stream to the

CPU. A hit in the L0 cache can reduce power dissipation as
a more power consuming L1 cache access is avoided. How-
ever, a miss in the L0 cache will incur additional L0 access
latency for instruction fetch. Because the L0 cache size is
small, the L0 cache miss rate is very high and the perfor-
mance degradation can be more than 20% [9].

CPU

L1 I-cache

L0 I-cache

CPU

L1 I-cache

L0 I-cache

CPU

L1 I-cache

L0 I-cache

Figure 1. Memory hierarchy with L0 cache.

3.1. Adaptation Opportunities

An important reason for the performance degradation is
the inflexibility of the memory hierarchy. For instance, here
the L0 cache is always accessed first. Then on a L0 cache
miss, the L1 cache is accessed. An adaptive datapath could
enable, for some instructions that are unlikely to hit in the
L0 cache, bypassing of the L0 cache to reduce the L0 miss
latency without sacrificing power efficiency. A modified
memory hierarchy with L0 cache bypass is shown in the
right of Figure 1. This kind of bypass can be controlled ei-
ther statically by compiler or dynamically by hardware pre-
diction. In our research, we adopt the dynamic mechanism.

Generally, an instruction stream shows good spatial lo-
cality. It has been observed that if an instruction hits in the
L0 cache, the remaining instructions in the same basic block
is likely to hit in the L0 cache. Similarly, if an instruction
misses in the L0 cache, the remaining instructions in the
same basic block is likely to miss in the L0 cache. Thus
we use the following prediction for dynamic L0/L1 cache
selection:

� if current fetch hits in the L0 cache, then next fetch
will go to the L0 cache;

� if current fetch misses in the L0 cache, then next fetch
will go to the L1 cache.

Figure 2 shows the hardware support for dynamic L0/L1
prediction. L0 tag has dual roles, for determining whether
an address hits in the L0 cache and for predicting the next
fetch cache. Because of L0 tag’s role in the prediction, we
use decoupled data/tag arrays design for the L0 cache so
that prediction can occur when current fetch is to the L1
cache.



L0 Tag

L0/L1

cache

selector

L0/L1

cache

selector

…

Hit in L0?Hit in L0?

=?=?

Addr

L0 Data

…

L0 Data

…

Hit in L1?

Tag Data

=?

…

L1 cache

Tag Data

=?=?

…

L1 cache

Figure 2. Dynamic L0/L1 prediction.

3.2. Experiments

We use the SimpleScalar tool set [2] to model an out-
of-order superscalar processor. The processor and memory
hierarchy parameters shown in Table 1 roughly correspond
to those in current high-end microprocessors. The power
parameters are obtained using Cacti [15] for the 0.18�m
technology. For each SPEC95 benchmark, 100 million in-
structions are simulated.

Parameter Value
branch pred. combined, 4K-entry,

7-cycle mispredict. penalty
BTB 4K-entry, 4-way

RUU/LSQ 64/32
fetch/issue/commit width 4

int. ALU/MULT 4/2
flt. ALU/MULT 2/1

L0 I-cache 256B or 512B, 16B line
direct-mapped, 1-cycle lat.

L1 I-cache 32KB, 32B line,
4-way, 1-cycle lat.

L1 D-cache 64KB, 32B line,
4-way, 1-cycle lat.

L2 cache 512KB, 64B line,
4-way, 8-cycle lat.

Memory 30-cycle lat.

Table 1. Processor and memory hierarchy
configuration.

Figure 3 shows normalized execution time. The base-
line system configuration for comparison has no L0 cache.
The TRA bars are results for the traditional memory hier-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

co
m

pr
es

s

gc
c

go
ijp

eg

li
m

88
ks

im

pe
rl

ap
pl

u
ap

si
fp

pp
p

hy
dr

o2
d

su
2c

or
sw

im
to

m
ca

tv
tu

rb
3d

w
av

e

av
g

D
e
la

y

TRA PRED

Figure 3. Normalized execution time.

archy with a L0 cache. The PRED bars are results for the
memory hierarchy with L0 cache bypass based on dynamic
L0/L1 prediction. For every benchmark, the execution time
by PRED is lower than that by TRA. PRED is successful in
reducing the performance penalty of L0 cache.

For some benchmarks such as m��ksim, the normalized
delay is lower than 1. Instruction fetches are delayed on
miss-fetches in the L0 cache. Several instructions are com-
mitted during a miss-fetch cycle and branch history may be
changed. This improves the branch prediction accuracy for
some benchmarks. Comparing to 1 cycle L0 cache miss-
fetch penalty, the branch misprediction penalty is 7 cycles.
Thus more accurate branch prediction can result in perfor-
mance improvement.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

co
m

pr
es

s

gc
c

go
ijp

eg

li
m

88
ks

im

pe
rl

ap
pl

u
ap

si
fp

pp
p

hy
dr

o2
d

su
2c

or
sw

im
to

m
ca

tv
tu

rb
3d

w
av

e

av
g

E
n
e
rg

y

TRA PRED

Figure 4. Normalized energy

Figure 4 shows normalized energy for the I-cache. The
energy of PRED is close to the energy of TRA. PRED main-
tains the energy efficiency of the L0 cache. Average 29.5%
energy savings are achieved using PRED with 0.7% perfor-
mance degradation. Given such small performance degra-
dation, PRED is suitable for high-performance processors.

Finally, Figure 5 shows normalized energy-delay prod-
uct for the I-cache. The average energy-delay product of
PRED is slightly better than that of TRA because the lower
delay by PRED has compensated its higher energy. In addi-
tion, PRED is beneficial for energy-efficiency of the whole



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
co

m
pr

es
s

gc
c go

ijp
eg

li
m

88
ks

im

pe
rl

ap
pl

u

ap
si

fp
pp

p
hy

dr
o2

d
su

2c
or

sw
im

to
m

ca
tv

tu
rb

3d
w

av
e

av
g

E
n
e
rg

y
*d

e
la

y

TRA PRED

Figure 5. Energy-delay product.

system. With TRA, the energy-delay product of other pro-
cessor components such as register files will increase dra-
matically because of the high delay of TRA. Hence energy
efficiency of TRA for the I-cache may not translate into en-
ergy efficiency for the whole system.

4. Dynamic fetch size profiling

Caches are used to bridge the speed difference between
the processor and the main memory. The usefulness of a
cache lies in spatial and temporal locality of applications. A
cache consists of multiple lines of equal size. Large line size
benefits applications with good spatial locality and small
line size benefits applications with good temporal locality.
For a cache with a fixed line size, the determination of the
line size is based on the spatial and temporal locality of av-
erage benchmarks. This fixed line size limits cache’s ability
in locality utilization.

As application locality changes over time, we can change
the line size at run-time when locality change is detected.
But actually changing line size at run-time is not trivial. The
whole cache has to be flushed to ensure cache consistence.

In most cache designs, the “fetch size” is equal to the line
size and one miss-fetch fills one cache line. However, the
fetch size itself is an independent design parameter and can
be a multiple of line size. On a miss-fetch, several cache
lines can be filled simultaneously. Long fetch size can be
used for applications with good spatial locality and short
fetch size can be used for applications with good temporal
locality.

4.1. Adaptation Opportunities

Although the optimal cache fetch size changes over time,
a fetch size may stay optimal for an extended period. Thus
we can use the optimal fetch size during a short period to
predict the optimal fetch size during a long period.

We consider a fetch size optimal if it can result in mini-
mal cache miss rate. It is impossible to measure miss rates

for multiple fetch sizes at the same time. To predict the
optimal fetch size, we can use the following assumption–
the locality in an application will not change dramatically
during a short period. Hence the optimal fetch size can be
profiled in the following way:

1. select a list of fetch sizes;

2. apply each fetch size to a profiling interval and obtain
the corresponding miss rate;

3. select the fetch size with the minimal miss rate as the
fetch size for a stable interval.

There are performance penalties during fetch size profil-
ing. Several fetch sizes are profiled and only one of them is
the optimal. The miss rate during a profiling interval with
a non-optimal fetch size may be much higher than the miss
rate during a profiling interval with the optimal fetch size.
Thus the stable interval should be much longer than the pro-
filing interval to amortize the performance penalties during
fetch size profiling.

The additional hardware support for dynamic fetch size
profiling is: (a) a register to store current fetch size; (b)
two registers to store interval lengths: one for the profiling
interval, the other for the stable interval; (c) two counters,
one for the profiling interval and the other for the stable
interval; and (d) several registers to record miss rates for
each fetch size.

4.2. Experiments

-10

0

10

20

30

40

50

60

70

80

90

100

c
o
m

p
re

s
s

g
o

a
p
p
lu

a
p
s
i

h
y
d
ro

2
d

s
u
2
c
o
r

s
w

im

to
m

c
a
tv

tu
rb

3
d

w
a
v
e

a
v
g

%
re

d
u
c
tio

n

Figure 6. L2 cache miss rate reduction.

The experimental setup is the same as the setup for dy-
namic L0 cache management used in Section 3. Fetch size
profiling can be done either for the L1 cache or for the L2
cache. We focus on the results for the L2 cache in this pa-
per because L2 cache fetch size profiling can improve per-
formance more than the L1 cache fetch size profiling can.
The reason is that the L1 cache miss latency is much shorter
than the L2 cache miss latency and most modern superscalar



processors can hide a large part of the L1 cache miss la-
tency with other computations. Only SPEC95 benchmarks
with non-trivial L2 miss rate are simulated. The profiling
interval is 1,000 memory accesses and the stable interval
is 100,000 memory accesses. The possible fetch sizes are:
64B, 128B, 256B and 512B.

Figure 6 shows L2 miss rate reduction. Out of 10 bench-
marks, only compress shows slight miss rate increase. The
reason is that there are penalties in dynamic profiling and
some predicted fetch sizes are not optimal. 6 benchmarks
have more than 60% miss rate reduction. Dynamic fetch
size profiling is effective in improving cache performance
for most benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

c
o
m

p
re

s
s

g
o

a
p
p
lu

a
p
s
i

h
y
d
ro

2
d

s
u
2
c
o
r

s
w

im

to
m

c
a
tv

tu
rb

3
d

w
a
v
e

a
v
g

S
p
e
e
d
u
p

Figure 7. Speedup.

Figure 7 shows the speedup. We can see performance
degradation for compress, apsi and turb�d. The perfor-
mance degradation for compress is due to slight increase
in the miss rate. The performance of apsi and turb�d de-
grades even though miss rate of them decreases. For these
benchmarks, the traffic between the main memory and the
L2 cache increases dramatically because of the use of large
fetch sizes. Additional traffic increases the bus arbitration
latency, which in turn increases the L2 cache miss-fetch
latency. Longer miss-fetch latency degrades performance.
For rest of the benchmarks, performance increases. The
speedup ranges from 1.016 for go to 1.534 for hydro�d.
The average speedup for all benchmarks is 1.15. Fetch size
profiling can improve performance for most benchmarks.

5. Conclusion

Architectural adaptation can enable the application-
specific customization for high performance and low power.
We have demonstrated the benefits of architectural adap-
tation with two examples–dynamic L0 cache management
and dynamic fetch size profiling. Dynamic L0 cache man-
agement can reduce average instruction cache power con-
sumption by 29.5% and dynamic fetch size profiling can
improve average performance by 15%. Going beyond these
optimizations, our plans for future work include exploration

of coordinated adaptation and its control through program-
ming language extensions and compiler techniques.

Acknowledgments

This work is supported in part by the DARPA ITO un-
der Grant DABT63-98-C-0045 and the DARPA PAC/C pro-
gram.

References

[1] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures.
In Int’l Symp. Microarchitecture, pages 245–257, 2000.

[2] D. Burger and T.Austin. The simplescalar toolset, version
2.0. Technical report, University of Wisconsin-Madison,
1997.

[3] A. Chien and J. Kim. Planar adaptive routing: low-cost
adaptive networks for multiprocessors. In Int’l Symp. Com-
puter Architecture, pages 268–277, 1992.

[4] F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed and adap-
tive sequential prefetching in shared memory multiproces-
sors. In Int’l Conf. Parallel Processing, 1993.

[5] E. H. Gornish and A. Veidenbaum. An integrated hard-
ware/software data prefetching scheme for shared-memory
multiprocessors. In Int’l Conf. Parallel Processing, 1994.

[6] J. Kuskin et al. The stanford flash multiprocessor. In Int’l
Symp. Computer Architecture, pages 302–313, 1994.

[7] J. Montanaro et al. A 160-MHz, 32-b, 0.5-W CMOS
RISC microprocessor. IEEE Journal of Solid-State Circuits,
32(11):1703–14, 1996.

[8] T. Juan, S. Sanjeevan, and J. Navaro. Dynamic history length
fitting: a third level of adaptivity for branch prediction. In
Int’l Symp. Computer Architecture, pages 155–166, 1998.

[9] J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache:
An energy efficient memory structure. In Int’l Symp. Mi-
croarchitecture, pages 184–193, 1997.

[10] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
speculation control for energy reduction. In Int’l Symp.
Computer Architecture, pages 132–141, 1998.

[11] T. Matsumoto, K. Nishimura, T. Kudoh, K. Hiraki,
H. Amano, and H. Tanaka. Distributed shared memory ar-
chitecture for jump-1: a general-purpose mpp prototype.
In Int’l Symp. Parallel Architectures, Algorithms, and Net-
works, pages 131–137, 1996.

[12] P. Ranganathan, S. Adve, and N. Jouppi. Reconfigurable
caches and their application to media processing. In Int’l
Symp. Computer Architecture, pages 214–224, 2000.

[13] S. Turner and A. Veidenbaum. Scalability of the cedar sys-
tem. In Int’l Conf. on Supercomputing, pages 247–254,
1994.

[14] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji.
Adapting cache line size to application behavior. In Int’l
Conf. on Supercomputing, pages 145–154, 1999.

[15] S. Wilton and N. Jouppi. An enhanced access and cycle time
model for on-chip caches. Technical report, Digital Western
Research Laboratory, 1994.


