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Abstract

Caches are partitioned into subarrays for optimal
timing. In a set-associative cache, if the way holding
the data is known before an access, only subarrays
for that way need to be accessed. Reduction in cache
switching activities results in energy savings.

In this paper, we propose to extend the branch pre-
diction framework to enable way-footprint prediction.
The next fetch address and its way-footprint are pre-
dicted simultaneously for one-way instruction cache
access. Because the way-footprint prediction shares
some prediction hardware with the branch prediction,
additional hardware cost is small.

To enlarge the number of one-way cache accesses,
we have made modifications to the branch prediction.
Specifically, we have investigated three BTB allocation
policies. Each policy results in average 29%, 33% and
62% energy savings with normalized execution time 1,
1, and 1.001 respectively.

1 Introduction

With advances in semiconductor technology, pro-
cessor performance continues to grow with increas-
ing clock rates and additional hardware support for
instruction level parallelism. The side effect is that
power dissipation also increases significantly. With
the maturity of IC techniques for power management,
architectural and compiler techniques hold significant
potential for power management [2]. These techniques
decrease power dissipation by reducing the number of
signal switching activities within the microprocessor.

High utilization of the instruction memory hierar-
chy 1s needed to exploit instruction level parallelism.
Thus power dissipation by the on-chip instruction
cache is also high. On-chip L1 instruction cache alone
can comprise as high as 27% of the CPU power[7].

In this paper, we exploit cache way partitioning in

the set-associative caches for instruction cache energy
savings. For a cache access, if the way holding the in-
structions is known before the access, then only that
particular way needs to be accessed. To know which
way holds the instructions before an access, a way-
footprint prediction mechanism can be used. There
are similarities between the branch prediction and the
way-footprint prediction. One predicts the next fetch
address based on current fetch address; the other pre-
dicts the way-footprint of the next fetch address based
on current fetch address. Thus we can extend the
branch prediction framework to enable way-footprint
prediction, which can significantly reduce the hard-
ware cost for the way-footprint prediction.

The rest of this paper is organized as follows.
In Section 2, we present the motivation for this re-
search. Section 3 describes the implementation of
way-footprint prediction. The experimental results
are given in Section 4. Section 5 compares way-
footprint prediction with related techniques for in-
struction cache energy savings. The paper is con-
cluded with future work in Section 6.

2  Motivation

For optimal timing, caches are partitioned into sev-
eral subarrays so that wordline and bitline lengths are
short. In high-performance processors, all the data
subarrays and tag subarrays in a set-associative cache
are accessed in parallel to achieve short access time.
If the cache way holding the data is known before an
access, only data subarrays and tag subarrays for that
particular way need to be accessed. This reduces per
cache access switching activities and hence results in
energy savings.

One approach to predict the way-footprint for an
address is to use the way-footprint of this address
when it was accessed last time. For this purpose, his-



tory way-footprints should be saved. A simple imple-
mentation is to use a way-footprint cache. Each entry
in the way-footprint cache is in the following format:

(addr_tag, way-footprint).

The size of the way-footprint field is equal to
log (n + 1), where n values are needed for one-way ac-
cess In a n-way set-associative cache and one value is
needed for all-way access. For a 4-way set-associative
cache, the size of the way-footprint field is 3 bits. For
a 2k-entry way-footprint cache and 4-byte instruction
size, the size of addr_tag field is 21 bits. The tag
(addr_tag) cost is much higher than the data (way-
footprint) cost in terms of area and power.
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Figure 1: Pipeline architecture

To support instruction fetch across basic block
boundaries, branch prediction is used in modern pro-
cessors. Figure 1 shows a typical pipeline architecture
with a branch predictor. For high-performance proces-
sors, multiple instructions are fetched simultaneously
and 1t may take 2 or 3 cycles to access the instruc-
tion cache. Whether an instruction is a branch can
only be determined a few stages later in the pipeline.
If the branch predictor only uses a branch address to
predict the next fetch address, there will be bubbles
in the pipeline for instruction fetch or the branch miss
prediction rate will be high. Thus in processors such
as G5 [5], the branch predictor uses current fetch ad-
dress to predict the next fetch address every cycle.

Generally, there are three components in a branch
predictor: branch direction predictor (BDP), branch
target buffers (BTB) and return address stack (RAS).
The BDP predicts whether a branch will take the tar-
get path. The BTB predicts the target address for a
taken branch. The RAS predicts the return address
for a return instruction.

A BTB is organized as a RAM-based structure and
is indexed by the fetch address. Each entry in the
BTB is in the following format:

(addr_tag, target address).

A RAS is organized as a stack and only the top entry
is accessed. Each entry in the RAS is in the following
format:

(return address).

Note that the same fetch address is used in both
branch prediction and way-footprint prediction. If the
tag comparison in the BTB fails, then the tag compar-
ison in the way-footprint cache will also fail. Thus the
tag used in the way-footprint cache is redundant and
can be eliminated to reduce hardware cost.

3  Way-footprint Prediction

To support way-footprint prediction, a way-
footprint field 1s added to the RAS entry. As the num-
ber of entries in a RAS is small and only the top entry
is accessed during the branch prediction, the RAS ac-
cess is not on one of the critical path. Consequently,
adding the way-footprint field to the RAS entry is un-
likely to affect the processor cycle time.

Adding way-footprint fields to the BTB entry will
increase the BTB capacity. The BTB access time in-
creases with capacity. This may affect the processor
cycle time because the BTB access i1s often on one
of the critical path. Thus a separate Way-Footprint
Table (WFT) shown in Figure 1 is used instead. The
number of ways and the number of sets in the WFT
is equal to those in the BTB. Each entry in the WFT
has the following two way-footprint fields:

e target address way-footprint
e fall-through address way-footprint

The WFT access time is shorter than that of the BTB
because the WFT capacity is much smaller than the
BTB capacity. Thus the WFT access is not on one of
the critical path.

Way-footprint queue: u_tail u_ head

Uncommitted committed
Entry format:
isCacheMiss

fetch address | way footprint isCall | isTaken| isBTBalloc | isBrMissPred

Figure 2: Way-footprint queue

Figure 2 shows the way-footprint queue needed for
the WFT and the RAS update. Entries “c_1” and
“c_2” are reserved for the last two committed fetch
addresses. Entries from “u_head” to “u_tail” are used
to keep track of the way-footprints for uncommitted
fetch addresses.



When an instruction fetch finishes, the “fetch ad-
dress” and “way-footprint” fields of entry “u_tail” are
updated. The “isCacheMiss” field is set if this fetch
has generated a cache miss.

When an instruction commits and its address
matches the “fetch address” field of entry “u_head”,
the following fields of entry “u_head” are updated:

e “isCall” 1s set if it is a call instruction,;

e “isBTBalloc” is set if a BTB entry is allocated for
the instruction,;

o “isBrMissPred” is set if the instruction 1s a miss
predicted branch;

o “isTaken” 1s set if the instruction is a taken
branch.

Then pointers “u_head”, “c_1” and “c_2” are updated
to reflect the fact that a new entry has committed. If
the committed instruction is a miss predicted branch,
a wrong path is taken and the way-footprints in the
uncommitted entries of the way-footprint queue are
useless. All the uncommitted entries are flushed. Note
that this flush is done in parallel with the pipeline
flush, which is required on a branch prediction miss.
Other queue operations are simple. Thus queue oper-
ations are unlikely on one of the critical path.

The WFT is updated in the next cycle if one of the
following conditions is satisfied:

e “isCacheMiss” of entry “u_l1” is set; the way-
footprint for a fetch address may change on an
instruction cache miss and WFT update is neces-
sary;

e “isBrMissPred” of entry “u_2” is set; the way-
footprint for the next fetch may also change on a
branch prediction miss because a different control
path may be taken;

e “isBTBalloc” of entry “u_2” is set; an entry will
also be allocated in the WFT so that both the tar-
get address and the way-footprint can be provided
next time the same fetch address is encountered.

The “fetch address” field of entry “u_2” and the “way-
footprint” field of entry “u_1” are used to update the
WEFT. Either the “target address way-footprint” field
or the “fall-through address way-footprint” field is up-
dated depending on whether the “isTaken” field of en-
try “u_2” is set.

Entries in both the BTB and the WFT can be iden-
tified using (way, set). During the branch prediction,
the BTB and the WFT are accessed in parallel using

the same index function. If the fetch address matches
the tag of the BTB entry (w, s), then either the “target
address way-footprint” or the “fall-through address
way-footprint” of the WFT entry (w,s) is provided
for the next fetch depending on the branch direction
predicted by the BDP.

If the “isCall” field of entry “u_2” is set, the RAS
update is needed. As the next fetch address is not
the return address, the “way-footprint” in entry “u_1”
is useless. However, if the call instruction is not on
the cache line boundary, the instruction following the
call instruction, which will be executed once the call
returns, is also in the same cache line, Thus the way-
footprint for the call instruction can be used for the
return address if the call instruction is not on the cache
line boundary. Otherwise, the way-footprint for all-
way access will be used.

During the branch prediction, if a return instruc-
tion is predicted to be in the current fetch, then the
top entry of the RAS will provide both the return ad-
dress and the way-footprint for the next fetch.

Modifications to the BTB allocation policy can af-
fect the BTB hit rate, which in turn can affect the
number of successful way-footprint predictions be-
cause way-footprint prediction can succeed only when
the tag comparison in the BTB succeeds. We have in-
vestigated the following three BTB allocation policies:

e taken branch policy (TB): BTB allocation only
for a taken branch missing from the BTB;

e any branch policy (AB): BTB allocation for any
branch missing from the BTB;

e any fetch address policy (AFA): BTB allocation
for any fetch address missing from the BTB.

When an untaken branch or a non-branch instruc-
tion is allocated a BTB entry, the target address is
the next continuous fetch address, which 1s the de-
fault address prediction if current fetch address misses
from the BTB. The AB and AFA policies can decrease
the number of entries available for taken branches and
may degrade performance. Thus the TB policy is used
in most processors.

4 Performance

We use the SimpleScalar toolset [3] to model an out-
of-order speculative processor with a two-level cache
hierarchy. The simulation parameters shown in Table
1 roughly correspond to those in a high-performance
microprocessor. We have simulated 100 million in-
structions for all SPEC95 benchmarks except Vortex.



Value

Parameter

combined, 4K 2-bit chooser,
4k-entry bimodal,
12-bit, 4K-entry global

branch pred.

T-cycle miss prediction penalty

BTB 2K-entry, 4-way
return address stack 32
RUU/LSQ 64/32
fetch queue 16
fetch width 8
int./flt. ALUs 4/2
int./flt. Mult/Div 2/2
L1 Icache 32KB, 4-way, 32B block
L1 Dcache 64KB, 4-way, 32B block
L2 cache 512KB, 4-way, 64B block

Table 1: System configuration

For the 4-way set-associative instruction cache, we
use the Cacti [11] to obtain the cache partitioning pa-
rameters with the optimal timing. The data array is
partitioned into eight subarrays and the tag array is
partitioned into two subarrays. One-way cache access
needs only to access two data subarrays and one tag
subarray. We also use the Cacti to derive the power
parameters. The power per all-way access 1s normal-
ized to 1. The power per one-way access is 0.2896 and
the power per WFT access i1s 0.054.

The RAS and the way-footprint queue are small
structures and the power dissipation by them is very
small comparing to that of the instruction cache. Thus
the power dissipation by them is not modeled.
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Figure 3: BTB allocation rate

Figure 3 shows the BTB allocation rate, calculated
as total number of BTB allocations versus total num-

ber of instruction fetches. The BTB allocation rate
is close to 0 for most benchmarks. For those bench-
marks, once a fetch address is allocated an entry, it
is unlikely to be replaced from the BTB because the
BTB capacity 1s much larger than the work set size.
Noticeable increase in the allocation rate can be found
in apst, fpppp, gce and gec. For these benchmarks,
the work set size is relatively large and the number
of BTB conflict misses increases, which leads to more
number of BTB allocation.
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Figure 4: Branch address prediction hit rate

Figure 4 shows branch address prediction hit rate.
For most benchmarks, there is virtually no difference
in the hit rate with different BTB allocation policies.
For gce and go, the hit rate with the AB and AFA poli-
cies 18 lower than that of the TB policy. The reason
is that untaken branches and non-branch instructions
are allocated BTB entries. As a consequence, the ef-
fective number of BTB entries for the taken branches
with the AB and AFA policies is smaller than that of
the TB policy.
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Figure 5: Dynamic branch instruction rate

However, a couple of benchmarks such as fpppp



show slight increase in the hit rate. The branch history
is updated if an address has an entry in the BTB. The
history update can somehow improve the prediction
accuracy for other correlated branches.

Figure 5 shows the dynamic branch instruction
rate. The dynamic branch instruction rate varies
widely. The rate ranges from 15% to 35% for 12 bench-
marks. For four float-point benchmarks—applu, apst,
fpppp and turbdd, the rate is lower than 10%.
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Figure 6: One-way cache access rate

Figure 6 shows percentage of instruction fetches
that need only one-way access. For the AFA policy, a
BTB entry is allocated for every fetch address missing
from the BTB. Thus one-way cache access rate is close
to 100% for every benchmark and is not affected by the
dynamic instruction rate shown in Figure 5. However,
high dynamic instruction rate results in high one-way
access rate for the TB and AB policies. One-way ac-
cess rate for the AB policy is slightly higher than the
rate for the TB policy because of additional entries
allocated for untaken branches.

1.02 - ETB WAB OAFA
1.015 4
1.01 A
1.005 4

0.995 -
0.99 -
0.985 -

0.98 -

S SRS A er LD
& TG S FF LG T TS
< < S

SO P e
N

)
& ¢« °
<&

Figure 7: Normalized execution time

Figure 7 shows normalized execution time. For

most benchmarks, the execution time is almost same
with different policies. For gee and go, the execution
time increases because the branch address prediction
hit rate decreases as shown in Figure 4. For su2cor
and tomcatv, increase in branch address prediction hit
rate results in decrease in execution time. For fpppp,
although the address prediction hit rate increases, the
overall instruction cache miss rate increases as well.
Hence the execution time increases slightly. The av-
erage normalized execution timeis 1, 1 and 1.001 for
TB, AB and AFA respectively. There is virtually no
performance degradation with our technique.
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Figure 8: Normalized energy

Figure 8 shows normalized energy. As our tech-
nique can only reduce instruction cache hit energy,
hit energy is used in the calculation. The relationship
between the hit energy and the miss energy depends
on the instruction cache miss rate. For all benchmarks
except fpppp, the hit energy is at least ten times the
miss energy. Normalized energy highly depends on the
one-way cache access rate shown in Figure 6. For TB,
AB and AFA policies, the average normalized energy
is 70.8%, 66.7% and 37.6% respectively, which trans-
lates into 29.2%, 33.3% and 62.4% energy savings.

5 Discussion
Calder and Grunwald have proposed a coupled
BTB for fast instruction fetch in a set-assoclative in-

struction cache [4]. A similar scheme is also used in
the Alpha 21264 [8]. Each cache line is in the format:

(tag, data, next-line, next-way).

“Next-line” and “next-way” are used to locate the
next fetch cache line. Because of the “next-way” pre-
diction, most of the time one cache way is accessed
and this can result in low instruction cache energy.
The effective number of entries in a coupled BTB is
smaller than the number of instruction cache lines. In



addition, “next-line” and “next-way” can only point
to one cache line. Prediction misses often occur when
there are multiple branches in a cache line or a branch
changes direction. On the contrary, the decoupled
BTB shown in Figure 1 can provide accurate predic-
tion in the above scenarios.

In the coupled BTB, the next fetch cache line is
unknown until current instruction fetch finishes. The
instruction fetch is serialized and is not scalable. On
the other hand, the decoupled BTB is scalable. It
can support multiple branch predictions and multiple
cache line fetches in one cycle to deliver more instruc-
tions [10, 12]. The decoupled BTB can also enable a
scalable front-end with asynchronous instruction fetch
and BTB prediction for high rate instruction delivery
as proposed by Reinman, Austin and Calder [9].

Comparing to a coupled BTB, the energy savings
by our way-footprint prediction are higher because the
prediction accuracy by the decoupled BTB is higher
and we can predict based on RAS. And the framework
for energy savings by our way-footprint prediction is
scalable.

Inoue, Ishihara and Murakarni have proposed an-
other kind of “way-prediction” [6]. For each cache set,
the way-footprint for the last accessed way is stored in
a table. When the same set is accessed next time, the
last accessed way is speculatively accessed first. On a
way-prediction miss, the remaining ways are accessed
in the next cycle. Way-prediction is stored in a table
and this table is accessed before the cache. Because
of this kind of access serialization, the processor cycle
time may be affected. In addition, the performance
degradation is much higher than our approach.

Albonesi has proposed “selective cache ways” [1] to
turn off some cache ways based on application require-
ments. He has only investigated energy savings in the
data cache. “Selective cache ways” can also be used
in the instruction cache. As all the active ways are
accessed simultaneously, the energy savings are much
lower than “way-prediction”, where only one way is
accessed most of the time. This technique cannot be
used 1n applications with large work set because the
number of cache misses, which can incur high energy
and performance cost, may increase dramatically.

6 Conclusion

In this paper, we have proposed a way-footprint
prediction technique for energy savings in set-
associative instruction caches. The hardware cost
is small because it utilizes existent hardware in the
branch predictor. And the added hardware is not on
one of the critical path. We have investigated three
BTB allocation policies for their effects on perfor-

mance and energy. Each of them results in 29%, 33%
and 62% instruction cache energy savings with nor-
malized execution time of 1, 1 and 1.001 respectively.

We are currently investigating the potential perfor-
mance advantages of the way-footprint prediction. For
one-way cache access, the access time is shorter be-
cause there is no need for way selection. It is likely to
take a shorter time for the instructions to go through
the pipeline. This may result in early branch miss
prediction detection and reduce the branch miss pre-
diction penalties. In addition, the average instruction
cache port utilization is decreased because of shorter
cache access time. Idle ports can be used by some
techniques, such as tag check during the prefetching,
to improve performance.
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