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Abstract

Caches are partitioned into subarrays for optimal
timing� In a set�associative cache� if the way holding
the data is known before an access� only subarrays
for that way need to be accessed� Reduction in cache
switching activities results in energy savings�

In this paper� we propose to extend the branch pre�
diction framework to enable way�footprint prediction�
The next fetch address and its way�footprint are pre�
dicted simultaneously for one�way instruction cache
access� Because the way�footprint prediction shares
some prediction hardware with the branch prediction�
additional hardware cost is small�

To enlarge the number of one�way cache accesses�
we have made modi�cations to the branch prediction�
Speci�cally� we have investigated three BTB allocation
policies� Each policy results in average ���� ��� and
	�� energy savings with normalized execution time 
�

� and 
���
 respectively�

� Introduction

With advances in semiconductor technology� pro�
cessor performance continues to grow with increas�
ing clock rates and additional hardware support for
instruction level parallelism� The side e�ect is that
power dissipation also increases signi�cantly� With
the maturity of IC techniques for power management�
architectural and compiler techniques hold signi�cant
potential for power management ��� These techniques
decrease power dissipation by reducing the number of
signal switching activities within the microprocessor�

High utilization of the instruction memory hierar�
chy is needed to exploit instruction level parallelism�
Thus power dissipation by the on�chip instruction
cache is also high� On�chip L
 instruction cache alone
can comprise as high as ��� of the CPU power���

In this paper� we exploit cache way partitioning in

the set�associative caches for instruction cache energy
savings� For a cache access� if the way holding the in�
structions is known before the access� then only that
particular way needs to be accessed� To know which
way holds the instructions before an access� a way�
footprint prediction mechanism can be used� There
are similarities between the branch prediction and the
way�footprint prediction� One predicts the next fetch
address based on current fetch address� the other pre�
dicts the way�footprint of the next fetch address based
on current fetch address� Thus we can extend the
branch prediction framework to enable way�footprint
prediction� which can signi�cantly reduce the hard�
ware cost for the way�footprint prediction�

The rest of this paper is organized as follows�
In Section �� we present the motivation for this re�
search� Section � describes the implementation of
way�footprint prediction� The experimental results
are given in Section �� Section � compares way�
footprint prediction with related techniques for in�
struction cache energy savings� The paper is con�
cluded with future work in Section 	�

� Motivation

For optimal timing� caches are partitioned into sev�
eral subarrays so that wordline and bitline lengths are
short� In high�performance processors� all the data
subarrays and tag subarrays in a set�associative cache
are accessed in parallel to achieve short access time�
If the cache way holding the data is known before an
access� only data subarrays and tag subarrays for that
particular way need to be accessed� This reduces per
cache access switching activities and hence results in
energy savings�

One approach to predict the way�footprint for an
address is to use the way�footprint of this address
when it was accessed last time� For this purpose� his�






tory way�footprints should be saved� A simple imple�
mentation is to use a way�footprint cache� Each entry
in the way�footprint cache is in the following format�

�addr tag� way�footprint��

The size of the way�footprint �eld is equal to
log �n� 
�� where n values are needed for one�way ac�
cess in a n�way set�associative cache and one value is
needed for all�way access� For a ��way set�associative
cache� the size of the way�footprint �eld is � bits� For
a �k�entry way�footprint cache and ��byte instruction
size� the size of addr tag �eld is �
 bits� The tag
�addr tag� cost is much higher than the data �way�
footprint� cost in terms of area and power�
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Figure 
� Pipeline architecture

To support instruction fetch across basic block
boundaries� branch prediction is used in modern pro�
cessors� Figure 
 shows a typical pipeline architecture
with a branch predictor� For high�performance proces�
sors� multiple instructions are fetched simultaneously
and it may take � or � cycles to access the instruc�
tion cache� Whether an instruction is a branch can
only be determined a few stages later in the pipeline�
If the branch predictor only uses a branch address to
predict the next fetch address� there will be bubbles
in the pipeline for instruction fetch or the branch miss
prediction rate will be high� Thus in processors such
as G� ��� the branch predictor uses current fetch ad�
dress to predict the next fetch address every cycle�

Generally� there are three components in a branch
predictor� branch direction predictor �BDP�� branch
target bu�ers �BTB� and return address stack �RAS��
The BDP predicts whether a branch will take the tar�
get path� The BTB predicts the target address for a
taken branch� The RAS predicts the return address
for a return instruction�

A BTB is organized as a RAM�based structure and
is indexed by the fetch address� Each entry in the
BTB is in the following format�

�addr tag� target address��

A RAS is organized as a stack and only the top entry
is accessed� Each entry in the RAS is in the following
format�

�return address��

Note that the same fetch address is used in both
branch prediction and way�footprint prediction� If the
tag comparison in the BTB fails� then the tag compar�
ison in the way�footprint cache will also fail� Thus the
tag used in the way�footprint cache is redundant and
can be eliminated to reduce hardware cost�

� Way�footprint Prediction
To support way�footprint prediction� a way�

footprint �eld is added to the RAS entry� As the num�
ber of entries in a RAS is small and only the top entry
is accessed during the branch prediction� the RAS ac�
cess is not on one of the critical path� Consequently�
adding the way�footprint �eld to the RAS entry is un�
likely to a�ect the processor cycle time�

Adding way�footprint �elds to the BTB entry will
increase the BTB capacity� The BTB access time in�
creases with capacity� This may a�ect the processor
cycle time because the BTB access is often on one
of the critical path� Thus a separate Way�Footprint
Table �WFT� shown in Figure 
 is used instead� The
number of ways and the number of sets in the WFT
is equal to those in the BTB� Each entry in the WFT
has the following two way�footprint �elds�

� target address way�footprint

� fall�through address way�footprint

The WFT access time is shorter than that of the BTB
because the WFT capacity is much smaller than the
BTB capacity� Thus the WFT access is not on one of
the critical path�

Way-footprint queue:

Entry format:
committed

…

u_ headu_tail

Uncommitted

c_1 c_2

committed

…

u_ headu_tail

Uncommitted

c_1 c_2

fetch address way footprint isCallisCacheMiss isBTBalloc isBrMissPredisBTBalloc isBrMissPredisTaken

Figure �� Way�footprint queue

Figure � shows the way�footprint queue needed for
the WFT and the RAS update� Entries �c 
� and
�c �� are reserved for the last two committed fetch
addresses� Entries from �u head� to �u tail� are used
to keep track of the way�footprints for uncommitted
fetch addresses�

�



When an instruction fetch �nishes� the �fetch ad�
dress� and �way�footprint� �elds of entry �u tail� are
updated� The �isCacheMiss� �eld is set if this fetch
has generated a cache miss�

When an instruction commits and its address
matches the �fetch address� �eld of entry �u head��
the following �elds of entry �u head� are updated�

� �isCall� is set if it is a call instruction�

� �isBTBalloc� is set if a BTB entry is allocated for
the instruction�

� �isBrMissPred� is set if the instruction is a miss
predicted branch�

� �isTaken� is set if the instruction is a taken
branch�

Then pointers �u head�� �c 
� and �c �� are updated
to re�ect the fact that a new entry has committed� If
the committed instruction is a miss predicted branch�
a wrong path is taken and the way�footprints in the
uncommitted entries of the way�footprint queue are
useless� All the uncommitted entries are �ushed� Note
that this �ush is done in parallel with the pipeline
�ush� which is required on a branch prediction miss�
Other queue operations are simple� Thus queue oper�
ations are unlikely on one of the critical path�

The WFT is updated in the next cycle if one of the
following conditions is satis�ed�

� �isCacheMiss� of entry �u 
� is set� the way�
footprint for a fetch address may change on an
instruction cache miss and WFT update is neces�
sary�

� �isBrMissPred� of entry �u �� is set� the way�
footprint for the next fetch may also change on a
branch prediction miss because a di�erent control
path may be taken�

� �isBTBalloc� of entry �u �� is set� an entry will
also be allocated in the WFT so that both the tar�
get address and the way�footprint can be provided
next time the same fetch address is encountered�

The �fetch address� �eld of entry �u �� and the �way�
footprint� �eld of entry �u 
� are used to update the
WFT� Either the �target address way�footprint� �eld
or the �fall�through address way�footprint� �eld is up�
dated depending on whether the �isTaken� �eld of en�
try �u �� is set�

Entries in both the BTB and the WFT can be iden�
ti�ed using �way� set�� During the branch prediction�
the BTB and the WFT are accessed in parallel using

the same index function� If the fetch address matches
the tag of the BTB entry �w� s�� then either the �target
address way�footprint� or the �fall�through address
way�footprint� of the WFT entry �w� s� is provided
for the next fetch depending on the branch direction
predicted by the BDP�

If the �isCall� �eld of entry �u �� is set� the RAS
update is needed� As the next fetch address is not
the return address� the �way�footprint� in entry �u 
�
is useless� However� if the call instruction is not on
the cache line boundary� the instruction following the
call instruction� which will be executed once the call
returns� is also in the same cache line� Thus the way�
footprint for the call instruction can be used for the
return address if the call instruction is not on the cache
line boundary� Otherwise� the way�footprint for all�
way access will be used�

During the branch prediction� if a return instruc�
tion is predicted to be in the current fetch� then the
top entry of the RAS will provide both the return ad�
dress and the way�footprint for the next fetch�

Modi�cations to the BTB allocation policy can af�
fect the BTB hit rate� which in turn can a�ect the
number of successful way�footprint predictions be�
cause way�footprint prediction can succeed only when
the tag comparison in the BTB succeeds� We have in�
vestigated the following three BTB allocation policies�

� taken branch policy �TB�� BTB allocation only
for a taken branch missing from the BTB�

� any branch policy �AB�� BTB allocation for any
branch missing from the BTB�

� any fetch address policy �AFA�� BTB allocation
for any fetch address missing from the BTB�

When an untaken branch or a non�branch instruc�
tion is allocated a BTB entry� the target address is
the next continuous fetch address� which is the de�
fault address prediction if current fetch address misses
from the BTB� The AB and AFA policies can decrease
the number of entries available for taken branches and
may degrade performance� Thus the TB policy is used
in most processors�

� Performance

We use the SimpleScalar toolset �� to model an out�
of�order speculative processor with a two�level cache
hierarchy� The simulation parameters shown in Table

 roughly correspond to those in a high�performance
microprocessor� We have simulated 
�� million in�
structions for all SPEC�� benchmarks except Vortex�

�



Parameter Value
branch pred� combined� �K ��bit chooser�

�k�entry bimodal�

��bit� �K�entry global

��cycle miss prediction penalty
BTB �K�entry� ��way

return address stack ��
RUU�LSQ 	����
fetch queue 
	
fetch width �

int���t� ALUs ���
int���t� Mult�Div ���

L
 Icache ��KB� ��way� ��B block
L
 Dcache 	�KB� ��way� ��B block
L� cache �
�KB� ��way� 	�B block

Table 
� System con�guration

For the ��way set�associative instruction cache� we
use the Cacti 

� to obtain the cache partitioning pa�
rameters with the optimal timing� The data array is
partitioned into eight subarrays and the tag array is
partitioned into two subarrays� One�way cache access
needs only to access two data subarrays and one tag
subarray� We also use the Cacti to derive the power
parameters� The power per all�way access is normal�
ized to 
� The power per one�way access is �����	 and
the power per WFT access is ������

The RAS and the way�footprint queue are small
structures and the power dissipation by them is very
small comparing to that of the instruction cache� Thus
the power dissipation by them is not modeled�
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Figure �� BTB allocation rate

Figure � shows the BTB allocation rate� calculated
as total number of BTB allocations versus total num�

ber of instruction fetches� The BTB allocation rate
is close to � for most benchmarks� For those bench�
marks� once a fetch address is allocated an entry� it
is unlikely to be replaced from the BTB because the
BTB capacity is much larger than the work set size�
Noticeable increase in the allocation rate can be found
in apsi� fpppp� gcc and gcc� For these benchmarks�
the work set size is relatively large and the number
of BTB con�ict misses increases� which leads to more
number of BTB allocation�
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Figure �� Branch address prediction hit rate

Figure � shows branch address prediction hit rate�
For most benchmarks� there is virtually no di�erence
in the hit rate with di�erent BTB allocation policies�
For gcc and go� the hit rate with the AB and AFA poli�
cies is lower than that of the TB policy� The reason
is that untaken branches and non�branch instructions
are allocated BTB entries� As a consequence� the ef�
fective number of BTB entries for the taken branches
with the AB and AFA policies is smaller than that of
the TB policy�
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Figure �� Dynamic branch instruction rate

However� a couple of benchmarks such as fpppp

�



show slight increase in the hit rate� The branch history
is updated if an address has an entry in the BTB� The
history update can somehow improve the prediction
accuracy for other correlated branches�

Figure � shows the dynamic branch instruction
rate� The dynamic branch instruction rate varies
widely� The rate ranges from 
�� to ��� for 
� bench�
marks� For four �oat�point benchmarks�applu� apsi�
fpppp and turb�d� the rate is lower than 
���
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Figure 	� One�way cache access rate

Figure 	 shows percentage of instruction fetches
that need only one�way access� For the AFA policy� a
BTB entry is allocated for every fetch address missing
from the BTB� Thus one�way cache access rate is close
to 
��� for every benchmark and is not a�ected by the
dynamic instruction rate shown in Figure �� However�
high dynamic instruction rate results in high one�way
access rate for the TB and AB policies� One�way ac�
cess rate for the AB policy is slightly higher than the
rate for the TB policy because of additional entries
allocated for untaken branches�
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Figure �� Normalized execution time

Figure � shows normalized execution time� For

most benchmarks� the execution time is almost same
with di�erent policies� For gcc and go� the execution
time increases because the branch address prediction
hit rate decreases as shown in Figure �� For su�cor
and tomcatv� increase in branch address prediction hit
rate results in decrease in execution time� For fpppp�
although the address prediction hit rate increases� the
overall instruction cache miss rate increases as well�
Hence the execution time increases slightly� The av�
erage normalized execution time is 
� 
 and 
���
 for
TB� AB and AFA respectively� There is virtually no
performance degradation with our technique�
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Figure �� Normalized energy

Figure � shows normalized energy� As our tech�
nique can only reduce instruction cache hit energy�
hit energy is used in the calculation� The relationship
between the hit energy and the miss energy depends
on the instruction cache miss rate� For all benchmarks
except fpppp� the hit energy is at least ten times the
miss energy� Normalized energy highly depends on the
one�way cache access rate shown in Figure 	� For TB�
AB and AFA policies� the average normalized energy
is ������ 		��� and ���	� respectively� which trans�
lates into ������ ����� and 	���� energy savings�

� Discussion
Calder and Grunwald have proposed a coupled

BTB for fast instruction fetch in a set�associative in�
struction cache ��� A similar scheme is also used in
the Alpha �
�	� ��� Each cache line is in the format�

�tag� data� next�line� next�way��

�Next�line� and �next�way� are used to locate the
next fetch cache line� Because of the �next�way� pre�
diction� most of the time one cache way is accessed
and this can result in low instruction cache energy�

The e�ective number of entries in a coupled BTB is
smaller than the number of instruction cache lines� In

�



addition� �next�line� and �next�way� can only point
to one cache line� Prediction misses often occur when
there are multiple branches in a cache line or a branch
changes direction� On the contrary� the decoupled
BTB shown in Figure 
 can provide accurate predic�
tion in the above scenarios�

In the coupled BTB� the next fetch cache line is
unknown until current instruction fetch �nishes� The
instruction fetch is serialized and is not scalable� On
the other hand� the decoupled BTB is scalable� It
can support multiple branch predictions and multiple
cache line fetches in one cycle to deliver more instruc�
tions 
�� 
��� The decoupled BTB can also enable a
scalable front�end with asynchronous instruction fetch
and BTB prediction for high rate instruction delivery
as proposed by Reinman� Austin and Calder ���

Comparing to a coupled BTB� the energy savings
by our way�footprint prediction are higher because the
prediction accuracy by the decoupled BTB is higher
and we can predict based on RAS� And the framework
for energy savings by our way�footprint prediction is
scalable�

Inoue� Ishihara and Murakarni have proposed an�
other kind of �way�prediction� 	�� For each cache set�
the way�footprint for the last accessed way is stored in
a table� When the same set is accessed next time� the
last accessed way is speculatively accessed �rst� On a
way�prediction miss� the remaining ways are accessed
in the next cycle� Way�prediction is stored in a table
and this table is accessed before the cache� Because
of this kind of access serialization� the processor cycle
time may be a�ected� In addition� the performance
degradation is much higher than our approach�

Albonesi has proposed �selective cache ways� 
� to
turn o� some cache ways based on application require�
ments� He has only investigated energy savings in the
data cache� �Selective cache ways� can also be used
in the instruction cache� As all the active ways are
accessed simultaneously� the energy savings are much
lower than �way�prediction�� where only one way is
accessed most of the time� This technique cannot be
used in applications with large work set because the
number of cache misses� which can incur high energy
and performance cost� may increase dramatically�

� Conclusion
In this paper� we have proposed a way�footprint

prediction technique for energy savings in set�
associative instruction caches� The hardware cost
is small because it utilizes existent hardware in the
branch predictor� And the added hardware is not on
one of the critical path� We have investigated three
BTB allocation policies for their e�ects on perfor�

mance and energy� Each of them results in ���� ���
and 	�� instruction cache energy savings with nor�
malized execution time of 
� 
 and 
���
 respectively�

We are currently investigating the potential perfor�
mance advantages of the way�footprint prediction� For
one�way cache access� the access time is shorter be�
cause there is no need for way selection� It is likely to
take a shorter time for the instructions to go through
the pipeline� This may result in early branch miss
prediction detection and reduce the branch miss pre�
diction penalties� In addition� the average instruction
cache port utilization is decreased because of shorter
cache access time� Idle ports can be used by some
techniques� such as tag check during the prefetching�
to improve performance�
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