
Architectural and Compiler Strategies for
Dynamic Power Management in the COPPER Project

Ana Azevedo, Radu Cornea, Ilya Issenin,
Rajesh Gupta, Nikil Dutt, Alex Nicolau, Alex Veidenbaum

Center for Embedded Computer Systems
University of California, Irvine
444 Computer Science Building

Irvine, CA 92697-3425
faazevedo, radu, isse, rgupta, dutt, nicolau, alexvg@ics.uci.edu

Abstract

For a range of embedded system applications in mis-
sion critical and energy constrained scenarios it is impor-
tant to be able to dynamically control power consumption
in response to changing power availability. In this pa-
per, we present our approach to dynamic adaptation of
system power consumption and application performance
through microarchitectural and software strategies. In par-
ticular, we discuss our techniques for compiler controlled
dynamic register file reconfiguration and profile-driven dy-
namic clock frequency and voltage scaling. We evaluate
the effectiveness of power scheduling heuristics based on
these techniques in complying with desired power and per-
formance constraints for a given application.

1 Introduction

Power and energy consumption have been focus of much
attention in the design of microelectronics based embed-
ded systems. While a range of circuit design and CAD
techniques have been developed that yield significant reduc-
tions in power, lately the attention has been on system-level
power management and on techniques under compiler, mi-
croarchitecture, application software and user control. Ex-
tensive reviews of power minimization techniques at vari-
ous design abstraction levels are presented by [4, 18, 11, 9].

In this paper we present our approach to dynamic con-
trol of power and performance of an application that allows
to adapt its power-performance profile to externally defined
constraints. To control the power/performance profile, we
examine use of register files, operating frequency and the
supply voltage. We also explore their effectiveness in inte-
gration with compiler algorithms. In our scheme the com-

piler generates configuration code embedded in the applica-
tion and produces different code versions to be selected at
run-time to adapt the code to be run on different architec-
tural organizations. For instance, in case of dynamic regis-
ter file reconfiguration, the configuration code carries infor-
mation on the number of registers needed by each function
in the code. We also discuss our profile-driven technique
for dynamically scaling the clock frequency and the supply
voltage and how it can be combined with the former tech-
nique, taking into account both time and power constraints.

Related work on power-performance modulation comes
from several research areas. The work in [5] formalizes a
quantitative definition of power-aware systems. It proposes
the ensemble construction technique for enhancing power-
awareness based on composing a system as an assembly of
blocks, each engineered to be energy-efficient in specific
execution scenarios. One illustration of the technique ap-
plies it to the construction of a register file split into banks
that can be activated/deactivated depending on the program
needs.

The emergence of instruction level power models [28]
contributed to the development of compiler techniques for
power minimization. In [26, 21] instruction scheduling al-
gorithms take into account per-instruction power and the
inter-instruction power overhead when selecting instruc-
tions and reordering them to reduce switching activity in
the control path. To reduce the switching activity of in-
struction operands and within registers shared by common
data values, register allocation and binding algorithms have
been designed [12, 10]. Discussions on the power effect
of machine dependent optimizations and higher level com-
piler optimizations, such as loop unrolling and software
pipelining, can be found in [20, 27]. Techniques for en-
ergy efficient memory systems are also being developed. [3]
presents a compiler-driven code layout technique to exploit

a specialized cache storing instructions from critical loops.

Emerging microarchitecture-driven power optimization
techniques aim at dynamically reconfiguring the hardware
resources, according to the parallelism in the program. In
[23, 19] the information on code parallelism and the most
efficient hardware configuration adapted to exploit it is ei-
ther pre-computed and stored in code annotations or com-
puted on-the-fly, using run-time profiling techniques.

Dynamic voltage scaling under operating system control
using interval-based scheduling algorithms for non-real-
time systems were introduced by [29, 14]. These strategies
are limited by their poor understanding of application pro-
cessing requirements. More recent approaches [15, 24, 16]
scale frequency/voltage to adapt to the program’s execu-
tion behavior and better account for the application com-
putation workload and deadlines. The work in [8] shows
how the compiler can automatically derive estimation of
memory and CPU workload for an application and calcu-
late the optimal frequency/voltage levels for executing the
code. Another compile-time intra-task voltage scheduling
technique is presented in [25]. Using a static program anal-
ysis technique on worst-case execution times, the algorithm
inserts voltage and frequency scaling code in the original
program to exploit all the slack time from runtime variations
of different execution paths. A microarchitecture-driven ap-
proach to reduce power consumption by dynamic voltage
scaling exploiting processor stalls during cache misses is
presented in [22].

Closely related to our approach is the the hardware-
controlled mechanism for energy and thermal management
designed in [17]. The framework combines existing en-
ergy/power controlling techniques, like frequency/voltage
scaling, memory system optimizations for low power and
chip sleep mode. Techniques are prioritized by their esti-
mated energy saving and slowdown. During program ex-
ecution, the selected techniques are applied according to
their priority, the application speed, estimated by calculat-
ing the average IPC, and the temperature limits to be re-
spected. The focus of our effort is the compiler-guided com-
bination of the techniques for low power that can provide
tradeoff between power and performance.

This paper is organized as follows. Section 2
presents the COPPER (compiler-controlled continuous
power-performance) framework. Section 3 explains the
techniques for compiler-controlled register file reconfigu-
ration and profile-driven clock frequency/voltage scaling.
In this section we also discuss how these orthogonal op-
timizations are combined to modulate applications power-
performance profile under both power and time constraints.
Finally we conclude in Section 4.

2 The COPPER Framework

Figure 1 shows the COPPER dynamic power-
performance management framework components and
the software design flow. COPPER uses the gcc compiler,
Wattch [6] power simulator and its underlying SimpleScalar
performance simulator [7] to develop a complete path from
code analysis and instrumentation to compilation and
simulated execution. A new power profiler and a power
scheduler modules were designed and integrated with the
Wattch simulator.

Cycle-Level

Performance

Simulator

Parameterizable

Power Models

Hardware

Config

Annotated

Code

Versions

Performance

Estimate

Power

Estimate

Cycle-by-Cycle

Hardware Access

Counts

Power

Scheduler
Power

Profiler

Annotating

Compiler

Application

Chosen Annotated

Code Version

APDB: Available Power DataBase

PPDB: Power Profile DataBase

PPDB
APDB

COPPER Power-Performance Simulator

Cycle-Level

Performance

Simulator

Parameterizable

Power Models

Parameterizable

Power Models

Hardware

Config

Annotated

Code

Versions

Performance

Estimate

Power

Estimate

Cycle-by-Cycle

Hardware Access

Counts

Power

Scheduler
Power

Profiler

Annotating

Compiler

Application

Chosen Annotated

Code Version

APDB: Available Power DataBase

PPDB: Power Profile DataBase

PPDB
APDB

COPPER Power-Performance Simulator

Figure 1. The COPPER dynamic power-
performance management framework.

The power profiler module together with gcc compiler
form the prototype for a power-performance profiling com-
piler needed by our framework. The power profiler imple-
ments function-level profiling that collects total and individ-
ual hardware unit energy/power consumption levels and ex-
ecution cycle counts for applications. This profiling infor-
mation is summarized in a power profile database (PPDB).
Constraints on dynamic power consumption are specified
in an available power profile database (APDB). The APDB
can represent either readings from ever-changing external
environmental conditions or pre-programmed power dissi-
pation levels acceptable to accomplish specific tasks within
the application.

COPPER uses a variety of architectural, compiler and
technology “knobs” to control the power profile of the ap-
plication. In this paper we focus on dynamic register file
reconfiguration, frequency and voltage scaling. One way to
control the profile is by creating multiple code versions that
are selected by the runtime system. Besides differences in
the register pressure, functional units utilization, amount of

Energy-delay versus Code versions

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

1 2 3 4 5 6 7 8

Code versions

E
n

e
rg

y
-d

e
la

y

LL1

LL4

LL6

LL9

LL16

LL22

Figure 2. Energy-delay product variation for
different code versions of Livermore loops.

memory accesses and instructions mix, the compiled code
versions present different levels of instruction level paral-
lelism. This provides additional flexibility in achieving per-
formance goals within energy constraints.

However, code versioning is only a part of the mech-
anisms used to pass information from the compiler to the
runtime system. The information computed by the com-
piler, such as time, energy profile and code characteristics,
is also carried down to the run-time system using tables and
code annotations. For example, the number of registers ac-
tually used by a function are annotated in the call operation.

The power scheduler responds to changes in the avail-
able power profile. Run-time power scheduling heuristics
predict application power dissipation based on the ahead-
of-time power profile. In the current implementation, our
power scheduler can dynamically change the size of the
integer and floating point register files (by turning unused
registers off) and change the operating clock frequency and
supply voltage.

3 Dynamic Power Management

Identification of the right architectural features and com-
pilation variables that have the most effect on power and
performance profile while at the same time providing a
good control through compiler algorithms is a challeng-
ing problem. A preliminary study of power consumption
profiles across architectural components is presented in [2].
The register files provide a good potential for controlling
power/performance profile since their use is often directly
controlled by the compiler and these constitute an architec-
tural feature present in virtually all types of processors. In
addition to their impact on the operation delays and over-
all program delay, register files themselves have an impact
on power consumption by varying sets or numbers of reg-

Percentage of energy increase versus Number of registers

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

Number of registers

P
e
rc

e
n

ta
g

e
o

f
e
n

e
rg

y
in

c
re

a
s
e

LL1

LL2

LL4

LL6

LL9

LL16

LL22

Figure 3. Percentage of total energy increase
when varying the number of registers for Liv-
ermore loops.

isters being used, and their use parameters such as the data
width and the number of ports [5]. Scaling frequency and
voltage are well-studied mechanisms for reducing energy
dissipation and their impact on power and performance can
be fairly accurately estimated [24].

3.1 Register File Reconfiguration

Register files provide two main sources of varying
power/performance characteristics of an application at com-
pile time, by changing heuristics to control register alloca-
tion and binding. Architectures that present multiple sets of
register files provide an additional flexibility in the choice
of variable bindings across register sets.

Figure 2 shows how the energy-delay product [13] varies
for different code versions of Livermore loops. We chose
this metric because it allows to compare code versions from
both a power and performance standpoint. The code ver-
sions 1 to 8 were compiled for 4, 8, 12, 16, 20, 24, 28 and
32 available registers, for each Livermore loop. This means
that the produced code versions use at most the number of
available registers and code versions register demand vary
for different loops.

For the LL6 loop, the most energy efficient code (deter-
mined by the minimum energy-delay product value) is the
one generated by code version 5 that uses exactly 15 regis-
ters (13 integer and 2 floating-point registers). A power-
performance aware compiler is able to find this optimal
number of registers. Compiling the code for a register num-
ber below 15 increases register pressure and results in more
memory usage with register spilling. As a consequence, the
system energy consumption (and the energy-delay product)
increases. Using more than 15 registers also leads to less
energy-efficient code compared to the code performance

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

[T
ot

al
 P

ow
er

]

[x 1000 nanoseconds]

Before Power Management (32 registers)
After Power Management

Power Availability

Figure 4. Power management via register file
reconfiguration and code versioning for com-
press benchmark.

in the optimal configuration (15 registers) and the energy-
delay product begins to increase again though at a slower
rate. This is explained by the increase in register file power
consumption. The above data suggests that register file size
has an effect on code with both low and high register pres-
sure.

Figure 3 highlights the contribution of register file units
energy consumption in the total system energy. It shows, for
the same set of Livermore loops, the percentage increase
in total energy observed when running the best code ver-
sion for each loop on register file architecture configurations
supporting a number of registers higher than the code really
needs. For LL6 loop example, when running the best code
version (which uses 13 interger and 2 floating-point regis-
ters) on architectures with 13, 16, 20, 24, 28 and 32 registers
of each type, we observed an increase in total energy from
2.5 to 11%.

In the COPPER framework we take advantage of the en-
ergy versus number of registers relation shown in Figures
2 and 3 to build our technique for dynamically throttling
power/performance. We maintain multiple code versions
produced under varying numbers of registers and exact in-
formation on the number of registers used in each function
call. With code versioning it is possible to increase/decrease
average power and expand/compress time. For example,
running the code versions compiled for a number of reg-
isters higher than the optimal may lead to higher energy
consumption and lower execution delay. On the other side,
reconfiguring register files guarantees we do not dissipate
more power than really needed to execute the code.

To generate code versions we use the gcc compiler, vary-
ing gcc compilation flags. Each code version is analyzed
and annotated with information on register file utilization.

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

[C
od

e
V

er
si

on
]

[x 1000 nanoseconds]

Code Version Switching 32 registers (1), 16 registers (2)

Figure 5. Code version (and register file re-
configuration) switching activity during dy-
namic power management for compress bench-
mark.

When power profiling each code version, registers are re-
configured at each function call as the program runs, using
the annotated values for register use. The power scheduler
is invoked at each function call. Based on the APDB in-
stantaneous power level and the PPDB information for the
code versions, the scheduler decides on the new code ver-
sion using heuristics. For example, in our experiments we
use a heuristic that selects the code version that dissipates
total system power below and closest to the instantaneous
power limit derived from the available power profile. The
scheduler then reconfigures the architecture as suggested by
the code annotations and program simulation resumes.

We illustrate our power scheduling heuristic using
SPEC95 compress benchmark. In this example, code ver-
sions were compiled for 32 and 16 integer and floating-point
registers. The experiments were simulated at 600MHz-
2.2V. Figure 4 shows that the resultant power profile follows
the available power profile. However, the consumed power
is not always under the imposed limit. The latter condition
will be enforced by the technique in Section 3.2. The code
version (and register reconfiguration) switching activity is
shown in Figure 5. It is a difficult design problem to choose
the right time granularity at which the code should be in-
strumented to yield an effective and useful modification of
the power profile. Our choice of changing code version and
reconfiguring registers at function calls is not always ef-
fective in controlling the power profile as shown by Figure
4. We also notice that the power management on the com-
press example increases the execution delay by 32% com-
pared to the performance of the code compiled for 32 regis-
ters. Our technique tries to satisfy peak power constraints at
the expense of overall system energy consumption increase,

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

[T
ot

al
 P

ow
er

]

[x 1000 nanoseconds]

Before Power Management (600MHz, 2.2V, 32 registers)
After power management (32 registers)

Power availability

Figure 6. Power management via clock fre-
quency/voltage scaling for compress bench-
mark.

which might be an acceptable side-effect depending on the
underlying power source. In the example in Figure 4 we
have not fully accounted for the hardware complexity nor
the overhead to turn on or off groups of registers.

3.2 Clock Frequency and Voltage Scaling

Power management through clock frequency and volt-
age scaling is divided in three phases: compilation, pro-
filing and scheduling. For a given register file configu-
ration, the code is compiled and profiled as before. The
new power scheduler heuristic takes into account the fre-
quency/voltage choices in determination of the expected
power profile. In the current implementation we support
scaling to four different clock frequency and voltage con-
figurations: 600MHz-2.2V, 500MHz-1.8V, 400MHz-1.5V
and 300MHz-1.1V. We simulate 20�s of time overhead for
complete 0-100MHz clock frequency transition and during
this period the processor cannot operate [24]. The scheduler
controls and modulates power by following the available
power profile, checking it at fixed time intervals of 100ns,
changing clock frequency and voltage if needed. In order to
select a new configuration the scheduler checks the profiled
average system power dissipated by the function currently
in execution. It chooses a combination of clock frequency
and voltage that yields power dissipation closest and below
the available power limit.

Figure 6 shows the modulated profile generated by the
power scheduler when running compress benchmark. The
rate at which frequency (and voltage) is switched through-
out the program execution is shown in Figure 7. We observe
a significant increase of 130% in the execution delay when
compared to the performance of the same code running at

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

[F
re

qu
en

cy
, M

H
z]

[x 1000 nanoseconds]

Clock Frequency Switching

Figure 7. Clock frequency switching activity
during dynamic power management for com-
press benchmark.

600MHz-2.2V.

3.3 Power Profile Control under Timing Con-
straints

In general, the dynamic power management techniques
from Sections 3.1 and 3.2 result in execution delay increase.
For effective power and performance control, it is, there-
fore, essential to impose constraints on the timing perfor-
mance as well and take them into account in power schedul-
ing decisions. While time constraints are expected to be
met closely, the available power profile only imposes an up-
per bound on run-time power consumption. Another power
scheduling challenge is to minimize this power consump-
tion as much as possible. In this section we show how the
previously studied techniques can be combined to address
the issues mentioned above.

To specify time constraints we use program checkpoints.
A checkpoint c represents a specific location in the code.
Figure 8 shows an example of code with four checkpoints
and four possible checkpoint transitions: transition (1-2)
comprises the instructions from the code beginning up to the
instructions in the first iteration of the while-loop; transi-
tion (2-2) includes the code fragment for one loop iteration;
transition (2-3) represents the control flow taken to exit the
while-loop; and transition (3-4) is composed of all the re-
maining code instructions. In our framework, user-defined
checkpoints are inserted in the source code and compiled
into special break instructions by using SimpleScalar in-
struction set annotation bits.

Time constraints are set for the execution time of the
piece of code between checkpoints, in terms of accept-
able lower and upper bounds (lc, uc) This information is

CHECKPOINT(1);CHECKPOINT(1);

c =c = foofoo(a, b);(a, b);

while (port[12] = 0) do{while (port[12] = 0) do{

CHECKPOINT (2);CHECKPOINT (2);

……

}}

CHECKPOINT(3);CHECKPOINT(3);

i = 36;i = 36;

for (j = 0; j < i, j++) {for (j = 0; j < i, j++) {

k = k*sin(j/100 + k/1000);k = k*sin(j/100 + k/1000);

}}

CHECKPOINT(4);CHECKPOINT(4);

Time ConstraintsTime Constraints

CheckpointCheckpoint Min TimeMin Time Max TimeMax Time

TransitionTransition (ms)(ms) (ms)(ms)

11--22 1010 1010

22--22 11 55

22--33 11 11

33--44 100100 200200

CHECKPOINT(1);CHECKPOINT(1);

c =c = foofoo(a, b);(a, b);

while (port[12] = 0) do{while (port[12] = 0) do{

CHECKPOINT (2);CHECKPOINT (2);

……

}}

CHECKPOINT(3);CHECKPOINT(3);

i = 36;i = 36;

for (j = 0; j < i, j++) {for (j = 0; j < i, j++) {

k = k*sin(j/100 + k/1000);k = k*sin(j/100 + k/1000);

}}

CHECKPOINT(4);CHECKPOINT(4);

Time ConstraintsTime Constraints

CheckpointCheckpoint Min TimeMin Time Max TimeMax Time

TransitionTransition (ms)(ms) (ms)(ms)

11--22 1010 1010

22--22 11 55

22--33 11 11

33--44 100100 200200

Figure 8. Code example with checkpoints and
imposed time constraints.

stored in a checkpoint database (CDB), along with the pos-
sible checkpoint transitions derived from the program con-
trol flow. Figure 8 shows an example of how minimum and
maximum time constraints for checkpoint transitions and
the description of the possible transitions are specified in a
CDB.

To estimate the quality of the time-constrained schedul-
ing we define an error measure �c

�c =

8<
:

jtc � lcj; tc < lc

jtc � ucj; tc > uc

0 otherwise

as the absolute value of the difference between the actual
checkpoint execution time tc and the closest time constraint
bound. The average relative error in satisfying the time
constraints is the sum of the error values �c for all check-
point transitions divided by the program execution time, or

" =

P
c

�c

executiontime

Our heuristic for scheduling with power and time
constraints is divided in three phases: two ahead of time
profiling phases and the final run-time power scheduling
phase. Details about each phase follow below.

Profiling Phase 1: This phase selects the best code
version for each function in the program. We compile
code versions for 16 and 32 registers, in the same way
as in Section 3.1. Code selection is based on the energy
delay metric energy � delay2, where energy is the total
profiled system energy consumed and delay is the total
profiled cycle count per function. We chose this metric
because dynamic voltage scaling leads to the relation
energy / frequency

2 . Finally, we produce code annota-
tions carrying the best code version as chosen by the metric
along with its register demand.

Profiling Phase 2: The goal in phase 2 is to generate
a checkpoint power profile database (CPDB). This second

profiling phase collects energy and maximum cycle count
for checkpoint transitions. Using the code annotations from
Phase 1, we run the program adjusting register file size and
changing the code version to be run.

Run-Time Power Scheduling: The power scheduler
dynamically changes configuration to the annotated code
version and register file size at function calls and, if
necessary, dynamically adjusts the frequency at program
checkpoints. Other times at which the scheduler might
adjust the frequency include points of abrupt changes in
the APDB and times the scheduler realizes an expected
checkpoint transition did not take place. The latter happens
when an alternative control flow path is executed and
therefore frequency must be adjusted. To reduce overall
energy consumption, when reducing the clock frequency
the voltage is scaled proportionally to changes in the
clock speed [24]. In our experiments we use configuration
600MHz-2.2V as baseline and clock frequency can vary in
20MHz increments. Figure 9 outlines the algorithm used
at each checkpoint. The main phases of the algorithm are
described below.

Create list of events: Step 1 in Figure 9.
The scheduler creates a list of all possible events from
the current time marked by the current checkpoint to the
farthest deadline of all possible future checkpoints. The
in between events might include some other checkpoint
transitions and available power profile change points.

Calculate frequency limit: Step 2 in Figure 9.
To calculate the run-time frequency limit (flimit) values
the scheduler uses the APDB, CPDB and CDB informa-
tion, checking the available power (power limit) and
the maximum profiled power (max power per cycle)
consumed from the checkpoint in consideration to all
its possible transitions to future checkpoints. The fre-
quency limit is calculated by a formula which is based
on the fact that dynamic voltage scaling combines two
CMOS design equations: energy / voltage

2 and
frequency / (voltage � Vt)=voltage. Figure 10 illus-
trates a list of events and the conversion of available power
constraints into frequency limit constraints.

Calculate optimal frequency: Step 3 in Figure 9.
Upon obtaining the frequency limit, the scheduler calculates
the range of frequencies the code can be run to satisfy the
time constraint upper bounds. In this calculation it uses the
CDB information on imposed time constraints for all pos-
sible checkpoint transitions from the checkpoint in consid-
eration. At this phase three situations may arise. In the
case there is only one future checkpoint transition (Case 1
in Figure 9, graphically illustrated in Figure 11), we calcu-

1. At a checkpoint execution, create a new list of events with the time intervals the events occur.

2. Calculate frequency limit flimit for each of the time intervals in the list of events.

3. Calculate optimal frequency and create a schedule for adjusting frequency values.

Case 1: Only two checkpoints, frequency limit is high.

Case 2: Only two checkpoints, frequency limit is not constantly high.

Case 3: Several possible future checkpoints, each checkpoint transition handled as Case 1 or Case 2.

4. Execute the program, adjusting optimal frequency values according to the created schedule.

5. As soon as the next checkpoint is executed, discard the list of events. Go to step 1.

3 2 / per_cyclemax_power_qt*base_frepower_limiflimit �

eckpointsbetween_chonstraint_max_time_c

cyclesofnumberprofiled
frequencyOptimal

_ �

�
�
�

��
�

)/()(
_

melimited_tionstraintmax_time_cclesmber_of_cylimited_nuyclesumber_of_cprofiled_n

freq_limit
frequencyOptimal

intervalhe_secong_time_for_tremaining_

d_interval_the_seconcycles_fornumber_of_remaining_
intervalsecondeqOptimal_fr �)_(

opt_freq2)opt_freq1,intervfirsteqoptimal_frResulting_ max()_(�

1. At a checkpoint execution, create a new list of events with the time intervals the events occur.

2. Calculate frequency limit flimit for each of the time intervals in the list of events.

3. Calculate optimal frequency and create a schedule for adjusting frequency values.

Case 1: Only two checkpoints, frequency limit is high.

Case 2: Only two checkpoints, frequency limit is not constantly high.

Case 3: Several possible future checkpoints, each checkpoint transition handled as Case 1 or Case 2.

4. Execute the program, adjusting optimal frequency values according to the created schedule.

5. As soon as the next checkpoint is executed, discard the list of events. Go to step 1.

3 2 / per_cyclemax_power_qt*base_frepower_limiflimit �

eckpointsbetween_chonstraint_max_time_c

cyclesofnumberprofiled
frequencyOptimal

_ �

�
�
�

��
�

)/()(
_

melimited_tionstraintmax_time_cclesmber_of_cylimited_nuyclesumber_of_cprofiled_n

freq_limit
frequencyOptimal

intervalhe_secong_time_for_tremaining_

d_interval_the_seconcycles_fornumber_of_remaining_
intervalsecondeqOptimal_fr �)_(

opt_freq2)opt_freq1,intervfirsteqoptimal_frResulting_ max()_(�

Figure 9. Outline of the algorithm for scaling frequency and voltage under power and time constraints.

0

2

4

6

8

10

0 5 10 15

Time

P
o

w
e
r

Available

Power Profile

Checkpoint 5

Checkpoint 6

Checkpoint 7

0

200

400

600

800

0 5 10 15

Time

F
re

q
u

e
n

c
y

Checkpoint 5

Checkpoint 6

Checkpoint 7

Frequency limit

0

2

4

6

8

10

0 5 10 15

Time

P
o

w
e
r

Available

Power Profile

Checkpoint 5

Checkpoint 6

Checkpoint 7

0

200

400

600

800

0 5 10 15

Time

F
re

q
u

e
n

c
y

Checkpoint 5

Checkpoint 6

Checkpoint 7

Frequency limit

Figure 10. Converting available power con-
straints into frequency limit constraints.

0

200

400

600

800

0 100 200 300

Time

F
re

q
u

e
n

c
y

Checkpoint 3

Checkpoint 4

Frequency

limit
Optimal

frequency

Figure 11. Calculate optimal frequency algo-
rithm, case 1.

0

200

400

600

800

0 100 200 300

Time

F
re

q
u

e
n

c
y

Checkpoint 3

Checkpoint 4

Frequency

limit
Optimal

frequency

Figure 12. Calculate optimal frequency algo-
rithm, case 2.

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

0

200

400

600

800

0 5 10 15 20 25 30

Time

F
re

q
u

e
n

c
y

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Checkpoint 1

Checkpoint 2

Checkpoint 3

Checkpoint 1

Checkpoint 2

Checkpoint 3

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Frequency limit

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Optimal frequency ch1 - ch2

Optimal frequency ch1 - ch3

Final frequency values

Figure 13. Calculate optimal frequency algo-
rithm, case 3.

0

1

2

3

4

5

6

0 20 40 60 80 100 120

[T
ot

al
 P

ow
er

]

[x1000 nanoseconds]

1
2

3
4

4
4
4
4
4
4
4
4

4
4

4
4

4
5

6

600 MHz-2.2V

Figure 14. Power consumption highlight-
ing checkpoint execution times for paraffins
benchmark.

late a potential Optimal freq value by dividing the pro-
filed number of cycles for the checkpoint transition by the
maximum time allowed for this transition in the CDB. If this
value is less or equal to flimit, than Optimal freq is set to
this value. The second case (Case 2 in Figure 9, sketched
in Figure 12) still handles the situation in which there is
only one possible future checkpoint transition. However, in
this case, the frequency limit values calculated in the pre-
vious phase, for each event interval that happens within
the checkpoint transition interval, are lower than the po-
tential Optimal freq values calculated by Case 1. For
such intervals the Optimal freq is fixed to flimit. The
Optimal freq’s for the remaining intervals are calculated
just like in Case 1, after counting off the cycles (and time)
spent executing at flimit speed. In the third case (Case 3
in Figure 9, depicted in Figure 13), several possible check-
points can be reached from the checkpoint in consideration.
Each checkpoint transition is then handled as either Case 1
or Case 2. After calculating the Optimal freq values for
each checkpoint transition, the scheduler selects the maxi-
mum Optimal freq among the values. It keeps adjusting
the Optimal freq as program paths are executed, always
selecting an Optimal freq value that makes the code run
as slow as possible within the time constraints. For exam-
ple, in Figure 13, after checking that there is no checkpoint
occurrence after time 18, the scheduler assumes the transi-
tion (1-2) did not occur and lowers the speed for the execu-
tion of the remaining code until checkpoint 3 is executed.

We illustrate the combined heuristic using paraffins
benchmark [1]. Figure 14 shows the power consumption
profile for paraffins when executing the code switching to
the best code version (compiled for 32 or 16 registers) and

start end MinTime MaxTime

checkpoint checkpoint (ns) (ns)

1 2 4000 4000

2 3 8000 8000

3 4 1000 1000

4 4 6000 32000

4 5 40000 60000

5 6 70000 70000

Figure 15. Checkpoint database (CDB) for
paraffins benchmark.

0

100

200

300

400

500

600

0 50 100 150 200 250 300

[F
re

qu
en

cy
, M

H
z]

[x1000 nanoseconds]

1
2

3
4

4
4

4
4

4
4

4
4

4
4

4
4

4
5

6

Frequency Limit
Frequency

Figure 16. Calculated target frequencies sat-
isfying time and power constraints for paraffins
benchmark.

0

0.5

1

1.5

2

0 50 100 150 200 250 300

[T
ot

al
 P

ow
er

]

[x1000 nanoseconds]

1
2

3
4

4
4

4
4

4
4

4
4

4
4

4
4

4
5

6

After Power Scheduling
Power Availability

Figure 17. Power management using com-
bined technique for paraffins benchmark.

reconfiguring register files at function calls. The frequency
does not vary continuously, but is adjusted using 20MHz in-
crements with values in the range 0-600MHz. For the time
constraints defined in Figure 15 and the available power
profile shown in Figure 17, we obtain the frequency limit
and optimal frequency values plotted in Figure 16. The mo-
ments in which the optimal frequency values reach 0 repre-
sent situations in which the execution of the code between
checkpoints finishes earlier than expected (this happens be-
cause the target frequency calculation uses the profiled max-
imum cycle count for checkpoint transitions and accounts
for checkpoint transitions that might not take place). In
such cases, we stop the simulated processor to satisfy the
minimum time constraints between checkpoints. The final
result of dynamic power scheduling is shown in Figure 17.
The power dissipated is modulated throughout the program
execution unlike in Figure 14, where the available power
profile was not met. Although peaks of higher power con-
sumption do occur (as the heuristic uses average power be-
tween checkpoints), the average power consumption is kept
below the available power limit. For this experiment the av-
erage error " without power scheduling is 102% and 65%
after power scheduling, indicating a good match with the
power and time constraints.

4 Conclusions and future work

This paper outlines a framework for exploration of com-
piler and run-time strategies to control a power consumption
profile under performance constraints. We have shown how
code versioning, dynamic register reconfiguration and fre-
quency/voltage scaling can be used to achieve this goal. Our
future work includes finding other knobs for modulating
power; further exploiting code versioning as a mechanism
for modulating power by experimenting with other code op-
timizations; and improving the quality of dynamic power
scheduling, by minimizing the average error produced by
the heuristic for meeting time constraints and the average
error for meeting power constraints. We believe that com-
bining simpler power scheduling techniques with different
impact on the power and performance profile is a promising
way to build flexible dynamic power management heuris-
tics.

Acknowledgments

This research is supported by DARPA PAC/C program
under contract number F336-15-00-C-1632.

References

[1] http://www.trimaran.org, Trimaran Project.
[2] A. Azevedo, R. Cornea, I. Issenin, R. Gupta, N. Dutt, and

A. Nicolau. Power-performance mangement in the COPPER
project. In UCI Technical Report 01-02, January 2001.

[3] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis.
Architectural and compiler support for energy reduction in
memory hierarchy of high performance microprocessors. In
ISLPED, August 1998.

[4] L. Benini and G. D. Micheli. System-level power optimiza-
tion: techniques and tools. ACM Trans. on Design Automa-
tion of Electronic Systems, 5(2):115–192, April 2000.

[5] M. Bhardwaj, R. Min, and A. Chandrakasan. Power-aware
systems. In Proceedings of 34th Asilomar Conference on
Signals, Systems and Computers, November 2000.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In ISCA, June 2000.

[7] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. In Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

[8] U. K. C. Hsu and M. Hsiao. Compiler-directed dynamic
frequency and voltage scheduling. In Workshop on Power-
Driven Microarchiteture, June 1998.

[9] A. Chandrakasan and R. Brodersen. Low Power Digital
CMOS Design. Kluwer Academic Publishers, 1995.

[10] J. Chang and M. Pedram. Register allocation and binding
for low power. In DAC, 1995.

[11] S. Devadas and S. Malik. A survey of optimization tech-
niques testing low power VLSI circuits. DAC, pages 242–
247, December 1995.

[12] C. H. Gebotys. Low energy memory and register allocation
using network flow. In DAC, June 1997.

[13] R. Gonzalez and M. Horowitz. Energy dissipation in gen-
eral purpose microprocessors. IEEE Journal of Solid-State
Circuits, 31(9):1277–1284, September 1996.

[14] K. Govil, E. Chan, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting on a low-power CPU. In
Proceedings of the First Annual Int’l Conf. on Mobile Com-
puting and Networking, 1995.

[15] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivas-
tava. Power optimization of variable-voltage core-based sys-
tems. IEEE Trans. on Computer Aided Design of Integrated
Circuits and Systems, 18(12), December 1999.

[16] http://www.transmeta.com Transmeta corporation.
[17] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A frame-

work for dynamic energy efficiency and temperature man-
agement. International Symposium on Microarchitecture,
December 2000.

[18] M. J. Irwin. Low power design for systems on a chip - a tuto-
rial. In 12th Annual IEEE ASIC/SoC Workshop, September
2000.

[19] A. Iyer and D. Marculescu. Power aware microarchitecture
resource scaling. In DATE, March 2001.

[20] M. Kandemir, N. Vijaykrishan, M. J. Irwin, and W. Ye. In-
fluence of compiler optimizations on system power. DAC,
pages 304–307, June 2000.

[21] M.-C. Lee, V. Tiwari, S. Malik, and M. Fujita. Power anal-
ysis and minimization techniques for embedded DSP soft-
ware. IEEE Trans. on VLSI Systems, 5(1):123–135, January
1997.

[22] D. Marculescu. On the use of microarchitecture-driven dy-
namic voltage scaling. In ISCA, June 2000.

[23] D. Marculescu. Profile-driven code execution for low power
dissipation. In ISLPED, July 2000.

[24] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in
the lpARM microprocessor system. In ISLPED, July 2000.

[25] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling
for low-energy hard real-time applications. DT, pages 20–
30, March 2001.

[26] C. L. Su, C.-Y. Tsui, and A. M. Despain. Saving power in
the control path of embedded processors. IEEE Design and
Test of Computers, 11(4), December 1994.

[27] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques
for low energy. In ISLPED, October 1994.

[28] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embed-
ded software: A first step toward sofware power minimiza-
tion. IEEE Trans. on VLSI Systems, 2(4):437–445, April
1994.

[29] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. In Proceedings of the First
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 13–23, Novermber 1994.

