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Abstract

As embedded systems continue to face increasingly higher
performance requirements, deeply pipelined processor ar-
chitectures are being employed to meet desired system per-
formance. System architects critically need modeling tech-
niques that allow exploration, evaluation, customization
and validation of different processor pipeline configurations,
tuned for a specific application domain. We propose a novel
Finite State Machine (FSM) based modeling of pipelined
processors and define a set of properties that can be used to
verify the correctness of in-order execution in the presence
of fragmented pipelines and multicycle functional units. Our
approach leverages the system architect’s knowledge about
the behavior of the pipelined processor, through Architecture
Description Language (ADL) constructs, and thus allows a
powerful top-down approach to pipeline verification. We ap-
plied this methodology to the DLX processor to demonstrate
the usefulness of our approach.

1 Introduction

One of the most important problems in today’s micropro-
cessor design verification is the lack of a golden reference
model that can be used for verifying the design at differ-
ent levels of abstraction. Current processor design meth-
ods typically exhibit a gap between the processor architect’s
view of the design (reference manuals written in English)
and the RT-level implementation (written in HDL) of the de-
sign. Thus many existing validation techniques ([4], [8]) em-
ploy a bottom-up approach to pipeline verification, where the
functionality of an existing pipelined processor is, in essence,
reverse-engineered from its RT-level implementation. A key
challenge in today’s design verification is to extract the in-
formation from the RT-level description of the design and
to perform equivalence checking with the model extracted
from the given specification (written in English language).
Our verification technique is complimentary to these bottom
up approaches. Our approach leverages the system archi-
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tects knowledge about the behavior of the pipelined proces-
sor, through Architecture Description Language (ADL) con-
structs, and thus allows a powerful top-down approach to
pipeline verification. The ADL description can serve as a
reference model. However, it is necessary to verify the cor-
rectness of the ADL specification to ensure that the reference
model is well-formed, and that it correctly specifies the de-
sired architectural style and its attendant properties.

The ADL driven validation approach is also a natural
choice during rapid Design Space Exploration (DSE) of
System-on-Chip (SOC) architectures. Recent approaches on
language-driven Design Space Exploration (DSE) ([5], [6])
use Architectural Description Languages (ADL) to capture
the processor architecture, generate automatically a software
toolkit (including compiler, simulator, assembler) for that
processor, and provide feedback to the designer on the qual-
ity of the architecture. It is important to verify the ADL de-
scription of the architecture to ensure the correctness of the
software toolkit. The benefits of verification are two-fold.
First, the process of any specification is error-prone and thus
verification techniques can be used to check for correctness
and consistency of specification. Second, changes made to
the processor during DSE may result in incorrect execution
of the system and verification techniques can be used to en-
sure correctness of the modified architecture.

The rest of the paper is organized as follows. Section 2
presents related work addressing verification of pipelined
processors. Section 3 outlines our approach and the overall
flow of our environment. Section 4 presents our FSM based
modeling of processors with fragmented pipelines and mul-
ticycle functional units. Section 5 proposes our verification
technique followed by a case study in Section 6. Section 7
concludes the paper.

2 Related Work

Several approaches for formal or semi-formal verification
of pipelined processors has been developed in the past. The-
orem proving techniques, for example, have been success-
fully adapted to verify pipelined processors ([3], [16], [18]).
However, these approaches require a great deal of user in-



tervention, especially for verifying control intensive designs.
Burch and Dill presented a technique for formally verifying
pipelined processor control circuitry [2]. Their technique
verifies the correctness of the implementation model of a
pipelined processor against its Instruction-Set Architecture
(ISA) model based on quantifier-free logic of equality with
uninterpreted functions. The technique has been extended
to handle more complex pipelined architectures by several
researchers [17, 21]. Mark Aagaard [1] presented a design
framework for pipelines with structural hazards. He created
a framework with four parameters that are used to character-
ize and verify pipelines. In [14], Levitt and Olukotun pre-
sented a verification technique, called unpipelining, which
repeatedly merges last two pipe stages into one single stage,
resulting in a sequential version of the processor. All the
above techniques attempt to formally verify the implementa-
tion of pipelined processors by comparing the pipelined im-
plementation with its sequential (ISA) specification model,
or by deriving the sequential model from the implementa-
tion. On the other hand, in our verification approach, we are
trying to define a set of properties which have to be satisfied
for the correct pipeline behavior, and verify the correctness
of pipelined processors by testing whether the properties are
met using a FSM-based model.

Iwashita et al. [13] and Ur and Yadin [20] presented
pipelined processor modeling based on FSM. They used their
FSM to automatically generate test programs for simulation-
based validation of the processors. On the other hand, our
paper addresses formal verification of pipelined processors
without simulation.

Tomiyama et al. [19] presented FSM based modeling of
pipelined processors with in-order execution and is closest to
our approach. Their model can handle only simple proces-
sors with straight pipelines. Our work extends this model to
handle more realistic processor features such as fragmented
pipelines and multicycle functional units. Furthermore, we
present an automatic property checking framework driven by
an Architecture Description Language (ADL).

3 Our Approach

Figure 1 shows the flow in our approach. In our IP li-
brary based exploration and verification scenario, the de-
signer starts by specifying the processor description in an
ADL. The FSM model of the pipelined processor descrip-
tion is automatically generated from this ADL description.
We have defined several properties such as determinism, in-
order execution, and finiteness, to ensure that the ADL de-
scription of the architecture is well-formed. Our automatic
property checking framework determines if all the necessary
properties are satisfied or not. In case of failure, it generates
traces so that designer can modify the ADL specification of
the architecture. If the verification is successful, the software
toolkit (including compiler and simulator) can be generated
for design space exploration. Furthermore, this ADL speci-

fication can be used as a golden reference model for verify-
ing designs at different levels of abstraction (behavior, RTL,
gate, transistor etc.).
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Figure 1. The Flow in our approach

4 Modeling of Processor Pipelines

In this section we describe how we derive the FSM model
of the pipeline from the ADL description of the processor.
We first explain how we specify the information necessary
for FSM modeling, then we present the FSM model of the
processor pipelines using the information captured in the
ADL.

4.1 Processor Pipeline Description in ADL

Any ADL that can capture both the structure and behav-
ior of the processor can be used in our verification and ex-
ploration framework. We have chosen the EXPRESSION
ADL [6] that captures the structure, behavior, and the map-
ping between them for the processor pipeline. However,
for the property verification we need to specify the condi-
tions for stalling, normal flow and nop insertion for each
functional unit along with the structure, behavior and the
mapping information. Figure 2 shows a fragment of a pro-
cessor pipeline. The oval boxes represent units, rectangu-
lar boxes represent pipeline latches, and arrows represent
pipeline edges. In this section we describe how to specify
the conditions for stalling, normal flow and nop insertion in
the ADL.

A unit can bestalleddue to external signals or due to con-
tributions arising inside the processor. For example, the ex-
ternal signal that can stall a fetch unit isICacheMiss; inter-
nal condition for stalling of fetch unit can be due to decode
stall, hazards or exceptions. For units with multiple children
the stalling condition due to internal contribution may dif-
fer. For example, the unitUNITi�1; j in Figure 2 withq chil-
dren can be stalled whenany one of its children is stalled,
or whensomeof its children are stalled (designer identifies
the specific ones), or whenall of its children are stalled; or
whennoneof its children are stalled. During specification,
designer selects from the set (ANY, SOME, ALL, NONE)
the internal contribution along with any external signals to



specify the stall condition for each unit. This is not sufficient
for a unit with multiple children (fork node). For example,
the fork node,UNITi�1; j in Figure 2, hasq children. De-
signer need to specify in the ADL the stall condition of the
fork node in the presence of different types of instructions.
The ADL description has structural information for each of
theseq pipelines: how many pipeline stages are there in each
pipeline, how many cycles needed by an instruction in a par-
ticular pipeline stage etc. Designers also need to specify if
the fork node needs to be stalled when the current instruction
is for the pipelinei (1� i � q) and there are instructions in
pipelinesj (1� j � q).
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Figure 2. A fragment of the processor pipeline

A unit is in normal flowif it can receive instruction from
its parent unit and can send to its child unit. For units with
multiple parents and multiple children the normal flow con-
dition may differ. For example, the unitUNITi�1; j in Fig-
ure 2 withpparent units andqchildren units can be in normal
flow depending on several combinations of states among its
parent units and child units: one of its parents is not stalled
and one of its children is not stalled, or one of its parents
is not stalled and all of its children are not stalled (e.g., de-
code stage in a VLIW processor with no reservation station)
etc. During specification, designer selects from the set (ANY,
SOME, ALL, NONE) the contributions from the parents and
children to specify the normal flow condition for each unit.

Typically, a unit performsnop insertionwhen it does not
receive any instruction from its parent (or busy computing
in case of multicycle unit) and its child unit is not stalled.
For units with multiple parents and multiple children the
nop insertion condition may differ. For example, the unit
UNITi�1; j in Figure 2 withp parent units andq children units
can perform nop insertion depending on several combination
of states among its parent units and child units: all of its par-
ents are stalled and one of its children is not stalled etc. Dur-
ing specification, designer selects from the set (ANY, SOME,
ALL, NONE) the contributions from parents and children to
specify the nop insertion condition for each unit.

The Program Counter (PC) unit can bestalleddue to ex-
ternal signals such as cache miss or when the fetch unit is

stalled. When a branch is taken the PC unit is said to be in
branch takenstate. The PC unit is insequential execution
mode when the fetch unit is in normal flow, there are no ex-
ternal interrupts, and the current instruction is not a branch
instruction.

4.2 FSM Model of Processor Pipelines

This section presents an FSM-based modeling of con-
trollers in pipelined processors. This paper especially fo-
cuses on the next state function of the FSM. Figure 3 shows
the FSM model of the fragment in Figure 2.

We assume a pipelined processor with in-order execution
as the target for modeling and verification. The pipeline
consists ofN stages. Each stage can have more than one
pipeline register (in case of fragmented pipelines). Each
single-cycle pipeline register takes one cycle if there are
no pipeline hazards. A multi-cycle pipeline register takes
n cycles during normal execution (no hazard). In this pa-
per we call these pipeline registers instruction registers since
they contain instructions being executed in the pipeline. Let
Stagei denote thei-th stage where 0� i � N� 1, andNi

the number of pipeline registers betweenStagei�1 andStagei
(1� i � N�1). Let IRi; j denote an instruction register be-
tweenStagei�1 andStagei (1� i � N�1, 1� j � Ni ). The
first stage, i.e.,Stage0, fetches an instruction from instruction
memory pointed by program counterPC, and stores the in-
struction into the first instruction registerIR1; j (1� j �N1).
During execution the instruction stored inIRi; j is executed
at Stagei and then stored into the next instruction register
IRi+1;s+k (1� k� q)
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Figure 3. FSM model of the fragment in Figure 2

In this paper, we define a state of theN-stage pipeline as
values ofPC and(N� 1)�∑N�1

i=1 Ni ( = M say) instruction
registers. LetPC(t) andIRi; j(t) denote the values ofPC and
IRi; j at timet, respectively. Then, the state of the pipeline at
time t is defined as

S(t) =< PC(t); IR1;1(t); � � � ; IRN�1;NN�1(t)> (1)

We first describe the conditions for stalling(ST), normal
flow(NF), nop insertion(NI), sequential execution(SE), and
branch taken (BT) in the FSM model, then we describe the
state transition functions possible in the FSM model using
these conditions.



Modeling conditions in FSM

Let us assume, every instruction registerIRi; j has a stall bit
STIRi; j , which is set when the stall condition (condST

IRi; j
say) is

true. As mentioned in Section 4.1,STIRi; j has two compo-
nents viz., stall condition due to the stall of children (STchild

IRi; j

say) and stall condition due to hazards, exceptions, or exter-
nal interrupts onIRi; j (STsel f

IRi; j
say). However, as mentioned

in Section 4.1,STsel f
IRi; j

has another component, which is in-
struction specific. More formally the condition for stalling at
time t in the presence of a set of external signalsI(t) onS(t)
is, condST

IRi; j
(S(t); I(t)) (condST

IRi; j
in short),

condST
IRi; j

= STIRi; j = STchild
IRi; j

+STsel f
IRi; j

(2)

For example, if designer specified that ”ALL” (see Sec-
tion 4.1) the children are responsible for the stalling ofIRi; j .
Then Equation (2) becomes

condST
IRi; j

= STIRi; j = \
q
k=1STIRi+1;s+k +STsel f

IRi; j

Let us further assume, the designer has specified that
IRi; j (fork node) is stalled if the current instruction is for
pipeline k (Ik say) and there are instructions in pipelines
x (x 6= k;1 � x;k � q) which may reach later than current
instruction (if issued) to the join node (corresponding to
the fork nodeIRi; j ). Let us defineτ(y) as the total number
clock cycles needed by pipeliney. This definition can be
recursively applied for pipelines containing fragmented
pipelines. This is derived from the ADL description by
using number of pipeline stages in the pipeliney (starting at
fork nodeIRi; j and ending at the corresponding join node)

and the timing of each pipeline stage. ThenSTsel f
IRi; j

for the
previous equation becomes

STsel f
IRi; j

= [
q
k=1(Ik . [q

x=1 Sx;k)

where,Sx;k is 1 if the latest instruction in the pipelinex is
active for less than(τ(x)� τ(k)) cycles.

As mentioned in Section 4.1, the condition for normal flow
(condNF

IRi; j
say) has three components viz., contribution from

parents (NFparent
IRi; j

say), contribution from children (NFchild
IRi; j

say), and self contribution (not stalled). More formally,

condNF
IRi; j

= NFparent
IRi; j

. NFchild
IRi; j

. STsel f
IRi; j

(3)

For example, if the designer specified thatIRi; j will be in
normal flow if ”ANY” (see Section 4.1) of its parents is
not stalled and ”ANY” of its children is not stalled. Then
Equation (3) becomes

condNF
IRi; j

= [p
l=1STIRi�1;r+l .[

q
k=1 STIRi+1;r+k.STsel f

IRi; j

As mentioned in Section 4.1, the condition for nop in-
sertion (condNI

IRi; j
say) has three components viz., contribu-

tion from parents (NIparent
IRi; j

say), contribution from children

(NIchild
IRi; j

say), and self contribution (not stalled). More for-
mally,

condNI
IRi; j

= NIparent
IRi; j

. NIchild
IRi; j

. STsel f
IRi; j

(4)

For example, if the designer specified thatIRi; j will be
in nop insertion if ”ALL” (see Section 4.1) of the parents
are stalled and ”ANY” of the children is not stalled. Then
Equation (4) becomes

condNI
IRi; j

= \
p
l=1STIRi�1;s+l .[

q
k=1 STIRi+1;s+k.STsel f

IRi; j

Similarly the conditions for PC viz.,condSE
PC (SE: sequen-

tial execution),condNI
PC (NI: nop insertion), andcondBT

PC (BT:
branch taken) can be described using the information avail-
able in the ADL. Let us assume,BTPC bit is set when the unit
completes execution of a branch instruction. Formally,

condSE
PC(S(t); I(t)) = NFchild

PC . STsel f
PC . BTPC (5)

condST
PC(S(t); I(t)) = (STchild

PC +STsel f
PC ):BTPC (6)

condBT
PC(S(t); I(t)) = BTPC (7)

Modeling State Transition Functions

In this section, we describe the next state function of the
FSM. Figure 3 shows the FSM model of the fragment of the
processor pipeline shown in Figure 2. If there are no pipeline
hazards, instructions flow from IR (instruction register) to
IR everyn cycles (n = 1 for single-cycle IR). In this case,
the instruction inIRi�1;r+l (1� l � p) at timet proceeds to
IRi; j aftern cycles (n is thetimingof IRi�1;r+l andIRi; j has
p parent latches andq child latches as shown in Figure 3),
i.e., IRi; j(t +1) = IRi�1;r+l (t). In presence of pipeline haz-
ards, however, the instruction inIRi; j may be stalled, i.e.,
IRi; j(t + 1) = IRi; j(t). Note that, in general, any instruc-
tion in the pipeline cannot skip pipe stages. For example,
IRi; j(t + 1) cannot beIRi�2;v(t) (1� v� Ni�2) if there are
no feed-forward paths. Now we can easily understand that
there are some specific rules which must be followed in the
next state function of the FSM.

The rest of this section formally describes the next state
function of the FSM. According to the Equation (1), a state
of anN�stage pipeline is defined by(M+1) registers (M =
(N�1)�∑N�1

i=1 Ni). Therefore, the next state function of the
pipeline can also be decomposed into(M+1) sub-functions
each of which is dedicated to a specific state register. Letf NS

PC
and f NS

IRi; j
(1� i � N�1, 1� j � Ni) denote next state func-

tions forPC andIRi; j respectively. Note that in generalf NS
IRi; j

is a function of not onlyIRi; j but also other state registers
and external signals from outside of the controller.



For program counter, we define three types of state transi-
tions as follows.

PC(t +1)

= f NS
PC(S(t); I(t))

=

8<
:

PC(t)+L if condSE
PC(S(t); I(t)) = 1

target if condBT
PC(S(t); I(t)) = 1

PC(t) if condST
PC(S(t); I(t)) = 1

(8)

Here,I(t) represents a set of external signals at timet, L
represents the instruction length, andtarget represents the
branch target address which is computed at a certain pipeline
stage. Thecondx

PC’s (x2 (SE;BT;ST)) are logic functions of
S(t) andI(t) as described in Equation (5) - Equation (7), and
return either 0 or 1. For example, ifcondST

PC(S(t); I(t)) is 1,
PC keeps its current value at the next cycle.

For the first instruction register,IR1; j (1� j � N1), we
define the following three types of state transitions.

IR1; j(t+1)

= f NS
IR1; j

(S(t); I(t))

=

8><
>:

IM(PC(t)) if condNF
IR1; j

(S(t); I(t)) = 1

IR1; j(t) if condST
IR1; j

(S(t); I(t)) = 1

nop if condNI
IR1; j

(S(t); I(t)) = 1
(9)

Similarly, for the other instruction registers,IRi; j (2� i �
N�1, 1� j � Ni ), we define three types of state transitions
as follows.

IRi; j(t+1)

= f NS
i; j (S(t); I(t))

=

8><
>:

IRi�1;r+l(t) if condNF
IRi; j

(S(t); I(t)) = 1

IRi; j(t) if condST
IRi; j

(S(t); I(t)) = 1
nop if condNI

IRi; j
(S(t); I(t)) = 1

(10)

In the above formulas,nop denotes a special instruc-
tion indicating that there is no instruction in the in-
struction register, andIM(PC(t)) denotes the instruc-
tion pointed by the program counter in instruction mem-
ory (IM). If condNF

IR1;1
(S(t); I(t)) is 1, an instruction is

fetched from instruction memory and stored intoIR1;1. If
condST

IR1;1
(S(t); I(t)) is 1, IR1;1 remains unchanged. In this

paper,IRi; j is said to be stalled at timet if condST
IRi; j

(S(t); I(t))

is 1, resulting inIRi; j(t+1) = IRi; j(t). Similarly, IRi; j is said
to flow normally at timet if condNF

IRi; j
(S(t); I(t)) is 1. A nop

instruction is inserted inIRi; j whencondNI
IRi; j

(S(t); I(t)) is 1,

resulting inIRi; j(t +1) = nop.
At present, signals coming from the datapath or the mem-

ory subsystem into the pipeline controller are modeled as pri-
mary inputs to the FSM, and control signals to the datapath
or the memory subsystem are modeled as outputs from the
FSM.

5 Verification of In-Order Execution

Based on the FSM modeling presented in Section 4, we
propose a method to verify the correctness of pipeline con-
trollers with in-order execution. A pipelined processor with
in-order execution is correct if all instructions which are
fetched from instruction memory flow from the first stage
to the last stage while maintaining their execution order. We
first describe the properties needed for verifying the in-order
execution, then we present our automatic property checking
framework driven by an ADL.

5.1 Properties

This section presents three properties: determinism, in-
order execution, and finiteness. Any pipelined processor
must satisfy these properties to ensure correct in-order ex-
ecution.

Determinism

The next state functions for all state registers must be de-
terministic. This property is valid if all the following equa-
tions hold.

condSE
PC(S(t); I(t))+condBT

PC(S(t); I(t))+

condST
PC(S(t); I(t)) = 1 (11)

condNF
IRi; j

(S(t); I(t))+condST
IRi; j

(S(t); I(t))+

condNI
IRi; j

(S(t); I(t)) = 1;

8i; j(1� i � N�1;1� j � Ni) (12)

condx
PC(S(t); I(t)) . condy

PC(S(t); I(t)) = 0;

8x;y(x;y2 fSE;BT;STg ^ x 6= y) (13)

condx
IRi; j

(S(t); I(t)) . condy
IRi; j

(S(t); I(t)) = 0;

8i; j(1� i � N�1;1� j � Ni);

8x;y(x;y2 fNF;ST;NIg ^ x 6= y) (14)

The first two equations mean that, in the next state function
for each state register, the three conditions must cover all
possible combinations of processor statesS(t) and external
signalsI(t). The last two guarantee that any two conditions
are disjoint for each next state function. Informally, exactly
one of the conditions should be true in a cycle for each state
register.

In-Order Execution

In order to guarantee in-order execution, state transitions
of adjacent instruction registers must depend on each other.
Illegal combination of state transitions of adjacent stages are
described below using Figure 3.



� An instruction register can not be in normal flow if
all the parent instruction registers (adjacent ones) are
stalled. If such a combination of state transitions are al-
lowed, the instruction stored inIRi�1;r+l (1� l � p) at
time t will be duplicated, and stored into bothIRi�1;r+l

andIRi at the next cycle. Therefore, the instruction will
be executed more than once. More formally, the Equa-
tion (15) should be satisfied.

\
p
l=1condST

IRi�1;r+l
. condNF

IRi; j
= 0 (15)

(2� i � N�1;1� j �Ni ;1� l � p)

� Similarly, if IRi; j flows normally, at least one of its child
latches should also flow normally. If all of its child
latches are stalled, the instruction stored inIRi; j dis-
appears. More formally, the Equation (16) should be
satisfied.

condNF
IRi; j

. \q
k=1 condST

IRi+1;s+k
= 0 (16)

(2� i � N�1;1� j � Ni ;1� k� q)

� Similarly, if IRi; j is in nop insertion, at least one of its
child latches should not be stalled. If all of its child
latches are stalled, the instruction stored inIRi�1;r+l

(1� l � p) at timet will be overwritten by the nop in-
struction. More formally, the Equation (17) should be
satisfied.

condNI
IRi; j

. \q
k=1 condST

IRi+1;s+k
= 0 (17)

(2� i � N�1;1� j � Ni ;1� k� q)

� Similarly, an instruction register can not be in nop in-
sertion, if previous instruction register is in normal flow.
More formally, the Equation (18) should be satisfied.

condNF
IRi�1;r+l

. condNI
IRi; j

= 0 (18)

(2� i � N�1;1� j �Ni ;1� l � p)

� Finally, an instruction register can not be in nop inser-
tion, if previous instruction register is also in nop inser-
tion. More formally, the Equation (19) should be satis-
fied.

condNI
IRi�1;r+l

. condNI
IRi; j

= 0 (19)

(2� i � N�1;1� j �Ni ;1� l � p)

The above equations are not sufficient to ensure in-order
execution in fragmented pipelines. An instructionIa should
not reach join node earlier than an instructionIb whenIa is
issued by the corresponding fork node later thanIb. More
formally the following equation should hold:

8(F;J); Ia�JIb ) ΓF(Ia)< ΓF(Ib) (20)

where, (F, J) is fork-join pair, Ia�JIb implies Ia reached
join nodeJ beforeIb, ΓF(Ia) returns the timestamp when in-
structionIa is issued by the fork nodeF.

The previous property ensures that instruction does not ex-
ecute out-of-order. However, with the current modeling two
instructions with different timestamp can reach the join node.

If join node does not have capacity for more than one instruc-
tion this may cause instruction loss. We need the following
property to ensure that only one immediate parent of the join
node is in normal flow at timet (refer Figure 3):

8x;y(x;y2 f1;2; :::; pg ^ x 6= y) (21)

condNF
IRi�1;r+x

. condNF
IRi�1;r+y

= 0

Similarly, the state transition ofPC must depend on the
state transition ofIR1; j (1� j �N1). The illegal combination
of state transitions are described below.

condST
PC . condNF

IR1; j
= 0 (22)

condSE
PC . \N1

j=1 condST
IR1; j

= 0 (23)

condBT
PC . \N1

j=1 condST
IR1; j

= 0 (24)

condSE
PC . condNI

IR1; j
= 0 (25)

condBT
PC . condNI

IR1; j
= 0 (26)

All of the above equations (Equation (15) - Equation (26))
must hold to ensure correct in-order execution.

Finiteness

The determinism and in-order execution properties do not
guarantee that execution of instructions will be completed in
a finite number of cycles. In other words, the pipeline might
be stalled indefinitely. Therefore, we need to guarantee that
stall conditions (i.e.,condST

IRi; j
) are resolved in a finite num-

ber of cycles. As mentioned in Equation (2) pipeline stalls
have two components. Both components must be resolved
in a finite number of cycles. The following conditions are
sufficient to guarantee the finiteness.

� A stage must flow within a finite number of cycles if
all the later stages are idle. Since this condition may
depend on external signals which come from outside of
the processor core, it cannot be verified only with the
FSM model. This condition is a constraint in the design
of the blocks which generate such signals.

� condx
IRi; j

(x2 (NF;ST;NI)) can be a function of external
signals andIRk;y wherek� i, but cannot be a function
of IRk wherek< i.

5.2 Automatic Verification Framework

In this section we describe our automatic property check-
ing framework. The first step is to describe the processor
pipeline in the EXPRESSION ADL [6]. The finite state ma-
chine (FSM) model of the processor controller is automati-
cally extracted from the ADL description. Next, the proper-
ties described in Section 5.1 are automatically applied to the
FSM model to verify the in-order execution.

The framework first generates the flow equations for NF,
ST, and NI for each instruction register (SE, ST, and BT



for PC) using ADL description and Equation (1) - Equa-
tion (7), then it generates the equations necessary for veri-
fying properties using ADL description and Equation (11) -
Equation (26). TheEqntott[9] tool converts these equations
in two-level representation of a two-valued Boolean func-
tion. This two-level representation is fed toEspresso[12]
tool that produces minimal equivalent representation. Fi-
nally, the minimized representation is analyzed to determine
whether the property is successfully verified or not. In case
of failure it generates traces explaining the cause of failure.
The details on the verification framework can be found in
[15].

6 A Case Study

In a case study we successfully applied the proposed
methodology to the single-issue DLX [7] processor. We
have chosen DLX processor since it has been well studied in
academia and has few interesting features viz., fragmented
pipelines, multicycle units etc. Figure 4 shows the DLX pro-
cessor pipeline.
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Figure 4. The DLX Processor

We used the EXPRESSION ADL [6] to capture the struc-
ture and behavior of the DLX processor. We captured the
conditions for stalling, normal flow, branch taken and nop in-
sertion in the ADL. For example, we capturedCacheMissas
the external signal for PC unit. For all the units we assumed
”ALL” contribution from children units for stall condition.
While capturing normal flow condition for each unit we se-
lected ”ANY” for parent units and ”ANY” for children units.
Similarly, for each unit we specified ”ALL” as contribution
from parent units and ”ANY” as contribution for children
units for nop insertion. For example, the condition speci-
fication for the decode unit (no self contribution) is shown
below.

(DecodeUnit DECODE
.........
(CONDITIONS

(NF ANY ANY)
(ST ALL)
(NI ALL ANY)
(SELF "")

)
)

Using the ADL description, we automatically generated
the equations for flow conditions for all the units [15]. For
example, the equation for the stall condition for the decode
latch is shown below (using Equation (2), and the description
of the decode unit shown above).

condST
IR1;1

= STIR2;1 . STIR2;2 . STIR2;3 . STIR2;4 (27)

IR2;4 represents latch for the multicycle unit. So we as-
sumed a signalbusyinternal toIR2:4 which remained set for
n cycles. Thebusycan be treated asSTsel f

IR2:4
as shown in Equa-

tion (2).
The necessary equations for verifying the properties

viz., determinism, in-order execution etc., are generated
automatically from the given ADL description. We show
here a small trace of the property checking to demonstrate
the simplicity and elegance of the underlying model. We
show that the determinism property is satisfied forIR1;1

using the modeling above:

condNF
IR1;1

+condST
IR1;1

+condNI
IR1;1

= STPC . (STIR2;1 + STIR2;2 + STIR2;3 + STIR2;4) +

(STIR2;1 . STIR2;2 . STIR2;3 . STIR2;4) + STPC . (STIR2;1 +

STIR2;2 +STIR2;3+STIR2;4)

= (STIR2;1 + STIR2;2 + STIR2;3 + STIR2;4) . (STPC + STPC) +
(STIR2;1 . STIR2;2 . STIR2;3 . STIR2;4)
= 1

We have usedEspressoto minimize the equations. These
minimized equations are analyzed to verify whether the
properties are violated or not. The complete verification took
41 seconds on a 333 MHz Sun Ultra-5 with 128M RAM.
Our framework determined that the Equation (20) is violated
and generated a simple instruction sequence which violates
in-order execution: floating-point addition followed by inte-
ger addition. The decode unit issued floating point addition
I f add operation in cyclen to floating-point adder pipeline (A1
- A4) and an integer addition operationIiadd to integer ALU
(EX) at cyclen+1. The instructionIiadd reached join node
(MEM unit) prior to I f add.

We modified the ADL description to change the stall
condition depending on current instruction in decode unit
and the instructions active in the integer ALU, MUL, FADD,
and DIV pipelines. The current instruction will not be issued
(decode stalls) if it leads to out-of-order execution. Our
framework generated equations for processor model and the
properties. The only difference isSTsel f

IRi; j
for decode unit



(Equation (2)) becomes:STsel f
IRi; j

=

I1 . (S2;1+S3;1+S4;1)+ I2 . S4;2+ I3 . (S2;3+S4;3)

where, the numbers 1, 2, 3, and 4 are the pipelines (be-
tween ID and MEM unit) integer ALU, MUL, FADD, and
DIV respectively. The signalSx;y is 1 if the latest instruc-
tion in pipelinex is active for less than (τ(x)� τ(y)) cycles.
Here,τ(x) returns the total number of clock cycles needed
by pipelinex (τ(1) = 1,τ(2) = 7, τ(3) = 4, τ(4) = 25). The
instructionsI1, I2, I3, andI4 represent the instructions sup-
ported by the pipelines 1, 2, 3, and 4 respectively. Informally,
this equation means that if current instruction isI2 (multiply)
and there is a instruction in DIV unit which is active for less
than 18 cycles (τ(4)� τ(2) = 25 - 7 = 18) etc. then decode
should stall. Otherwise, it leads to out-of-order execution.
Note that, the equation does not have any term forI4. This
is becauseSx;4 can never be 1 since (τ(x)� τ(4)) is always
negative. For the same reason, all the terms in the equation
does not have fourSx;y.

The Equation (21) is violated for this modeling forIR9;1.
The instruction sequence generated by our framework for
this failure consists of a multiply operation (issued by de-
code unit in cyclen) followed by a floating-point add opera-
tion (issued by decode unit in cycle(n + 3)). As a result both
the operations reachIR9;1 at cycle(n+7).

We modified the ADL description to redefineSx;y signal:
it is 1 if the latest instruction in pipelinex is active for less
thanor equal to(τ(x)� τ(y)) cycles. The in-order execution
was successful for this modeling.

During design space exploration we added a feedback path
from IR9;1 to IR2;3 to see the impact of data forwarding on
multiply followed by accumulate intensive benchmarks (e.g.,
wavelet and lowpass from multimedia and DSP domains).
We modified the ADL accordingly by treatingIR9;1 as one
of IR2;3’s parent (other thanIR1;1) andIR2;3 as one ofIR9;1’s
children (other thanIR10;1) and generated necessary condi-
tions. The property checking failed for in-order execution
as well as finiteness. A careful observation shows that the
second specification (IR2;3 as one ofIR9;1’s children) was
wrong since the producer unit never waits for the receiver
unit to receive the data in this scenario. After removing the
second specification the verification was successful. In such
a simple situation this kind of specification mistakes might
appear as trivial, but when the architecture gets complicated
and DSE iterations and varieties increases, the potential for
introducing bugs also increases.

7 Summary

This paper proposed an ADL driven verification of in-
order execution in processors with fragmented pipelines and
multicycle functional units. It uses an FSM-based model-
ing of pipelined controllers with a special focus on next state
functions. Based on the modeling we presented a set of prop-

erties which are used to verify the correctness of the in-order
execution of the pipeline. We presented an automatic ADL
driven verification framework. We used the DLX processor
as an example to demonstrate the usefulness of our approach.

Currently, our verification approach uses equation based
property checking framework. We are in the process of using
existing model checkers, such as SMV [10] and VIS [11], to
perform property checking.

We are extending our modeling and verification technique
towards VLIW and superscalar processors. We are also
studying how to extend this model to support multiple in-
terrupts and exceptions.
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