
Automatic Validation of Pipeline Specifications

Prabhat Mishra Nikil Dutt Alex Nicolau
pmishra@cecs.uci.edu dutt@cecs.uci.edu nicolau@cecs.uci.edu

Architectures and Compilers for Embedded Systems (ACES) Laboratory
Center for Embedded Computer Systems, University of California, Irvine, CA 92697, USA

Abstract

Recent approaches on language-driven Design Space
Exploration (DSE) use Architectural Description Lan-
guages (ADL) to capture the processor architecture, gen-
erate automatically a software toolkit (including compiler,
simulator, and assembler) for that processor, and provide
feedback to the designer on the quality of the architecture.
It is important to verify the ADL description of the processor
to ensure the correctness of the software toolkit. We present
in this paper an automatic validation framework, driven by
an ADL. We present algorithms for automatic validation of
ADL specification of the processor pipelines. We applied
our methodology to verify several realistic processor cores
to demonstrate the usefulness of our approach.

1 Introduction

Embedded systems present a tremendous opportunity to
customize designs by exploiting application behavior us-
ing customizable processor cores and a variety of mem-
ory configurations along with different compiler techniques
to meet diverse requirements, such as better performance,
low power, smaller area, higher code density etc. How-
ever, shrinking time-to-market, coupled with increasingly
short product lifetimes create a critical need for rapid ex-
ploration and evaluation of candidate SOC architectures.
Recent approaches on language-driven Design Space Ex-
ploration (DSE) ([1], [2], [8], [9]), use Architectural De-
scription Languages (ADL) to capture the processor archi-
tecture, generate automatically a software toolkit (including
compiler, simulator, and assembler) for that processor, and
provide feedback to the designer on the quality of the ar-
chitecture. It is important to verify the ADL description
of the processor to ensure the correctness of the software
toolkit. The benefits of verification are two-fold. First, the
process of any specification is error-prone and thus verifi-
cation techniques can be used to check for correctness and
consistency of specification. Second, changes made to the
processor during DSE may result in incorrect execution of
the system and verification techniques can be used to ensure
correctness of the modified architecture.

In this paper we present an automatic validation frame-
work, driven by an ADL. The ADL description captures
both the pipeline’s structure and behavior for the proces-
sor core. Based on this modeling we present algorithms for
automatic validation of the processor described in an ADL.
We applied our methodology to verify several realistic pro-
cessor cores from different architectural domains to demon-
strate the usefulness of our approach.

The rest of the paper is organized as follows. Section 2
presents related work addressing validation of pipelined
processors. Section 3 outlines our approach and the over-
all flow of our environment. Section 4 briefly describes the
EXPRESSION ADL, which is used in our DSE environ-
ment. Section 5 proposes our verification technique. The
experiments in Section 6 illustrates the usefulness of our
approach. Finally, Section 7 concludes the paper.

2 Related Work

An extensive body of recent work addresses Archi-
tectural Description Language (ADL) driven software
toolkit generation and Design Space Exploration (DSE)
for processor-based embedded systems, in both academia:
ISDL [2], LISA [8], nML [3], EXPRESSION [1], and in-
dustry: ARC [4], Tensilica [6], RADL [12], MDES [9].

While these approaches explicitly capture the processor
features to varying degrees and generate automatically a
software toolkit for that processor, to our knowledge, there
have been very little effort in validating the pipeline speci-
fication of the processor described in an ADL. The work of
Tomiyama et. al. [7, 10] is a step in this direction. They de-
fined certain properties that need to be verified to ensure
that the processor description is well-formed. However,
these properties are applicable to simple processor models.
Moreover, they do not demonstrate how these properties can
be applied in SOC verification during design space explo-
ration.

3 Our Approach

Figure 1 shows the flow in our approach. In our ADL
driven design space exploration scenario, the designer starts

by describing the processor core in ADL. Several properties
are applied to ensure that the processor core is well-formed.
To enable rapid DSE the software toolkit can be generated
from the golden ADL specification and the feedback can be
used to modify the ADL description of the processor.

Processor
IP Library

ADL Specification

Verified

Failed

Obj

Feedback

Compiler Simulator

Processor
 Core

Appl

Properties

Graph Model

Figure 1. ADL-driven validation flow

4 The EXPRESSION ADL

Our architectural DSE environment uses the EXPRES-
SION ADL [1] to specify the processor core. In this paper
we use EXPRESSION to drive our verification approach;
however, the techniques presented in this paper are not spe-
cific to any description language, and could be used with
any other ADL containing similar information.

EXPRESSION contains an integrated specification of
both structure and the behavior of the processor core. The
structure of a processor can be viewed as a graph with
the components as nodes and the connectivity as the edges
of the graph. We consider four types of components:
units (e.g., ALUs), storages(e.g., register files),ports,
and connections(e.g., buses). There are two types of
edges:pipeline edgesanddata transfer edges. The pipeline
edges specify instruction transfer between units whereas
data transfer edges specify data transfer between compo-
nents, typically between units and storages.

Figure 2 shows the graph model of a simplified DLX [5]
processor. The oval boxes represent pipeline latches be-
tween two units. We call them instruction registers (IR)
since they carry instructions. The rectangular boxes rep-
resent units, square and shaded boxes represent storages,
small circles represent ports and shaded small vertical boxes
represent connections, the dotted edges represent pipeline
edges, and the solid edges represent pipeline edges. A path
from the root node (e.g., FETCH) to leaf node (e.g., WB)
consisting of units and pipeline edges is called a pipeline
path. For example,(FETCH, DECODE, IntALU, MEM,
WB) is a pipeline path. A path from a unit to a storage or
from a storage to a unit is called adata-transfer pathif all
the edges are data-transfer edges. For example,(MEM, p4,

DIV

PC

IR 1, 1

IR 2, 1

IR

IR

IRIR

IRIRIR 2, 2 2, 3 2, 4

3, 1 3, 2

4, 2

5, 2IR 8, 1

MEM

WB

IR

IR

9, 1

10, 1

REGISTER FILE
MEMORY

FETCH

DECODE

IntALU MUL1

MUL2

MUL7

OO

O

O O

O

O

O O

OO

p1

c1

p2 p3

p4
c2

c3

c4

c5

p5

p6

p7 p8

p9 p10

Latch

Unit

Storage

O Port

Connection

Data−transfer edge
Pipeline edge

FADD1

FADD2

FADD3

FADD4

Figure 2. Graph model of simplified DLX processor

c2, p3, MEMORY)is a data-transfer path. Each node in the
graph has a list of attributes (optional). The attributes can
be any of the following:

� Latches: This specifies the list of latches associated
with the unit. For example, in Figure 2 the DECODE
unit has one parent latch (IR1;1) and four children
latches (IR2;1; IR2;2; IR2;3, andIR2;4).

� Ports: The list of ports attached to this node. For ex-
ample, in Figure 2 the DECODE unit has two ports (p8
andp10).

� Connections: The list of connections attached to this
node. For example, in Figure 2 thep8 port has thec4
connection.

� Opcodes: The list of opcodes this node supports. For
example, in Figure 2 the FADD1 supports all floating-
point addition operations.

� Timing: For each node it specifies the timing behav-
ior. Timing can be specified on a per-opcode basis, if
necessary. For example, the DIV unit in Figure 2 is a
multicycle unit with timing 25, i.e., it takes 25 cycles
to execute a division operation.

� Capacity: The number of operations that can be ac-
cepted by this node in a single cycle. For example, in
Figure 2 the DECODE unit can accept four operations
per cycle.

An instruction is viewed as containing operations that
can be executed in parallel. Each instruction contains a list
of slots (to be filled with operations) with each slot corre-
sponding to a functional unit. For example, the following

code segment describes an instruction template for decode
unit in Figure 2.

(INSTR decodeInst
(WORDLEN 32)
(SLOTS

((OPTYPE DATA_OP) (BITWIDTH 8) (UNIT IntALU))
((OPTYPE DATA_OP) (BITWIDTH 8) (UNIT MUL1))
((OPTYPE DATA_OP) (BITWIDTH 8) (UNIT FADD1))
((OPTYPE DATA_OP) (BITWIDTH 8) (UNIT DIV))

)
)

The behavior is organized into operation groups, with
each group containing a set of operations having some com-
mon characteristics. For example, the DLX processor has
four operation groups: intALUops, multops, faddops,
and divops. Each operation is then described in terms of
it’s opcode, operands and behavior. Each operand is clas-
sified either as source or as destination. Furthermore, each
operand has an associated list of register files to which it
can be bound. For example, the following code segment
describes the add operation where the variablerf refers to
REGISTER FILE.

(OPCODE add
(OP_TYPE DATA_OP)
(OPERANDS (SRC1 rf) (SRC2 rf) (DST rf))
(BEHAVIOR DST = SRC1 + SRC2)

)

5 Verification of Processor Pipeline

Based on the processor pipeline model presented in
the previous section, the ADL specification of processor
pipelines can be verified. In this section, we propose several
properties that must be satisfied for valid pipeline specifica-
tion.

5.1 Connectedness

Each component must be connected to other compo-
nent(s). The property holds if each component can be ac-
cessed by at least one pipeline path or data-transfer path.
We briefly outline the algorithm used in our framework to
verify this property.

Input: Graph model of the processorG, ListOfUnits, ListOf-
Ports, ListOfConnections, ListOfLatches, ListOfStorages.
Output: True, if the graph model satisfies this property else
false. In case of failure, print the components which are not
connected.

1. Unmark all the entries in all the input lists. Each list
contains all the respective components in the graph.
For example, theListOfPortscontains all the ports in
the graphG.

2. Traverse each unitu of the graph G starting from the
root node.

3. Mark the unitu in theListOfUnits.

4. For each output latchl of u mark the appropriate entry
in theListOfLatches.

5. For each attached portp of u mark the appropriate en-
try in ListOfPorts. Traverse all the connectionsc from
each of the portp and mark the appropriate entry in
ListOfConnections. For each connectionc mark the
portsq on the other side of the connection inListOf-
Ports (p andq are the ports on different sides of the
same connectionc).

6. For each children nodes repeat steps 3 to 5.

7. Finally, find out if there are any unmarked entries in
any of the lists, viz.,ListOfUnits, ListOfPorts. ListOf-
Connections, ListOfLatches, and ListOfStorages. If
there are no unmarked entries return true else return
false and print the unmarked components.

The time and space complexity of the algorithm isO(n),
where n is the number of nodes in the graph.

5.2 False Pipeline Path

Each pipeline path must execute at least one valid opera-
tion. The pipeline path is notfalseif there are no empty in-
tersection of opcodes supported by the units in the pipeline
path, and there are no conflicting partial ordering of opera-
tion arguments and unit ports.

O

O

O

O

O

O Register
File

WB

ACCSFT

RD2

MUL

RD1

IFD

ALU

Figure 3. An example processor with false pipeline paths

For example, consider the processor shown in Fig-
ure 3, which executes two operations: ALU-shift (alus) and
multiply-accumulate (mac). Each of the unit infIFD, RD1,
ALU, RD2, SFT, WBg supports the operationalus, and each
of the unit infIFD, RD1, MUL, RD2, ACC, WBg supports
the operationmac. This processor has four pipeline paths:
fIFD, RD1, ALU, RD2, SFT, WBg, fIFD, RD1, MUL, RD2,
ACC, WBg, fIFD, RD1, ALU, RD2, ACC, WBg, andfIFD,
RD1, MUL, RD2, SFT, WBg. However, the last two pipeline
paths cannot be activated by any operation. Therefore, they

are false pipeline paths. We briefly outline the algorithm
used in our framework to verify this property.

Input: Graph model of the processorG with each functional
unit u having it’s list of supported opcodesSuppu.
Output: True, if the graph model satisfies this property else
false. In case of failure, it prints the false pipeline paths.

1. Traverse each unitu of the graphG starting from the
root node. The root unitu sendsOutListu to it’s chil-
dren, where,OutListu = Suppu.

2. Each join node (unit)j performs union of all the in-
coming lists from it’s parents and formsInListj , for
other units (non join nodes)u theInListu is the same
as the one sent by it’s parent.

3. Each unitu computes theOutListu by performing in-
tersection withInListu and it’s supported opcode list
Suppu. It sends theOutListu to it’s children.

4. If OutListu is NULL, the function returns false path
error and enumerates the false path.

5. It returns true if there are no false pipeline paths in the
graphG.

If there aren units in the graph and the number of op-
codes supported by the processor isp then the time com-
plexity of this algorithm isO(n � p) and space complexity
isO(n+ p). The opcode list in each unit is a sorted list.

5.3 Completeness

Each operation must be executable. The completeness
property is valid if there is at least one pipeline path sup-
porting the operation. We briefly outline the algorithm used
in our framework to verify this property.

Input: Graph model of the processorG and theListOfOper-
ationssupported by the processor.
Output: True, if the graph model satisfies this property else
false. In case of failure, it prints the operations which vio-
lates this property.

1. For each operationop with opcodeo perform the fol-
lowing steps.

2. Identify pipeline pathsp (from root node to leaf node)
which supports the operationop. All the units u in
that path should have the opcodeo in their supported
opcode listSuppu.

3. For each such operationop and each pipeline pathp
that supportsopperform the following:

� check if some unit,vread, reads all the source
operands from storage for the operationop

� check if some unit,vwrite, writes to storage the
destination operand for that operationop

� verify if both vread and vwrite are in the same
pipeline pathp, andvread is abovevwrite in the
pipeline. If yes, mark the operationop in ListOf-
Operations.

4. If all the operations are marked inListOfOperations
return true else return false and print the operations that
are not marked.

The processor may have certain opcodes which are left
unused for future expansion. Hence, it is necessary to re-
move the unused operations fromListOfOperationsprior to
applying this property to avoid incorrect failures. The time
complexity of this algorithm isO(n � d) and space com-
plexity is O(n + d), wheren is the total number of units
in the graph andd is the total number of operations in the
processor.

5.4 Well-formedness Property

The processor must be well formed. To verify the valid-
ity of this property we need to verify several architectural
properties:

� The number of operations processed per cycle by a unit
cannot be smaller than the total number of operations
sent by it’s parents if it does not have any reservation
station. This property should not be applied to any unit
that performs optimizations on input operations e.g.,
detect and kill NOP operation, constant propagation
etc. in which case the number of input operations is
reduced.

� There should be a path from an execution unit support-
ing branch opcodes (branch unit) to PC/Fetch unit to
ensure correct branch handling.

� The instruction template (see Section 4) should match
available pipeline bandwidth. If instruction template is
bigger than available parallel functional units, there is
a chance of instruction loss. Similarly, if instruction
template is smaller than the available pipeline band-
width, the resource utilization may not be optimum.

5.5 Finiteness

Termination of the pipeline must be guaranteed and the
pipeline must satisfy it’s execution semantics. The termi-
nation is guaranteed if all the pipeline paths excluding false
pipeline paths have finite length and all units in the pipeline
paths have finite timing. The length of a pipeline path is
defined as the number of stages required to reach the final
nodes from the root node of the graph. In presence of cycles,

this cannot be determined from the graph alone. In presence
of stalls it is necessary to verify that the stall is resolved in
a finite number of cycles. When the stall is dependent on
external signals, which come from outside of the processor
core, it cannot be verified with the graph model alone. It is
a constraint in the design of the blocks which generate such
signals. When the stall condition of a unit is dependent on
other units, it is necessary to verify that there are no cyclic
dependencies for resolving the stall condition.

6 Experiments

We described the MIPS R10K, TI C6x, PowerPC [11],
DLX [5], and ARM processors using EXPRESSION ADL
[1]. We generated the graph model of each of the proces-
sor pipeline automatically from the ADL description. We
implemented each property as a function which operates
on this graph. Finally, we applied these properties on the
graph model to verify that the specified processor is well-
formed. The complete validation of each processor specifi-
cation took less than a second on a 295 MHz Sun Ultra 60
with 1024M RAM.

As expected, we encountered two kinds of errors viz.,
incomplete specification errors and incorrect specification
errors. An example of incomplete specification error we got
is that the opcode assignment is not done for the 5th stage of
the multiplier pipeline in DLX. Similarly, an example of the
incorrect specification error we got is that only load/store
opcodes were mapped for the memory stage of the DLX
architecture. Since all the opcodes passes through memory
stage in DLX, it is necessary to map all the opcodes there.

During design space exploration (DSE) of the architec-
tures we obtained many incorrect specification errors. Here
we briefly mention some of the errors captured using our
approach. We modified MIPS R10K ADL to include an-
other load/store unit that supports only store operations.
Well-formedness property was violated since there was a
write connection from load/store unit to floating-point reg-
ister file, which will never be used. Similarly, we modified
PowerPC ADL by reducing the instruction buffer size from
16 to 4. This generated the violation of well-formedness.
The fetch unit fetches 8 instructions per cycle and decode
unit decodes up to 3 instructions per cycle, hence there is a
potential for instruction loss.

7 Summary

Validation of the specification is essential to ensure that
the reference model is golden so that it can be used to un-
cover bugs in the design. Furthermore, during architectural
design space exploration, each instance of the architecture
must be validated to ensure that it is well-formed. In this

paper, we present an automatic validation technique for pro-
cessor pipeline specifications. We propose several proper-
ties that need to be satisfied to ensure that the architecture
is well-formed. We have applied this methodology success-
fully on the MIPS R10K, TI C6x, ARM, DLX, and Pow-
erPC processor cores.

Currently, we model and verify the ADL specification of
the processor pipeline. We are extending our technique to
verify programmable architectures consisting of processor
cores, memory subsystem and co-processors.

8 Acknowledgments

This work was partially supported by grants from NSF
(MIP-9708067), DARPA (F33615-00-C-1632) and Mo-
torola Corporation. We would like to gratefully acknowl-
edge Hiroyuki Tomiyama, Ashok Halambi, and Peter Grun
for their contribution to the pipeline validation work.

References

[1] A. Halambi et al. EXPRESSION: A language for ar-
chitecture exploration through compiler/simulator re-
targetability. InDATE, 1999.

[2] G. Hadjiyiannis et al. ISDL: An instruction set descrip-
tion language for retargetability. InProc. DAC, 1997.

[3] M. Freericks. The nML machine description formalism.
Technical Report SM-IMP/DIST/08, TU Berlin., 1993.

[4] ARC Cores.http://www.arccores.com.

[5] J. Hennessy and D. Patterson.Computer Architecture:
A quantitative approach. Morgan Kaufmann Publishers
Inc, San Mateo, CA, 1990.

[6] Tensilica Incorporated.http://www.tensilica.com.

[7] H. Tomiyama et al. Modeling and verification of pro-
cessor pipelines in soc design exploration.HLDVT,
1999.

[8] V. Zivojnovic et al. LISA - machine description lan-
guage and generic machine model for HW/SW co-
design. InVLSI Signal Processing, 1996.

[9] http://www.trimaran.org.MDES User Manual, 1997.

[10] H. Tomiyama et al. Verification of in-order execution
in pipelined processors.HLDVT, 2000.

[11] http://www.motorola.com/SPS/PowerPC.MPC7400
PowerPC Microprocessor.

[12] C. Siska. A processor description language support-
ing retargetable multi-pipeline dsp program develop-
ment tools. InProc. ISSS, Dec. 1998.

