
Integrated I�cache Way Predictor and Branch Target Bu�er

to Reduce Energy Consumption

Weiyu Tang Alexander V� Veidenbaum Alexandru Nicolau

Rajesh Gupta

Department of Information and Computer Science

University of California� Irvine

Irvine� CA �������	�


fwtang� alexv� nicolau� rguptag�ics�uci�edu

Abstract

In this paper� we present a Branch Target Bu�er
�BTB� design for energy savings in set�associative in�
struction caches� We extend the functionality of a BTB
by caching way predictions in addition to branch target
addresses� Way prediction and branch target prediction
are done in parallel� Instruction cache energy savings
are achieved by accessing one cache way if the way pre�
diction for a fetch is available�

To increase the number of way predictions for higher
energy savings� we modify the BTB management policy
to allocate entries for non�branch instructions� Fur�
thermore� we propose to partition a BTB into ways for
branch instructions and ways for non�branch instruc�
tions to reduce the BTB energy as well�

We evaluate the e�ectiveness of our BTB design and
management policies with SPEC�� benchmarks� The
best BTB con	guration shows a 
�� energy savings
on average in a ��way set�associative instruction cache
and the performance degradation is only 
���� When
the instruction cache energy and the BTB energy are
considered together� the average energy�delay product
reduction is ����

� Introduction

To exploit instruction level parallelism� modern pro�
cessors support out of order execution engines� This re�
quires instruction fetch across basic block boundaries
to keep the execution units busy� Many instructions
will be fetched and issued before a branch target ad�
dress can be resolved�

A BTB ���� is used for branch target address pre�
diction� There are two �avors of BTB design� coupled

and decoupled where the tradeo	 in performance and
energy is 
xed at the design time�

The coupled BTB design is used in Alpha �����
���� and UltraSparc�II���� where the BTB is integrated
with the instruction cache� Each cache line has two
additional 
elds� a 
line�prediction� 
eld and a 
way�
prediction� 
eld� to predict a cache line for the next
fetch�

The decoupled design is used in Pentium � ����
Athlon ��� and G� ���� where a BTB is organized as
a separate cache� The number of BTB entries in Pen�
tium �� Athlon and G� is �K� �K and �K� respectively�
The branch instruction address is used to index a BTB�
If a matching entry is found and the branch is predicted
taken� the BTB will provide the target address for the
next fetch�

In a processor with a coupled BTB design� one in�
struction cache way is accessed when the way predic�
tion is available� Therefore the instruction cache en�
ergy is lower than that in a processor with a decoupled
BTB design where all the ways are accessed in parallel
for high performance�

However� the accuracy of target address prediction
in a coupled BTB is often lower than that in a decou�
pled design with same number of entries and associativ�
ity� 
Way�prediction� and 
line�prediction� 
elds in a
coupled BTB can only point to one cache line� Predic�
tion misses often occur if there are multiple branches in
a cache line or branches change direction� A decoupled
BTB can still provide accurate prediction in such cases�
In modern processors with long pipelines� high target
address prediction accuracy by the BTB is crucial for
high performance�

In this paper� we propose a Way�Predicting BTB
�WP�BTB� for energy savings in set�associative in�
struction caches� A WP�BTB makes modi
cations to

�



a conventional decoupled BTB design� When a branch
is allocated an entry in the BTB� in addition to the
branch target address� way predictions for both the
cache line with the target address and the cache line
with the fall�through address are saved in the WP�
BTB� When a branch accesses the WP�BTB for next
fetch address and the branch has an entry in the WP�
BTB� both the next fetch address and the correspond�
ing way prediction are provided� Hence the next fetch
needs only to access one cache way�

To enable more way predictions for higher instruc�
tion cache energy savings� we also modify the WP�
BTB allocation policy� Non�branch instructions are
also allocated entries in the WP�BTB� This increases
the number of BTB accesses and hence overall BTB
energy consumption� To keep the BTB energy low� a
set�associative WP�BTB can be partitioned into ways
for branch instructions and ways for non�branch in�
structions� As a consequence� the overall BTB energy
is reduced due to lower per BTB access energy as not
all the ways are accessed�

The rest of this paper is organized as follows� In
Section �� we brie�y describe related work on cache
and BTB energy savings� We present in Section � the
design of WP�BTB� The experimental results are given
in Section �� This paper is concluded with future work
in Section ��

� Related Work

2.1 Cache Energy Savings

High utilization of the instruction memory hierarchy
is needed to exploit instruction level parallelism� As a
consequence� energy consumption by on�chip instruc�
tion caches can comprise as high as ��� of the CPU
energy �����

Cache way partitioning is often used for energy sav�
ings in set�associative caches� The energy consumption
by one cache way in a n�way set�associative cache is ap�
proximately ��n the total cache energy consumption
when all the ways are accessed�

Way prediction technique as used in Alpha �����
can reduce instruction cache energy as only one cache
way is accessed when the prediction is correct� To mini�
mize way prediction miss penalty in a coupled BTB de�
sign� tags for all the ways are accessed in parallel with
predicted way data access� The percentage of energy
consumption by tag access increases with the number of
cache ways� Based on energy parameters generated by
Cacti ����� the relative energy consumption by a ��way
tag access and a one�way data access in a ��KB ��way
set�associative cache is ��� and ��� respectively� In

an ��way cache� the energy consumption by an ��way
tag access and a one�way data access is ��� and ���
respectively�

Another method of way prediction is proposed in
����� A table is used to save for each cache set the
most recently used way� On a cache access� the table is
accessed 
rst to retrieve the way prediction� Then the
predicted way is speculatively accessed� On a way pre�
diction miss� the remaining ways are accessed in the
next cycle� This approach su	ers from serialization�
which may a	ect the processor cycle time if cache ac�
cess is on a critical path of the processor�

Alpha ����� uses another kind of access serializa�
tion for L� cache energy savings� Tags for all ways are
accessed 
rst to determine which way holds the data�
Then that particular data way is accessed� This kind
of access serialization nearly doubles cache access time
and cannot apply to the L� cache where short cache
access time is critical to performance�

��� recognizes that not all the cache ways are needed
in an application and proposes to turn o	 some ways for
energy savings based on application demands� All the
remaining ways are accessed in parallel� Hence energy
savings are much smaller than those in way prediction
based techniques where only one way is accessed most
of the time� This technique also cannot apply to ap�
plications with large working set because the number
of energy expensive L� cache misses may increase dra�
matically�

Cache subbanking and line bu	ers ��� are used for
cache energy savings� These techniques are orthogo�
nal to way prediction based energy saving techniques�
For example� when cache subbanking is used in a n�
way set�associative cache� n subbanks� one from each
cache way� have to be accessed in parallel� If the cache
way holding the data is known before the access� then
only one subbank needs to be accessed� As a conse�
quence� the percentage of energy savings by way pre�
diction based techniques is unchanged�

Filter cache ���� and L�cache ��� place a small and
hence low�energy cache in front of the L� cache� This
design has high performance penalty and is only e	ec�
tive for applications with a small working set�

2.2 BTB Energy Savings

A large BTB is required for high performance� The
number of BTB accesses is large and its energy con�
sumption is also high� Rather small ����entry BTB of
the Pentium Pro consumes about �� of the processor
energy �����

BTB is often organized as a set�associative cache
and several ways can be turned o	 for energy savings if

�



application demands are low ���� ���� uses a BTB pre�
dictor for BTB energy savings� The assumption is that
BTB misses occur in bursts� If a miss in the BTB is
predicted for the next access� then BTB is not accessed
for the next branch instruction�

Decreasing the BTB entry size can also reduce the
BTB energy� In G� ���� instruction size is �� bits� In�
stead of using �� bits each for branch address and tar�
get address� the number of bits for each of them is ��
and �� respectively� This approach trades branch tar�
get address prediction accuracy for energy savings�

� WP�BTB Design

3.1 Way Prediction for Branch Instructions

Each entry of the WP�BTB is augmented with two

elds for way prediction�

� twp� Target Way Prediction for the cache line
with the branch target address�

� fwp� Fall�throughWay Prediction for the cache
line with the fall�through address�

Each entry in the WP�BTB is in the following format�

�branch addr� target addr� lru� twp� fwp��

Branch addr and target addr are used for target ad�
dress prediction and lru is used to manage the replace�
ment in a set�associative BTB�

When a branch address hits in the WP�BTB� the
predicted target address and the corresponding way
prediction are provided simultaneously� Using way pre�
diction� the next fetch needs only to access one cache
way�

The following hardware support is needed for way
prediction in the WP�BTB�

� A queue� calledWay Queue �WQ�� holds recently
hit ways�

� A queue� called BTB Update Request Queue
�BURQ�� holds pending WP�BTB update re�
quests�

� Additional 
elds for each branch instruction in the
pipeline�

� wq ptr� pointer to the next entry in the WQ�

� fwp� twp� way predictions of the hit WP�BTB
entry of this branch�

For a branch� the next fetch line is either the fall�
through cache line or the target cache line depending on
the direction of the branch� WQ and wq ptr are used
to track the way for either the target cache line or the
fall�through cache line� BURQ is needed because the
WP�BTB update requests cannot be processed imme�
diately if the next fetch address misses from the cache
or the target address prediction is not correct� Fields
fwp and twp are needed for way prediction update�

Add hit way-

footprint to WQ
fetch_addr

match

BURQ head

fetch_addr

match

BURQ head

Fetch done

Found

branch

Found

branch

br.wq_ptr =

wq_tail

Yes

Enable access

to the way

for the predicted

target address

Enable access

to the way

for the predicted

target address

BTB

change

commit

BTB

change

commit

Yes

Enable access

to all ways

No

fetch_addr + =

cache_block_size

++

11

22

44

33

55

Found

way-

footprint

Yes

No

Figure 1. Modifications when instruction
fetch finishes.

Figure � shows modi
cations �labels 
��� 
��� 
���

�� and 
��� to the conventional design when an in�
struction fetch 
nishes� First� the hit way is added to
the WQ� Second� if the head entry in the BURQ is wait�
ing for the 
nish of this fetch� then that entry is ready
to commit changes to the WP�BTB� Third� if a branch
instruction is found� the wq ptr of this branch is set to
the next entry in the WQ� When a branch instruction
commits and the branch prediction is correct� wq ptr
is used to retrieve the way for either the fall�through
cache line or the target cache line� Fourth� if the way
prediction for the next fetch is found in the WP�BTB�
the next fetch needs only to access one way� Other�
wise� all cache ways are enabled for the next fetch as
indicated by label 
���

Modi
cations to the branch instruction commit are
shown in Figure �� In a conventional BTB� if a branch
has an entry in the BTB� changes to the BTB can be
updated immediately because the target address is al�
ready resolved� In the WP�BTB� the way prediction is
also needed� Thus changes to the WP�BTB can be up�
dated only after the way prediction is available� There

�



Branch

prediction

correct

Branch

prediction

correct

BTB hitBTB hit

Branch takenBranch taken
Branch takenBranch taken

Allocate an

BTB entry

No

Yes

Yes

Yes

No

No
(br.wq_ptr) valid

BTB

change

commit

Allocate an

BTB entry

Yes

Allocate an

BURQ entry

Yes

fetch_addr = new_addr

Enable access

to all ways

No Yes

br.target_addr

== new_addr

br.fall_addr

==new_addrs

Enable access

to way br.fwf

NoYes

Yes

No
22 33

11

44

Enable access

to way br.twf

55

BTB hitBTB hit

Figure 2. Modifications for branch instruction
commit.

are two scenarios when way prediction is not available
�label 
�� and 
���� In the 
rst scenario� the branch
target prediction is correct but the next fetch address
is missing from the cache� In the second scenario� the
predicted address is not correct and the cache line with
the correct address is to be fetched in the next cycle�
In either scenario� the way prediction will be available
once next fetch 
nishes� Therefore the WP�BTB up�
date request will be added to BURQ 
rst� Then once
the next fetch 
nishes� the head entry of the BURQ will
be ready to update the WP�BTB �label 
�� in Figure
��� On branch prediction misses� if the way predic�
tion for the cache line with the correct fetch address is
found in the WP�BTB �label 
�� and 
���� then only
one way needs to be accessed for the next fetch�

3.2 Way Prediction for Non-branch Instructions

As only branch instructions access the WP�BTB�
way prediction is limited to speculative fetch addresses�
As a consequence� instruction cache energy savings are
only available to speculative instruction fetches� To en�
able more instruction cache energy savings� non�branch
instructions are allowed to access the WP�BTB for way
prediction� For this purpose� every non�branch instruc�
tion in the pipeline needs the following additional 
elds�
which are similar to the 
elds added for branch instruc�
tions�

� wq ptr� pointer to the next entry in the WQ�

� fwp � way prediction for the fall�through cache
line�

Wq ptr is needed to track the way prediction for the
next fetch line and fwp is needed for WP�BTB way

prediction update�
If there is no branch in a cache line that is under

fetch� the following changes are needed�

� the address of the 
rst instruction is used to index
the WP�BTB to 
nd the way prediction for the
fall�through cache line�

� the 
rst instruction in the cache line will set wq ptr
to the next entry in the WQ�

� if the way prediction is found� then only one way
will be enabled for the next fetch�

When a non�branch instruction commits� if its
wq ptr is valid and it doesn�t have an entry in the
WP�BTB� an entry will be allocated� Then� if the way
prediction is available at this time� the WP�BTB can
be updated immediately� In case the way prediction
is not available� an entry will be added to the WQ to
wait for the 
nish of the next fetch�

3.3 WP-BTB Partitioning

As a WP�BTB is organized as a cache� way�based
cache energy saving techniques can also apply to a set�
associative WP�BTB� A WP�BTB can be partitioned
into ways for branch instructions and ways for non�
branch instructions� We assume that there is prede�
coding or other mechanisms to determine whether a
WP�BTB access is by a branch instruction or by a non�
branch instruction� Therefore only the corresponding
WP�BTB ways need to be enabled� Reduced switch�
ing activities per WP�BTB access result in BTB energy
savings�

� Experimental Results

4.1 Simulation Setup

We use the SimpleScalar toolset ��� to model an out�
of�order superscalar processor� The processor parame�
ters shown in Table � roughly correspond to those in
a current high�end microprocessor� Wattch ��� is used
for energy estimation� A set of SPEC�� benchmarks
are simulated� The test input set is used�

We have evaluated the performance and energy of

ve WP�BTB con
gurations�

� base� only branch instructions access the WP�
BTB�

� share� both branch and non�branch instructions
can access all ways in the WP�BTB�

�



Parameter Value
branch pred� combined� �K ��bit chooser�

�k�entry bimodal�
���bit� �K�entry global

BTB �K�entry� ��way
RUU ��
LSQ ��

fetch queue ��
fetch width �
int� ALUs �
�t� ALUs �

int� Mult�Div �
�t� Mult�Div �
L� Icache ��KB� ��way� ��B block
L� Dcache ��KB� ��way� ��B block
L� cache ���KB� ��way� ��B block

Table 1. System configuration.

� � �� the WP�BTB is partitioned into � way for
branch instructions and � ways for non�branch in�
structions�

� � �� the WP�BTB is partitioned into � ways for
branch instructions and � ways for non�branch in�
structions�

� � �� the WP�BTB is partitioned into � ways for
branch instructions and � way for non�branch in�
structions�

4.2 Results

60

65

70

75

80

85

90

95

100

ap
pl

u
ap

si
fp

pp
p

hy
dr

o2
d

su
2c

or
sw

im
to

m
ca

tv
tu

rb
3d

w
av

e
co

m
pr

es
s

gc
c go

ijp
eg

li
m

88
ks

im av
g

P
e
rc

e
n
ta

g
e

base share 1_3 2_2 3_1

Figure 3. Branch hit rate in the WP-BTB.

Figure � shows branch hit rate in the WP�BTB� As
branch prediction is not available for a branch missing
from the WP�BTB� low hit rate means low prediction

accuracy� The hit rate decreases with e	ective BTB
capacity� the number of entries available for branch in�
structions� Share almost always has the highest hit
rate� The rate by � � is almost same as that by share�
For some benchmarks� the di	erence in hit rate by dif�
ferent con
gurations is very small� These benchmarks
either don�t have many branches like applu� or have
many branches with high access locality like ijpeg and
li� BTB capacity decrease won�t impact hit rate much
for these benchmark� On the other hand� hydro�d�
su�cor� tomcatv and gcc are a	ected the most by the
decrease in BTB capacity and associativity� They have
many branches that cannot 
t in a small and low as�
sociativity BTB�

0.95

0.97

0.99

1.01

1.03

1.05

1.07

1.09

1.11

1.13

1.15

ap
pl

u

ap
si

fp
pp

p
hy

dr
o2

d
su

2c
or

sw
im

to
m

ca
tv

tu
rb

3d
w

av
e

co
m

pr
es

s

gc
c go

ijp
eg

li
m

88
ks

im av
g

C
y
c
le

share 3_1 2_2 1_3

Figure 4. Normalized execution time.

Figure � shows normalized execution time with re�
gard to base� For � � and � �� 
ve benchmarks�apsi�
hydro�d� su�cor� tomcatv and gcc show high perfor�
mance degradation� Referring to Figure �� we notice
that execution time increases whenever the branch hit
rate in BTB decreases� Hit rate decrease results in
performance degradation� There is virtually no perfor�
mance degradation for share and � � as the branch hit
in the BTB is unchanged� The average performance
degradation for share� � �� � � and � � is ����� �����
���� and ���� respectively�

Figure � shows the non�branch access hit rate in
the WP�BTB� Share has the highest hit rate� followed
in order by � �� � � and � � as the number of en�
tries available for non�branch access decreases� Most
benchmarks have small working set and �K entries for
non�branch instructions are enough for way prediction
by most instructions� Hence the di	erence in hit rate
among � � � � � and share is very small and the hit
rate for share and � � is close to �����

Noticeable di	erences in hit rate can be found in
half of the benchmarks between � � and � �� For these
benchmarks� ��� entries for non�branch instructions
are not enough for way prediction by instructions in

�



40

50

60

70

80

90

100

ap
pl

u

ap
si

fp
pp

p
hy

dr
o2

d
su

2c
or

sw
im

to
m

ca
tv

tu
rb

3d
w

av
e

co
m

pr
es

s

gc
c go

ijp
eg

li
m

88
ks

im av
g

P
e
rc

e
n
ta

g
e

share 1_3 2_2 3_1

Figure 5. Non-branch access hit rate in the
WP-BTB.

the working set� For example� fpppp has a large work�
ing set� which is evident as instruction cache miss rate
in fpppp increases from ���� to ���� when the cache
size decreases from ��KB to ��KB� Therefore the dif�
ferences in hit rate among di	erent con
gurations are
large�

0

10

20

30

40

50

60

70

80

90

100

ap
pl

u

ap
si

fp
pp

p
hy

dr
o
2d

su
2c

or
sw

im
to

m
ca

tv
tu

rb
3
d

w
a
ve

co
m

pr
es

s

gc
c

go

ijp
eg

li
m

88
ks

im av
g

P
e
rc

e
n
ta

g
e

base share 1_3 2_2 3_1

Figure 6. BTB hit rate for branch and non-
branch accesses.

Figure � shows BTB hit rate for branch and non�
branch accesses� High hit rate indicates more number
of way predictions� Share has the highest hit rate and
base has the lowest� The hit rate for partitioned BTB
con
gurations varies� � � generally has lower hit rate
than � � and � �� For all benchmarks except fpppp�
there is at least one partitioned con
guration that has
a hit rate as high as share�

Figure � shows instruction cache energy savings�
The percentage in savings follows the same trend as
the BTB hit rate shown in Figure �� When there is a
hit in the BTB� the way prediction for the next fetch
line can be retrieved and the next fetch needs only to

5

15

25

35

45

55

65

75

a
pp

lu

a
ps

i
fp

p
pp

h
yd

ro
2
d

su
2c

o
r

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e
co

m
pr

e
ss g
cc g
o

ijp
e
g li

m
8
8k

si
m a
vg

P
e

rc
e

n
ta

g
e

base share 1_3 2_2 3_1

Figure 7. Instruction cache energy savings.

access one cache way� High hit rate results in high in�
struction cache energy savings� The average percentage
in energy savings for share� � �� � � and � � is ������
������ ����� and ����� respectively� Share results in
the best instruction cache energy savings�

0

5

10

15

20

25

30

35

ap
pl

u

ap
si

fp
pp

p
hy

dr
o
2d

su
2c

or
sw

im
to

m
ca

tv
tu

rb
3
d

w
a
ve

co
m

pr
es

s

gc
c

go

ijp
eg

li
m

88
ks

im av
g

P
e
rc

e
n
ta

g
e

icache btb-base

Figure 8. % processor energy contribution by
the instruction cache and the BTB for config-
uration base.

Figure � shows processor energy contribution �clock�
ing energy excluded� by the instruction cache and the
BTB for con
guration base� The instruction cache con�
tributes a much larger percentage to the processor en�
ergy than the BTB� The contribution by the instruction
cache ranges from ��� in fpppp to ��� in gcc with an
average of ���� The contribution by the BTB ranges
from ����� in fpppp to ����� in ijpeg with an average
of ������

Figure � shows processor energy contribution by the
instruction cache and the BTB for con
guration share�
Comparing with Figure �� we notice that the instruc�
tion cache energy decreases dramatically� On the other
hand� average BTB energy consumption nearly doubles

�



0

1

2

3

4

5

6

7

8

9

10

a
p
pl

u
a
p
si

fp
p
pp

h
yd

ro
2
d

su
2
co

r
sw

im
to

m
ca

tv
tu

rb
3
d

w
a
ve

co
m

pr
e
ss

g
cc g
o

ijp
e
g li

m
8
8k

si
m

a
vg

P
e
rc

e
n
ta

g
e

icache btb-share

Figure 9. % processor energy contribution by
the instruction cache and the BTB for config-
uration share.

with additional BTB activity by non�branch instruc�
tion accesses� For some benchmarks such as swim and
ijpeg� the energy consumption by the BTB is larger
than that by the instruction cache� The average BTB
energy is roughly equal to the average instruction cache
energy� This 
gure shows the need to keep BTB energy
under control as well�

0

1

2

3

4

5

6

7

8

9

ap
pl

u

ap
si

fp
pp

p
hy

dr
o2

d
su

2c
or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e
co

m
pr

es
s

gc
c go

ijp
eg

li
m

88
ks

im av
g

P
e
rc

e
n
ta

g
e

base share 1_3 2_2 3_1

Figure 10. % processor energy contribution
by the BTB with different WP-BTB configura-
tions.

Figure �� shows processor energy contribution by
the BTB with di	erent WP�BTB con
gurations� The
BTB energy by share is much higher than that by other
con
gurations because the number of BTB accesses in�
creases dramatically� Although the number of accesses
in partitioned BTB con
gurations also increases� per
access energy decreases because not all the ways are
accessed� For � benchmarks� base achieves the mini�
mal BTB energy� For the remaining �� benchmarks�
� � achieves the minimal BTB energy� � � has the low�

est average BTB energy� followed in order by � �� � �
and base� The di	erences among them are small� We
conclude that partitioned BTB con
gurations don�t in�
crease BTB energy much even with more number of
accesses�

5

7

9

11

13

15

ap
pl

u

ap
si

fp
pp

p
hy

dr
o2

d
su

2c
or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e
co

m
pr

es
s

gc
c go

ijp
eg

li
m

88
ks

im av
g

P
e
rc

e
n
ta

g
e

share 1_3 2_2 3_1

Figure 11. % processor energy contribution
by the instruction cache and the BTB with
different WP-BTB configurations.

Figure �� shows total energy contribution by the in�
struction cache and the BTB� Partitioned BTB con
g�
urations achieve the minimal energy for all benchmarks
except fpppp� Which partitioned con
guration is the
best for a given benchmark depends on the working set
size and the ratio of branch instruction accesses to the
non�branch instruction accesses� For example� � � is
the best for applu and turb�d� In these benchmarks�
the working set size is small and most of the BTB ac�
cesses are by non�branch instructions� Single BTB way
for non�branch instruction accesses results in minimal
overall energy� As either compiler or pro
ling tech�
niques may determine the branch to non�branch access
ratio and the working set size� the optimal BTB parti�
tion may be determined statically based on application
demands for the best tradeo	 in performance and en�
ergy�

Figure �� shows energy�delay product for the in�
struction cache and the BTB� For each benchmark�
point min represents the minimal energy�delay prod�
uct for this benchmark among all the con
gurations�
The minimal energy�delay product ranges from ����
for m��ksim to ���� for fpppp and the average is �����
An average �� percent energy�delay product reduction
for the instruction cache and the BTB is achieved by
the WP�BTB�

�



0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

ap
pl

u

ap
si

fp
pp

p
hy

dr
o2

d
su

2c
or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e
co

m
pr

es
s

gc
c go

ijp
eg

li
m

88
ks

im av
g

share 1_3 2_2 3_1 min

Figure 12. Energy-delay product for the in-
struction cache and the BTB.

� Conclusion

In this paper� we have presented a way�predicting
BTB design� It enables way prediction by both
branch and non�branch instructions for energy savings
in set�associative instruction caches� In addition� a
set�associative WP�BTB is partitioned into ways for
branch instruction and ways for non�branch instruc�
tions to keep the WP�BTB energy under control�

Con
guration share is the best in terms of instruc�
tion cache energy� It achieves an average ��� of en�
ergy saving in a ��way set�associative instruction cache
with only ���� performance degradation� When the
BTB energy and the instruction cache energy are con�
sidered together� partitioned BTB con
gurations are
better than the share con
guration and can achieve
��� reduction in energy�delay product�

We are currently investigating other techniques such
as compiler�pro
ling techniques and dynamic mecha�
nisms to determine application�speci
c BTB con
gura�
tion with the best tradeo	 in energy and performance�

Acknowledgments

This work is supported by DARPA�ITO under
PACC and DIS programs�

References

��� K�B� Normoyle et al� UltraSparc�IIi� expanding the
boundaries of system on a chip� IEEE Trans� Micro�
��	
����

�� �����

�
� Advanced Micro Devices� Inc� AMD athlon processor

architecture� 
���� White paper�
��� D� H� Albonesi� Selective cache ways� on�demand

cache resource allocation� In Int�l Symp� Microarchi�

tecture� pages 
��

��� �����

��� N� Bellas� I� Hajj� and C� Polychronopoulos� Using
dynamic cache management techniques to reduce en�
ergy in a high�performance processor� In Int�l Symp�

on Low Power Electronics and Design� pages ��
���
�����

��� D� Brooks� V� Tiwari� and M� Martonosi� Wattch� a
framework for architectural�level power analysis and
optimizations� In Int�l Symp� Computer Architecture�
pages ��
��� 
����

��� D� Burger and T�Austin� The simplescalar toolset�
version 
��� Technical Report TR�������
� University
of Wisconsin�Madison� �����

��� M� Check and T� Slegel� Custom S���� G� and G�
microprocessors� IBM Journal of Research and Devel�

opment� ��	��������
���� �����
��� G� Hinton et al� The microarchitecture of the pentium

� processor� Intel Technology Journal� Q�� 
����
��� K� Ghose and M� Kamble� Reducing power in super�

scalar processor caches using subbanking� multiple line
bu�ers and bit�line segmentation� In Int�l Symp� on

Low Power Electronics and Design� pages ��
��� �����
���� K� Inoue� T� Ishihara� and K� Murakami� Way�

predicting set�associative cache for high performance
and low energy consumption� In Int�l Symp� on Low

Power Electronics and Design� pages 
��

��� �����
���� J� Montanaro et al� A ����MHz� �
�b� ����W CMOS

RISC microprocessor� IEEE Journal of Solid�State

Circuits� �
	��������
��� �����
��
� R� Kessler� The Alpha 
�
�� microprocessor� IEEE

Micro� ��	
��
�
��� �����
���� J� Kin� M� Gupta� and W� Mangione�Smith� The �lter

cache� An energy e�cient memory structure� In Int�l

Symp� Microarchitecture� pages ���
���� �����
���� S� Manne� A� Klauser� and D� Grunwald� Pipeline gat�

ing� speculation control for energy reduction� In Int�l

Symp� Computer Architecture� pages ��

���� �����
���� E� Musoll� Predicting the usefulness of a block result�

a micro�architectural technique for high�performance
low�power processors� In Int�l Symp� Microarchitec�

ture� pages 
��

��� �����
���� C� Perleberg and A� Smith� Branch target bu�er

design and optimization� IEEE Trans� Computers�
�
	������
��
� �����

���� S� Wilton and N� Jouppi� An enhanced access and
cycle time model for on�chip caches� Technical Report
����� Digital Western Research Laboratory� �����

�


