
Integrated I�cache Way Predictor and Branch Target Bu�er

to Reduce Energy Consumption

Weiyu Tang Alexander V� Veidenbaum Alexandru Nicolau

Rajesh Gupta

Department of Information and Computer Science

University of California� Irvine

Irvine� CA �������	�


fwtang� alexv� nicolau� rguptag�ics�uci�edu

Abstract

In this paper� we present a Branch Target Bu�er
�BTB� design for energy savings in set�associative in�
struction caches� We extend the functionality of a BTB
by caching way predictions in addition to branch target
addresses� Way prediction and branch target prediction
are done in parallel� Instruction cache energy savings
are achieved by accessing one cache way if the way pre�
diction for a fetch is available�

To increase the number of way predictions for higher
energy savings� we modify the BTB management policy
to allocate entries for non�branch instructions� Fur�
thermore� we propose to partition a BTB into ways for
branch instructions and ways for non�branch instruc�
tions to reduce the BTB energy as well�

We evaluate the e�ectiveness of our BTB design and
management policies with SPEC�� benchmarks� The
best BTB con	guration shows a 
�� energy savings
on average in a ��way set�associative instruction cache
and the performance degradation is only 
���� When
the instruction cache energy and the BTB energy are
considered together� the average energy�delay product
reduction is ����

� Introduction

To exploit instruction level parallelism� modern pro�
cessors support out of order execution engines� This re�
quires instruction fetch across basic block boundaries
to keep the execution units busy� Many instructions
will be fetched and issued before a branch target ad�
dress can be resolved�

A BTB ���� is used for branch target address pre�
diction� There are two �avors of BTB design� coupled

and decoupled where the tradeo	 in performance and
energy is 
xed at the design time�

The coupled BTB design is used in Alpha �����
���� and UltraSparc�II���� where the BTB is integrated
with the instruction cache� Each cache line has two
additional 
elds� a 
line�prediction� 
eld and a 
way�
prediction� 
eld� to predict a cache line for the next
fetch�

The decoupled design is used in Pentium � ����
Athlon ��� and G� ���� where a BTB is organized as
a separate cache� The number of BTB entries in Pen�
tium �� Athlon and G� is �K� �K and �K� respectively�
The branch instruction address is used to index a BTB�
If a matching entry is found and the branch is predicted
taken� the BTB will provide the target address for the
next fetch�

In a processor with a coupled BTB design� one in�
struction cache way is accessed when the way predic�
tion is available� Therefore the instruction cache en�
ergy is lower than that in a processor with a decoupled
BTB design where all the ways are accessed in parallel
for high performance�

However� the accuracy of target address prediction
in a coupled BTB is often lower than that in a decou�
pled design with same number of entries and associativ�
ity� 
Way�prediction� and 
line�prediction� 
elds in a
coupled BTB can only point to one cache line� Predic�
tion misses often occur if there are multiple branches in
a cache line or branches change direction� A decoupled
BTB can still provide accurate prediction in such cases�
In modern processors with long pipelines� high target
address prediction accuracy by the BTB is crucial for
high performance�

In this paper� we propose a Way�Predicting BTB
�WP�BTB� for energy savings in set�associative in�
struction caches� A WP�BTB makes modi
cations to
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a conventional decoupled BTB design� When a branch
is allocated an entry in the BTB� in addition to the
branch target address� way predictions for both the
cache line with the target address and the cache line
with the fall�through address are saved in the WP�
BTB� When a branch accesses the WP�BTB for next
fetch address and the branch has an entry in the WP�
BTB� both the next fetch address and the correspond�
ing way prediction are provided� Hence the next fetch
needs only to access one cache way�

To enable more way predictions for higher instruc�
tion cache energy savings� we also modify the WP�
BTB allocation policy� Non�branch instructions are
also allocated entries in the WP�BTB� This increases
the number of BTB accesses and hence overall BTB
energy consumption� To keep the BTB energy low� a
set�associative WP�BTB can be partitioned into ways
for branch instructions and ways for non�branch in�
structions� As a consequence� the overall BTB energy
is reduced due to lower per BTB access energy as not
all the ways are accessed�

The rest of this paper is organized as follows� In
Section �� we brie�y describe related work on cache
and BTB energy savings� We present in Section � the
design of WP�BTB� The experimental results are given
in Section �� This paper is concluded with future work
in Section ��

� Related Work

2.1 Cache Energy Savings

High utilization of the instruction memory hierarchy
is needed to exploit instruction level parallelism� As a
consequence� energy consumption by on�chip instruc�
tion caches can comprise as high as ��� of the CPU
energy �����

Cache way partitioning is often used for energy sav�
ings in set�associative caches� The energy consumption
by one cache way in a n�way set�associative cache is ap�
proximately ��n the total cache energy consumption
when all the ways are accessed�

Way prediction technique as used in Alpha �����
can reduce instruction cache energy as only one cache
way is accessed when the prediction is correct� To mini�
mize way prediction miss penalty in a coupled BTB de�
sign� tags for all the ways are accessed in parallel with
predicted way data access� The percentage of energy
consumption by tag access increases with the number of
cache ways� Based on energy parameters generated by
Cacti ����� the relative energy consumption by a ��way
tag access and a one�way data access in a ��KB ��way
set�associative cache is ��� and ��� respectively� In

an ��way cache� the energy consumption by an ��way
tag access and a one�way data access is ��� and ���
respectively�

Another method of way prediction is proposed in
����� A table is used to save for each cache set the
most recently used way� On a cache access� the table is
accessed 
rst to retrieve the way prediction� Then the
predicted way is speculatively accessed� On a way pre�
diction miss� the remaining ways are accessed in the
next cycle� This approach su	ers from serialization�
which may a	ect the processor cycle time if cache ac�
cess is on a critical path of the processor�

Alpha ����� uses another kind of access serializa�
tion for L� cache energy savings� Tags for all ways are
accessed 
rst to determine which way holds the data�
Then that particular data way is accessed� This kind
of access serialization nearly doubles cache access time
and cannot apply to the L� cache where short cache
access time is critical to performance�

��� recognizes that not all the cache ways are needed
in an application and proposes to turn o	 some ways for
energy savings based on application demands� All the
remaining ways are accessed in parallel� Hence energy
savings are much smaller than those in way prediction
based techniques where only one way is accessed most
of the time� This technique also cannot apply to ap�
plications with large working set because the number
of energy expensive L� cache misses may increase dra�
matically�

Cache subbanking and line bu	ers ��� are used for
cache energy savings� These techniques are orthogo�
nal to way prediction based energy saving techniques�
For example� when cache subbanking is used in a n�
way set�associative cache� n subbanks� one from each
cache way� have to be accessed in parallel� If the cache
way holding the data is known before the access� then
only one subbank needs to be accessed� As a conse�
quence� the percentage of energy savings by way pre�
diction based techniques is unchanged�

Filter cache ���� and L�cache ��� place a small and
hence low�energy cache in front of the L� cache� This
design has high performance penalty and is only e	ec�
tive for applications with a small working set�

2.2 BTB Energy Savings

A large BTB is required for high performance� The
number of BTB accesses is large and its energy con�
sumption is also high� Rather small ����entry BTB of
the Pentium Pro consumes about �� of the processor
energy �����

BTB is often organized as a set�associative cache
and several ways can be turned o	 for energy savings if
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application demands are low ���� ���� uses a BTB pre�
dictor for BTB energy savings� The assumption is that
BTB misses occur in bursts� If a miss in the BTB is
predicted for the next access� then BTB is not accessed
for the next branch instruction�

Decreasing the BTB entry size can also reduce the
BTB energy� In G� ���� instruction size is �� bits� In�
stead of using �� bits each for branch address and tar�
get address� the number of bits for each of them is ��
and �� respectively� This approach trades branch tar�
get address prediction accuracy for energy savings�

� WP�BTB Design

3.1 Way Prediction for Branch Instructions

Each entry of the WP�BTB is augmented with two

elds for way prediction�

� twp� Target Way Prediction for the cache line
with the branch target address�

� fwp� Fall�throughWay Prediction for the cache
line with the fall�through address�

Each entry in the WP�BTB is in the following format�

�branch addr� target addr� lru� twp� fwp��

Branch addr and target addr are used for target ad�
dress prediction and lru is used to manage the replace�
ment in a set�associative BTB�

When a branch address hits in the WP�BTB� the
predicted target address and the corresponding way
prediction are provided simultaneously� Using way pre�
diction� the next fetch needs only to access one cache
way�

The following hardware support is needed for way
prediction in the WP�BTB�

� A queue� calledWay Queue �WQ�� holds recently
hit ways�

� A queue� called BTB Update Request Queue
�BURQ�� holds pending WP�BTB update re�
quests�

� Additional 
elds for each branch instruction in the
pipeline�

� wq ptr� pointer to the next entry in the WQ�

� fwp� twp� way predictions of the hit WP�BTB
entry of this branch�

For a branch� the next fetch line is either the fall�
through cache line or the target cache line depending on
the direction of the branch� WQ and wq ptr are used
to track the way for either the target cache line or the
fall�through cache line� BURQ is needed because the
WP�BTB update requests cannot be processed imme�
diately if the next fetch address misses from the cache
or the target address prediction is not correct� Fields
fwp and twp are needed for way prediction update�

Add hit way-
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BURQ head

fetch_addr
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BURQ head
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Figure 1. Modifications when instruction
fetch finishes.

Figure � shows modi
cations �labels 
��� 
��� 
���

�� and 
��� to the conventional design when an in�
struction fetch 
nishes� First� the hit way is added to
the WQ� Second� if the head entry in the BURQ is wait�
ing for the 
nish of this fetch� then that entry is ready
to commit changes to the WP�BTB� Third� if a branch
instruction is found� the wq ptr of this branch is set to
the next entry in the WQ� When a branch instruction
commits and the branch prediction is correct� wq ptr
is used to retrieve the way for either the fall�through
cache line or the target cache line� Fourth� if the way
prediction for the next fetch is found in the WP�BTB�
the next fetch needs only to access one way� Other�
wise� all cache ways are enabled for the next fetch as
indicated by label 
���

Modi
cations to the branch instruction commit are
shown in Figure �� In a conventional BTB� if a branch
has an entry in the BTB� changes to the BTB can be
updated immediately because the target address is al�
ready resolved� In the WP�BTB� the way prediction is
also needed� Thus changes to the WP�BTB can be up�
dated only after the way prediction is available� There
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Figure 2. Modifications for branch instruction
commit.

are two scenarios when way prediction is not available
�label 
�� and 
���� In the 
rst scenario� the branch
target prediction is correct but the next fetch address
is missing from the cache� In the second scenario� the
predicted address is not correct and the cache line with
the correct address is to be fetched in the next cycle�
In either scenario� the way prediction will be available
once next fetch 
nishes� Therefore the WP�BTB up�
date request will be added to BURQ 
rst� Then once
the next fetch 
nishes� the head entry of the BURQ will
be ready to update the WP�BTB �label 
�� in Figure
��� On branch prediction misses� if the way predic�
tion for the cache line with the correct fetch address is
found in the WP�BTB �label 
�� and 
���� then only
one way needs to be accessed for the next fetch�

3.2 Way Prediction for Non-branch Instructions

As only branch instructions access the WP�BTB�
way prediction is limited to speculative fetch addresses�
As a consequence� instruction cache energy savings are
only available to speculative instruction fetches� To en�
able more instruction cache energy savings� non�branch
instructions are allowed to access the WP�BTB for way
prediction� For this purpose� every non�branch instruc�
tion in the pipeline needs the following additional 
elds�
which are similar to the 
elds added for branch instruc�
tions�

� wq ptr� pointer to the next entry in the WQ�

� fwp � way prediction for the fall�through cache
line�

Wq ptr is needed to track the way prediction for the
next fetch line and fwp is needed for WP�BTB way

prediction update�
If there is no branch in a cache line that is under

fetch� the following changes are needed�

� the address of the 
rst instruction is used to index
the WP�BTB to 
nd the way prediction for the
fall�through cache line�

� the 
rst instruction in the cache line will set wq ptr
to the next entry in the WQ�

� if the way prediction is found� then only one way
will be enabled for the next fetch�

When a non�branch instruction commits� if its
wq ptr is valid and it doesn�t have an entry in the
WP�BTB� an entry will be allocated� Then� if the way
prediction is available at this time� the WP�BTB can
be updated immediately� In case the way prediction
is not available� an entry will be added to the WQ to
wait for the 
nish of the next fetch�

3.3 WP-BTB Partitioning

As a WP�BTB is organized as a cache� way�based
cache energy saving techniques can also apply to a set�
associative WP�BTB� A WP�BTB can be partitioned
into ways for branch instructions and ways for non�
branch instructions� We assume that there is prede�
coding or other mechanisms to determine whether a
WP�BTB access is by a branch instruction or by a non�
branch instruction� Therefore only the corresponding
WP�BTB ways need to be enabled� Reduced switch�
ing activities per WP�BTB access result in BTB energy
savings�

� Experimental Results

4.1 Simulation Setup

We use the SimpleScalar toolset ��� to model an out�
of�order superscalar processor� The processor parame�
ters shown in Table � roughly correspond to those in
a current high�end microprocessor� Wattch ��� is used
for energy estimation� A set of SPEC�� benchmarks
are simulated� The test input set is used�

We have evaluated the performance and energy of

ve WP�BTB con
gurations�

� base� only branch instructions access the WP�
BTB�

� share� both branch and non�branch instructions
can access all ways in the WP�BTB�
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Parameter Value
branch pred� combined� �K ��bit chooser�

�k�entry bimodal�
���bit� �K�entry global

BTB �K�entry� ��way
RUU ��
LSQ ��

fetch queue ��
fetch width �
int� ALUs �
�t� ALUs �

int� Mult�Div �
�t� Mult�Div �
L� Icache ��KB� ��way� ��B block
L� Dcache ��KB� ��way� ��B block
L� cache ���KB� ��way� ��B block

Table 1. System configuration.

� � �� the WP�BTB is partitioned into � way for
branch instructions and � ways for non�branch in�
structions�

� � �� the WP�BTB is partitioned into � ways for
branch instructions and � ways for non�branch in�
structions�

� � �� the WP�BTB is partitioned into � ways for
branch instructions and � way for non�branch in�
structions�

4.2 Results
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Figure 3. Branch hit rate in the WP-BTB.

Figure � shows branch hit rate in the WP�BTB� As
branch prediction is not available for a branch missing
from the WP�BTB� low hit rate means low prediction

accuracy� The hit rate decreases with e	ective BTB
capacity� the number of entries available for branch in�
structions� Share almost always has the highest hit
rate� The rate by � � is almost same as that by share�
For some benchmarks� the di	erence in hit rate by dif�
ferent con
gurations is very small� These benchmarks
either don�t have many branches like applu� or have
many branches with high access locality like ijpeg and
li� BTB capacity decrease won�t impact hit rate much
for these benchmark� On the other hand� hydro�d�
su�cor� tomcatv and gcc are a	ected the most by the
decrease in BTB capacity and associativity� They have
many branches that cannot 
t in a small and low as�
sociativity BTB�
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Figure 4. Normalized execution time.

Figure � shows normalized execution time with re�
gard to base� For � � and � �� 
ve benchmarks�apsi�
hydro�d� su�cor� tomcatv and gcc show high perfor�
mance degradation� Referring to Figure �� we notice
that execution time increases whenever the branch hit
rate in BTB decreases� Hit rate decrease results in
performance degradation� There is virtually no perfor�
mance degradation for share and � � as the branch hit
in the BTB is unchanged� The average performance
degradation for share� � �� � � and � � is ����� �����
���� and ���� respectively�

Figure � shows the non�branch access hit rate in
the WP�BTB� Share has the highest hit rate� followed
in order by � �� � � and � � as the number of en�
tries available for non�branch access decreases� Most
benchmarks have small working set and �K entries for
non�branch instructions are enough for way prediction
by most instructions� Hence the di	erence in hit rate
among � � � � � and share is very small and the hit
rate for share and � � is close to �����

Noticeable di	erences in hit rate can be found in
half of the benchmarks between � � and � �� For these
benchmarks� ��� entries for non�branch instructions
are not enough for way prediction by instructions in
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Figure 5. Non-branch access hit rate in the
WP-BTB.

the working set� For example� fpppp has a large work�
ing set� which is evident as instruction cache miss rate
in fpppp increases from ���� to ���� when the cache
size decreases from ��KB to ��KB� Therefore the dif�
ferences in hit rate among di	erent con
gurations are
large�
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Figure 6. BTB hit rate for branch and non-
branch accesses.

Figure � shows BTB hit rate for branch and non�
branch accesses� High hit rate indicates more number
of way predictions� Share has the highest hit rate and
base has the lowest� The hit rate for partitioned BTB
con
gurations varies� � � generally has lower hit rate
than � � and � �� For all benchmarks except fpppp�
there is at least one partitioned con
guration that has
a hit rate as high as share�

Figure � shows instruction cache energy savings�
The percentage in savings follows the same trend as
the BTB hit rate shown in Figure �� When there is a
hit in the BTB� the way prediction for the next fetch
line can be retrieved and the next fetch needs only to

5

15

25

35

45

55

65

75

a
pp

lu

a
ps

i
fp

p
pp

h
yd

ro
2
d

su
2c

o
r

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e
co

m
pr

e
ss g
cc g
o

ijp
e
g li

m
8
8k

si
m a
vg

P
e

rc
e

n
ta

g
e

base share 1_3 2_2 3_1

Figure 7. Instruction cache energy savings.

access one cache way� High hit rate results in high in�
struction cache energy savings� The average percentage
in energy savings for share� � �� � � and � � is ������
������ ����� and ����� respectively� Share results in
the best instruction cache energy savings�
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Figure 8. % processor energy contribution by
the instruction cache and the BTB for config-
uration base.

Figure � shows processor energy contribution �clock�
ing energy excluded� by the instruction cache and the
BTB for con
guration base� The instruction cache con�
tributes a much larger percentage to the processor en�
ergy than the BTB� The contribution by the instruction
cache ranges from ��� in fpppp to ��� in gcc with an
average of ���� The contribution by the BTB ranges
from ����� in fpppp to ����� in ijpeg with an average
of ������

Figure � shows processor energy contribution by the
instruction cache and the BTB for con
guration share�
Comparing with Figure �� we notice that the instruc�
tion cache energy decreases dramatically� On the other
hand� average BTB energy consumption nearly doubles
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Figure 9. % processor energy contribution by
the instruction cache and the BTB for config-
uration share.

with additional BTB activity by non�branch instruc�
tion accesses� For some benchmarks such as swim and
ijpeg� the energy consumption by the BTB is larger
than that by the instruction cache� The average BTB
energy is roughly equal to the average instruction cache
energy� This 
gure shows the need to keep BTB energy
under control as well�
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Figure 10. % processor energy contribution
by the BTB with different WP-BTB configura-
tions.

Figure �� shows processor energy contribution by
the BTB with di	erent WP�BTB con
gurations� The
BTB energy by share is much higher than that by other
con
gurations because the number of BTB accesses in�
creases dramatically� Although the number of accesses
in partitioned BTB con
gurations also increases� per
access energy decreases because not all the ways are
accessed� For � benchmarks� base achieves the mini�
mal BTB energy� For the remaining �� benchmarks�
� � achieves the minimal BTB energy� � � has the low�

est average BTB energy� followed in order by � �� � �
and base� The di	erences among them are small� We
conclude that partitioned BTB con
gurations don�t in�
crease BTB energy much even with more number of
accesses�
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Figure 11. % processor energy contribution
by the instruction cache and the BTB with
different WP-BTB configurations.

Figure �� shows total energy contribution by the in�
struction cache and the BTB� Partitioned BTB con
g�
urations achieve the minimal energy for all benchmarks
except fpppp� Which partitioned con
guration is the
best for a given benchmark depends on the working set
size and the ratio of branch instruction accesses to the
non�branch instruction accesses� For example� � � is
the best for applu and turb�d� In these benchmarks�
the working set size is small and most of the BTB ac�
cesses are by non�branch instructions� Single BTB way
for non�branch instruction accesses results in minimal
overall energy� As either compiler or pro
ling tech�
niques may determine the branch to non�branch access
ratio and the working set size� the optimal BTB parti�
tion may be determined statically based on application
demands for the best tradeo	 in performance and en�
ergy�

Figure �� shows energy�delay product for the in�
struction cache and the BTB� For each benchmark�
point min represents the minimal energy�delay prod�
uct for this benchmark among all the con
gurations�
The minimal energy�delay product ranges from ����
for m��ksim to ���� for fpppp and the average is �����
An average �� percent energy�delay product reduction
for the instruction cache and the BTB is achieved by
the WP�BTB�
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Figure 12. Energy-delay product for the in-
struction cache and the BTB.

� Conclusion

In this paper� we have presented a way�predicting
BTB design� It enables way prediction by both
branch and non�branch instructions for energy savings
in set�associative instruction caches� In addition� a
set�associative WP�BTB is partitioned into ways for
branch instruction and ways for non�branch instruc�
tions to keep the WP�BTB energy under control�

Con
guration share is the best in terms of instruc�
tion cache energy� It achieves an average ��� of en�
ergy saving in a ��way set�associative instruction cache
with only ���� performance degradation� When the
BTB energy and the instruction cache energy are con�
sidered together� partitioned BTB con
gurations are
better than the share con
guration and can achieve
��� reduction in energy�delay product�

We are currently investigating other techniques such
as compiler�pro
ling techniques and dynamic mecha�
nisms to determine application�speci
c BTB con
gura�
tion with the best tradeo	 in energy and performance�
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